
Received September 30, 2018, accepted October 17, 2018, date of publication October 22, 2018,
date of current version November 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2877181

Optimal Distributed Interference Mitigation
for Small Cell Networks With Non-Orthogonal
Multiple Access: A Locally Cooperative Game
XIANLING WANG 1, (Member, IEEE), HAIJUN ZHANG 2, (Senior Member, IEEE),
YUE TIAN 1, (Member, IEEE), CHEN ZHU1, AND VICTOR C. M. LEUNG 3, (Fellow, IEEE)
1Fujian Key Laboratory of Communication Network and Information Processing, Xiamen University of Technology, Xiamen 361024, China
2Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and
Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China
3Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Corresponding author: Haijun Zhang (haijunzhang@ieee.org)

This work was supported in part by the National Natural Science Foundation of China under Grant 61822104, Grant 61471025,
Grant 61771044, Grant 61801412, and Grant 61701422, in part by the Natural Science Foundation of Fujian Province, China, under
Grant 2016J01323 and Grant 2017J01785, in part by the Young Elite Scientist Sponsorship Program by CAST under Grant 2016QNRC001,
in part by the Research Foundation of Ministry of Education of China & China Mobile under Grant MCM20170108, in part by the Beijing
Natural Science Foundation under Grant L172025 and Grant L172049, in part by the 111 Project under Grant B170003, and in part by the
Fundamental Research Funds for the Central Universities under Grant FRF-GF-17-A6 and Grant RC1631.

ABSTRACT In this paper, we study the potential of non-orthogonal multiple access (NOMA) for the
purpose of interference mitigation in downlink small cell networks (SCNs). Different from prior works,
we focus on opportunistically multiplexing different users on the same subchannel to avoid the severe
inter-cell interference brought in by ultradense networking. Aiming to maximize the network throughput,
we formulate a distributed subchannel assignment problemwith local information exchange. This problem is
analyzed through a locally cooperative gamemodel, and the existence of Nash equilibrium (NE) is confirmed
by proving that the formulated game is an exact potential game. To solve the problem, we design two
concurrent distributed algorithms based on best response (BR) and spatial adaptive play (SAP), respectively.
The BR-based algorithm guarantees rapid convergence to an NE, which may not be globally optimal. On the
contrary, the SAP-based algorithm can find the global optimum with an arbitrary large probability, although
the learning process requires more iterations to converge. Simulation results reveal that the aggregate
interference can be more efficiently suppressed in NOMA enhanced networks, which can lead to higher
network throughputs. Besides, the superiority of NOMA over orthogonal multiple access is more obvious
when the network grows denser.

INDEX TERMS Distributed algorithm, global optimality, interference mitigation, locally cooperative game,
Nash equilibrium, non-orthogonal multiple access, potential game.

I. INTRODUCTION
Due to the rapid proliferation of smart devices, the fifth
generation (5G) wireless networks are expected to face an
unprecedented growth in the amount of subscribers and data
traffics. For instance, by the end of 2020, the number of
connected devices will reach 50 billion with diverse service
requirements, while the traffic data volume is predicted to
be 1000 times larger than that in 2010 [1]. In this context,
small cell network (SCN) has been emerging as a promis-
ing network architecture to meet the overwhelming traffic
demand [2], [3]. By densely deploying low-power small cell

base stations (SBSs), the SCN can provide a multitude of
benifits, including expanded indoor and blind spot cover-
age, enhanced spectrum spatial reuse, and reduced power
consumption.

Besides SCN, advanced physical layer techniques have
also drawn much attentions recently, and these techniques
include millimeter wave (mmWave) communications [4],
massive multiple-input multiple-output (MIMO) [5], and
non-orthogonal multiple access (NOMA) [6]. Among them,
NOMA is foreseen as a potential alternative due to its capa-
bility of providing massive connectivity and achieving higher
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spectrum efficiency within limited bandwidth resources [7].
The superiority of NOMA over conventional orthogonal mul-
tiple access (OMA), such as orthogonal frequency division
multiple access (OFDMA) in long term evolution (LTE), lies
in the fact that NOMA smartly reuse the same resource block
to serve multiple users simultaneously. This is realized by
utilizing the superposition coding technology and multiplex-
ing the signals of different users in the power domain with
different power levels at the transmitter side. With successive
interference cancellation (SIC) equipped at the receiver side,
the superimposed signals of different users can be sepa-
rated correctly. Therefore, implementing SCN with NOMA
is regarded as one of the most promising solutions to meet
the challenges in 5G wireless networks and beyond [8].

A. RELATED WORKS AND MOTIVATION
Since the initial research in [9] introduced NOMA to
improve cell-edge user throughput performance, several
topics in this context were discussed. Some researchers
have focused on investigating the performance improve-
ment brought in by integrating NOMA with other tech-
nologies [10]–[14]. Ding et al. [10] designed a NOMA
enhanced MIMO scheme to support short packet transmis-
sions in internet of things (IoT). The proposed scheme can
solve the problem when users are sharing similar chan-
nel states, which impairs the implementation of NOMA.
Jia et al. [15] extended NOMA to a dual non-orthogonal
version to address the spectrum efficiency and security issues
in IoT. In [16], the interplay between NOMA and coordinated
multi-point transmission (CoMP) was studied, and an oppor-
tunistic NOMA selection strategy was design to improve the
system performance. Thanks to the well developed mathe-
matical tools provided by stochastic geometry, the perfor-
mance gain of NOMA was also evaluated under large-scale
network models. In [12] and [13], the system performance
of NOMA in multimedia broadcast/multicast service trans-
missions and user centric networks were studied, respec-
tively, under the basic Poisson point process (PPP) model.
Tabassum et al. [14] applied Poisson cluster process model
to study the system performance of NOMA enhanced uplink
cellular networks, and the influence of imperfect SICwas also
taken into consideration.

In addition, various resource allocation problems for
NOMA enhanced networks were also addressed in the lit-
erature. In this field, the newly developed matching game
model provides efficient tools to solve the user pairing prob-
lem introduced by NOMA. Based on matching game model,
subchannel assignment and user scheduling problem to max-
imize the sum rate while considering users’ fairness were
addressed for downlink single-cell NOMA networks in [17]
and for NOMA enhanced heterogeneous networks in [18].
The work in [19] proposed a low complexity algorithm to
determine the subchannel assignment and power proportional
factors between NOMA users to realize optimization from
the energy efficiency perspective. Taking one step further,
the balance between energy efficiency and delay of NOMA

enhanced network was considered in [20]. Also taking energy
efficiency into consideration, the work in [21] addressed the
joint base station association and power control optimiza-
tion problem. Aiming to maximize the long-term network
utility, the data rate control and the power allocation were
jointly optimized by leveraging the Lyapunov optimization
framework in [22].

In the meantime, under the network densification trend
and the realization of massive connection scenarios such as
IoT, interference mitigation still remains a hot topic in recent
years [23]–[25]. For such ultra dense network scenarios,
an enormous increase in information exchange overhead is
expected for traditional centralized optimization approaches,
and this promotes the trend of solving interference mitiga-
tion problems through distributed approaches. To this end,
the interaction between independent SBSs is usually analyzed
under the game theory framework, which provides powerful
tools to study the equilibrium of the networks [26]. In [27],
a local cooperation game was formulated to analyze the joint
power allocation and user scheduling problem, and efficient
distributed interference mitigation algorithms were proposed.
Xu et al. [28] considered multi-user SCN interference mit-
igation problems, in which a distributed spectrum access
algorithm was proposed based on graphical games. The work
in [29] and [30] both applied user demand related metrics
as the network utility, and distributed interference avoidance
solutions were devised by exploiting a local interaction game.

Although several recent works have addressed subchan-
nel assignment problems in NOMA based networks and
distributed interference mitigation, few effort has been put
in exploring the potential of NOMA to mitigate inter-cell
interference in the SCN. In traditional interference mitigation
problems, it is desirable to reduce the number of neighboring
SBSs choosing the same subchannels [28]–[30]. Naturally,
the principle of NOMA is in line with this basic idea. For
example, by opportunistically applying NOMA and multi-
plexing different users on one subchannel, a SBS can release
its occupancy of other subchannels and thus eliminate its
interference to nearby SBSs. Therefore, it is attractive to
investigate how to coordinate NOMA and subchannel assign-
ment for the purpose of interference mitigation and devise
efficient strategies to fully exploit the potential of NOMA,
especially in a distributed manner. A preliminary investiga-
tion on this problem was published in [31], and this work
mainly extends [31] in the following ways: 1) The throughput
based utility is considered instead of the aggregate interfer-
ence. 2) A new distributed learning algorithm is proposed
in this paper, which provides better converged throughput
performance.

B. CONTRIBUTIONS
In this paper, we investigate the distributed subchannel
assignment problem for the purpose of interference mitiga-
tion in the SCN, where NOMA is enabled in the SBS to
multiplex different users on the same subchannel. We aim to
maximize the sum throughput of all users over the network.
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To this end, we formulate a locally cooperative game,
in which information is locally exchanged among neighbor-
ing SBSs. Based on distributed learning technology, we pro-
pose two efficient algorithms and achieve desirable solutions
for the problem. The main contributions of this paper are
summarized as follows.
• We introduce local cooperation between neighboring
SBSs to fully exploit the potential of NOMA, which
relies on its altruistic feature in interference mitigation.
Specifically, we formulate a locally cooperative game,
in which each SBS considers the throughput of itself as
well as its neighboring SBSs rather than the throughput
of itself only. The formulated game is proved to be
an exact potential game with the network throughput
being the potential function. Therefore, at least one Nash
equilibrium (NE) exists in the game, corresponding to
the globally or locally optimal solution to the distributed
subchannel assignment problem.

• We design two concurrent distributed algorithms,
i.e., the concurrent best response (C-BR) algorithm and
the concurrent spatial adaptive play (C-SAP) algorithm,
to achieve the NE of the game. The designed concurrent
algorithms allow several SBSs to act simultaneously
and are more efficient than their traditional versions,
in which only one SBS can change its strategy at a time.
The convergence property of the two algorithms are
analytically proved. It is shown in the simulation results
that the C-BR iteration rapidly converge to an NE of the
game, but this rapid converging speed is at the cost of
the efficiency of global optimality. On the contrary, the
C-SAP algorithm can find the global optimum with an
arbitrary large probability, although the learning process
requires more iterations to converge.

• We show that by opportunistically applying NOMA in
the SCN, the inter-cell interference caused by neigh-
boring SBSs can be more efficiently mitigated. This
will bring in higher network throughput for the NOMA
enhanced SCNs than that for traditional OMA based
networks, in which a subchannel can be allocated to no
more than one user in a SBS. Simulation results also
show that NOMA is more attractive when the density
of the network increases, confirming the superiority of
NOMA over traditional OMA under the trend of ultra
dense networking.

The rest of the paper is organized as follows. Detailed
descriptions of system model and problem formulation are
given in Section II. A locally cooperative game model and
two proposed distributed learning algorithms are presented
in Section III and IV, respectively. Simulation results and
observations are discussed in Section V. Finally, conclusions
are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a downlink SCN consisting of N SBSs oper-
ating on the same spectrum. The SBS set is denoted

by N = {SBS1, · · · ,SBSn, · · · ,SBSN }, where SBSn
is the n-th SBS in N . The spectrum is equally divided
into M subchannels, and the subchannel set is denoted
by M = {CH1, · · · ,CHm, · · · ,CHM }, where CHm
is the m-th subchannel in M. The set of user equip-
ments (UEs) associated with SBSn is denoted by Kn =

{UEn,1, · · · ,UEn,k , · · · ,UEn,Kn}, where UEn,k is the
k-th UE of SBSn and Kn is the number of UEs served by
SBSn. Assume that SIC receiver is enabled at each UE,
so that the SBSs can choose NOMA to serve its associated
UEs. Compared with OMA, NOMA reduces the number of
subchannels for a SBS when multiple UEs are associated to
it. Take Kn = 2 as an example, in which SBSn needs two
subchannels to serve its associated UEs in OMA networks.
But with NOMA capability, SBSn can multiplex these two
UEs on one subchannel. An example of the considered
system model is shown in Fig. 1. Also assume that no central
controller is setup in the network. Hence each SBS assigns
subchannels in a distributed manner.

FIGURE 1. An example of SCN with NOMA, where each SBS is associated
with two UEs: 1) SBS1, SBS2 and SBS4 apply OMA so each of them
occupies two subchannels to serve their associated UEs, while SBS3
applies NOMA and occupies only one subchannel. 2) Inter-cell
interference exists between SBS1 and SBS2, as well as SBS2 and SBS4
due to common subchannel occupancy, and the inter-cell interference is
asymmetric. 3) UE3,2 experiences intra-cell interference instead of
inter-cell interference because no other SBSs is transmitting on the same
subchannel.

B. INTER-CELL INTERFERENCE
Assume that SBSn transmits with fixed power pn on each
subchannel. The received signal power at UEi,k from SBSn
is modeled as pnd

−α
n,i,k , where d

−α
n,i,k is the channel power gain

based on distance dn,i,k from SBSn to UEi,k , and α > 2 is the
path-loss exponent. This propagation model is widely used as
in [14], [29], and [32]. The interference effect between two
SBSs is characterized by the interference metric (IM) [27],
which is defined as

Im(n, i) =
1
Ki

Ki∑
k=1

pnd
−α
n,i,k

pid
−α
i,i,k

, (1)

where di,i,k is the transmission link distance for UEi,k . Im(n, i)
denotes the interference level from SBSn to SBSi, and is
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normalized to the desired signal power. Obviously, the inter-
ference relationship between SBSi and SBSn is asymmetric,
i.e., Im(n, i) 6= Im(i, n).
Since the SBSs are spatially scattered and the signal power

is severely attenuated after long-distance transmission, a SBS
will only interfere UEs of its neighboring SBSs. Hence,
to build up the potential interference relationship between
SBSs, we resort to the interference graphGIM = {N , E} [27],
[28], [33], where the SBS setN constitutes the vertex set, and
E is the edge set. GIM is constructed based on IM. Specif-
ically, a directional edge (n, i) is setup from SBSn to SBSi
if Im(n, i) is greater than a predefined interference threshold
Ith, implying that SBSn is causing nonnegligible interfer-
ence effect to SBSi. So we have E = {(n, i)|SBSn ∈ N ,
SBSi ∈ N , Im(n, i) ≥ Ith}. Based on E , we define Jn =
{SBSi|SBSi ∈ N , (i, n) ∈ E} accounting for the set of
SBSs causing nonnegligible interference to SBSn, and Zn =

{SBSi|SBSi ∈ N , (n, i) ∈ E} accounting for the set of SBSs
being disturbed by SBSn. Jn and Zn determine the potential
interference relationship between SBSn and its nearby SBSs.
However, inter-cell interference will not occur on an occupied
subchannel for SBSn unless two or more SBSs in Jn are
transmitting on this subchannel as well. An example of GIM
is shown in Fig. 2.

FIGURE 2. An example of GIM corresponding to the network topology
given in Fig. 1: 1) No edge exists between SBS1 and SBS2, because SBS1
lies at a distance away from SBS2 and the mutual interference between
these two SBSs can be neglected. 2) Directional edge exists from SBS4 to
SBS3, revealing the asymmetric interference relationship between these
two SBSs. This also leads to the difference between Z3 and J3, where
Z3 = {SBS1,SBS2} and J3 = {SBS1,SBS2,SBS4}. 3) GIM only represents
the potential interference relationship between SBSs. Although edges
exist between SBS2 and SBS3, these two SBSs are not sharing any
common subchannel so the received signals in these two SBSs are not
affected by each other.

Assume that SBSn allocates only one subchannel to a UE.
Denote by an =

{
CHn,1, · · · ,CHn,k , · · · ,CHn,Kn

}
the vec-

tor of designated subchannels of SBSn, where CHn,k is the
selected subchannel for UEn,k . So the aggregate inter-cell
interference I (n,k)inter of UEn,k is calculated by

I (n,k)inter =

|Jn|∑
i=1

pid
−α
i,n,kδ(i, n, k), (2)

where | · | is the cardinality of the set, and δ(i, n, k) is an
indicator function given by

δ(i, n, k) =

{
1, CHn,k ∈ ai,
0, CHn,k /∈ ai.

(3)

Note that, in an, repeating elements may exist for the NOMA
system, while each element is unique for the NOMA sys-
tem. Let An be the available action set of SBSn. Therefore,
we have |An| = MKn for the NOMA system, and |An| =

M (M − 1) · · · (M − Kn + 1) for the OMA system.

C. INTRA-CELL INTERFERENCE
When a SBS apply NOMA to transmit signals for two UEs
in the downlink systems, the superimposed signal will lead
to intra-cell interference among these two UEs. In order to
eliminate the intra-cell interference, each UE is assumed to be
equipped with SIC. To achieve high efficiency, a SIC usually
decodes the signal with higher power and then cancells it
before the detection of the signal with lower power. To char-
acterize the intra-cell interference introduced by NOMA,
we define K̂n,k and K̃n,k representing the sets of UEs, which
are with higher channel gain and lower channel gain than
UEn,k , respectively, and are also being served by SBSn on
CHn,k . So we have

K̂n,k =

{
UEn,j|d

−α
n,n,k < d−αn,n,j,CHn,j = CHn,k

}
, (4)

K̃n,k =

{
UEn,j|d

−α
n,n,k > d−αn,n,j,CHn,j = CHn,k

}
, (5)

Kn,k =
{
UEn,j|CHn,j = CHn,k

}
= K̂n,k ∪ K̃n,k ∪

{
UEn,k

}
, (6)

where Kn,k represents the set of UEs which are served on
the same subchannel CHn,k including UEn,k itself. Note that
if CHn,k is only designated to UEn,k in SBSn, we will have
K̂n,k ∪ K̃n,k = ∅, Kn,k =

{
UEn,k

}
, and

∣∣Kn,k
∣∣ = 1. In addi-

tion, to improve fairness, a SBS should allocate more transmit
power to the UE with weaker channel gain to improve its
received signal quality [7]. Assume that transmit power pn on
CHn,k is divided to the UEs according to their channel gain
as in [9] given by

pn,k = pn ·

(
d−αn,n,k

)−η
∑

UEn,j∈Kn,k

(
d−αn,n,j

)−η , (7)

where η (0 ≤ η ≤ 1) is a decay factor to adjust user
fairness. It is revealed in (7) that the signals designated to
UEs with weaker channel gain are transmitted with more
power. So according to the principle of optimal decoding
order, at UEn,k , we have that: 1) The received signals for UEs
within K̃n,k is with higher power and can be cancelled through
SIC, i.e., UEn,k will not suffer intra-cell interference from
signals that are designated for UEs in K̃n,k . 2) The received
signals for UEs within K̂n,k is with lower power and cannot be
cancelled, i.e., UEn,k will suffer intra-cell interference from
signals that are designated for UEs in K̂n,k . 3) No intra-cell
interference will occur if

∣∣Kn,k
∣∣ = 1, i.e., UEn,k will not

suffer intra-cell interference if CHn,k is only designated to
it in SBSn.
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In consequence, the intra-cell interference I (n,k)intra experi-
enced by UEn,k is calculated by

I (n,k)intra =
∑

UEn,j∈K̂n,k

pn,jd
−α
n,n,k . (8)

Multiplexing different UEs on the same subchannel
through NOMA introduces intra-cell interference. However,
if NOMA is applied in an opportunistic manner, the intra-
cell and inter-cell interference can be balanced. In specific,
the expected benefits are as follows: 1) When a SBS senses
a limited number of subchannels that are experiencing low
inter-cell interference [34], this SBS can apply NOMA to
multiplex different UEs on these subchannels to avoid the
high inter-cell interference on other subchannels. This advan-
tage motivates SBSs to apply NOMA because it meets with
the selfish nature of an individual SBS. 2) A SBS can
proactively apply NOMA and release its occupancy of some
other subchannels. This altruistically reduces the chance of
interfering its neighboring SBSs and may be beneficial for
the whole network, although the benefit of this SBS may
be impaired. In this case, incenting SBSs to apply NOMA
by individual benefit may be inefficient, for which, we will
introduce local cooperation between neighboring SBSs in the
following.

D. PROBLEM FORMULATION
Define the subchannel assignment strategy profile for all
SBSs as A = {a1, · · · , an, · · · , aN }. Given the strategy
profile A, the throughput of UEn,k is calculated

Cn,k (A) = B log2

(
1+

pn,kd
−α
n,n,k

I (n,k)inter +I
(n,k)
intra +σ

2

)
, (9)

whereB is the bandwidth of a subchannel, and σ 2 is the power
of the additive white Gaussian noise. We focus on the sum
throughput as the key metric instead of the aggregate interfer-
ence in this paper. This is because the throughput is more con-
cerned than the experienced interference from the perspective
of both the network operators and the users. Meanwhile,
in the context of interference mitigation, a higher throughput
usually results from a lower aggregate interference level.
Thus, we set the network utility as the sum throughput of all
UEs in the network, which is expressed as

U (A) =
N∑
n=1

Kn∑
k=1

Cn,k (A)︸ ︷︷ ︸
Cn(A)

. (10)

We aim to maximize the sum throughput of the network,
so the interference mitigation problem of multiple UE sub-
channel assignment in SCN with NOMA is formulated as

P1 : Aopt = argmaxU (A), (11)

which can be interpreted as finding the optimal subchannel
assignment strategy to maximize the sum throughput of all
UEs in the network. It should be noted that when different

type of BSs coexist in the network, the network utility in (10)
can be changed into a weighted form to balance the inter-
ference mitigation performance between the macro cell base
stations (MBSs) and the SBSs. For example, to guarantee
higher priority for the UEs of the MBSs, a larger weight can
be assigned to this UEs.

III. LOCALLY COOPERATIVE GAME
In this paper, we assume that there is no central controller in
the system. This assumption is very common in SCN, because
coordinating densely deployed SBSs through a central con-
troller requires a large amount of overhead for information
exchange. Besides, P1 is evidently a combinatorial optimiza-
tion problem and solving such problem through centralized
approaches is NP-hard. Therefore, we focus on self-organized
and distributed approaches with low information exchange
requirement. We will firstly resort to game theoretic model
to study the interaction between SBSs.

A. LOCALLY COOPERATIVE GAME MODEL
Due to the low complexity, we apply non-cooperative game
model to capture the self-determining nature of SBSs. In this
game model, each SBS is assumed to be always choosing a
strategy that can maximize its own utility. But as previously
mentioned, acting in a totally selfish manner cannot fully
exploit the potential of NOMA to mitigate interference, and
is inefficient from the perspective of the whole network.
To overcome this deficiency while maintaining a low com-
plexity, we introduce local cooperation between neighboring
SBSs under the framework of non-cooperative game model.
This is achieved by designing for each SBS a utility function
that integrates the interests of itself and its neighboring SBSs.
The modified non-cooperative game, which we term locally
cooperative game, is denoted by

G =
{
N ,GIM, {An}SBSn∈N , {un}SBSn∈N

}
, (12)

where N = {SBS1, · · · ,SBSN } is the set of players, GIM
is the interference graph describing the neighboring relation-
ship between SBSs, An is the available action set of SBSn,
and un is the utility function of SBSn.

To motivate locally altruistic action for SBSn, the through-
put of SBSs in Zn are taken into consideration in utility
function un of SBSn as

un (an, a−n)

= Cn (an, a−n)+
∑

SBSj∈Zn

Cj (an, a−n)

=

Kn∑
k=1

B log2

(
1+

pn,kd
−α
n,n,k

I (n,k)inter + I
(n,k)
intra + σ

2

)

+

∑
SBSj∈Zn

Kj∑
k=1

B log2

(
1+

pj,kd
−α
j,j,k

I (j,k)inter + I
(j,k)
intra + σ

2

)
, (13)

where an ∈ An is the action of SBSn, and a−n is the action
profile of all SBSs except SBSn.
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From (13), we can see that the utility of SBSn includes two
parts: 1) The throughput of all UEs associated with SBSn;
2) The throughput of all UEs associated with all SBSs which
are interfered by SBSn, i.e., SBSj ∈ Zn. Therefore, informa-
tion exchange is necessary among SBSn and its neighboring
SBSs to obtain the utility. In specific, SBSs in Jn∪Zn should
report their current strategies, while SBSs in Zn should also
report the signal powers and the aggregate interference pow-
ers their associated UEs suffered. The amount of information
exchange is determined by the size of Jn and Zn, and hence
by the interference threshold Ith. Note that a larger Ith reduces
the amount of information exchange but will impair the
accuracy of the reported interference information. A smaller
Ith increases the accuracy but a SBS will need to exchange
information with more SBSs. When Ith = 0, a SBS will need
to exchange information with all other N − 1 SBSs in the
network.

Finally, the locally cooperative game can be equivalently
expressed as

G : max
an∈An

un (an, a−n) , ∀SBSn ∈ N . (14)

B. ANALYSIS OF NASH EQUILIBRIUM
In the formulated locally cooperative game, the strategy space
for each SBS is greatly enlarged by NOMA. Hence it is
important to investigate if this game holds any steady state as
conventional OMA systems [28], [33]. To this end, we resort
to the Nash equilibrium (NE), which is formally definined in
Definition 1.
Definition 1 (Nash Equilibrium): A subchannel assign-

ment strategy profileA∗ =
{
a∗1, · · · a

∗
n, · · · a

∗
N

}
is a pure strat-

egy Nash equilibrium if no unilateral deviation in strategy by
any single player can improve the utility for that player, that is

un
(
a∗n, a

∗
−n
)
≥ un

(
an, a∗−n

)
, ∀SBSn ∈ N ,

∀an ∈ An, an 6= a∗n. (15)
Any NE is a steady state in the game because no player has

incentive to change its current strategy. Next, we prove the
existence of NE in the formulated game in Theorem 1.
Theorem 1: The formulated game G is an exact potential

game which has at least one pure strategy NE. Moreover,
the solution Aopt for problem P1 is also a NE of G.

Proof: We start by constructing a potential function as

8(an, a−n)

=

N∑
l=1

Cl (an, a−n) =
N∑
l=1

Kl∑
k=1

B log2

×

(
1+

pl,kd
−α
l,l,k

I (l,k)inter (an, a−n)+ I
(l,k)
intra (an, a−n)+ σ

2

)
, (16)

where I (l,k)inter (an, a−n) and I (l,k)intra (an, a−n) are the aggregate
inter-cell and intra-cell interference of the k-th UE of SBSl
when SBSn choose action an and other SBSs choose action
profile a−n. This definition is identical with the network
utility defined in (10). According to GIM, the SBS set N

can be divided into 3 disjoint subsets, i.e., {SBSn}, Zn, and
Tn = N \ (Zn ∪ SBSn), whereA\B represents excluding the
elements of B from A. So 8(an, a−n) can be equivalently
expressed as

8(an, a−n) = Cn (an, a−n)+
∑

SBSj∈Zn

Cj (an, a−n)

+

∑
SBSq∈Tn

Cq (an, a−n) . (17)

When SBSn unilaterally deviates its action from an to a′n,
the change in the potential function is given by

8(an, a−n)−8
(
a′n, a−n

)
= Cn (an, a−n)− Cn

(
a′n, a−n

)
+

∑
SBSj∈Zn

(
Cj (an, a−n)− Cj

(
a′n, a−n

))
+

∑
SBSq∈Tn

(
Cq (an, a−n)− Cq

(
a′n, a−n

))
. (18)

By definition, the action change of SBSn will only affect
the aggregate inter-cell and intra-cell interference of itself
and the inter-cell interference of SBSs in Zn. So we have

I (q,k)inter (an, a−n) = I (q,k)inter

(
a′n, a−n

)
and I (q,k)intra (an, a−n) =

I (q,k)intra

(
a′n, a−n

)
for any SBSq in Tn. In consequence, for any

SBSq in Tn, we have

Cq (an, a−n)− Cq
(
a′n, a−n

)
=

Kq∑
k=1

(
B log2

(
1+

pq,kd
−α
q,q,k

I (q,k)inter (an, a−n)+ I
(q,k)
intra (an, a−n)+ σ

2

)

−B log2

(
1+

pq,kd
−α
q,q,k

I (q,k)inter

(
a′n, a−n

)
+ I (q,k)intra

(
a′n, a−n

)
+ σ 2

))
= 0. (19)

So (18) can be rewritten as

8(an, a−n)−8
(
a′n, a−n

)
= Cn (an, a−n)− Cn

(
a′n, a−n

)
+

∑
SBSj∈Zn

(
Cj (an, a−n)− Cj

(
a′n, a−n

))
. (20)

Comparing (20) with the utility definition in (13) for SBSn,
we can reach the desired result that

8(an, a−n)−8
(
a′n, a−n

)
=un (an, a−n)− un

(
a′n, a−n

)
,

(21)

which satisfies the definition of exact potential game [35]
with 8 serving as the potential function. Due to the prop-
erty of exact potential game, at least one NE is guaranteed.
Moreover, noting that the potential function in (16) is exactly
the same as the network utility in (10), we can conclude that
solution Aopt for network utility maximization also globally
maximizes the potential function, and hence is a NE of the
game [35].
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IV. DISTRIBUTED LEARNING ALGORITHM
In this section, we design distributed learning algorithms to
find the pure strategy NE of the formulated game. For exact
potential games, best response (BR) and spatial adaptive
play (SAP) algorithms are two efficient distributed learning
algorithms that can achieve the pure strategy NE. However,
for standard BR and SAP algorithms, only one player is
allowed to update its action in each iteration, which severely
influence the efficiency of the algorithm, especially when the
SBSs are densely deployed. Noting that SBSs are coupled
only locally but not globally according to GIM, we extend the
standard BR and SAP algorithms to their concurrent versions,
i.e., concurrent BR (C-BR) and concurrent SAP (C-SAP),
which admit rapid convergence to the pure strategy NE.

A. CONCURRENT BEST RESPONSE ALGORITHM
1) DESCRIPTION OF C-BR ALGORIGHM
The key idea of C-BR algorithm is that, in one iteration, a SBS
proposes to change its strategy if a new strategy can bring in
better utility based on the information it received. There may
be several SBSs that have strategy update proposal, hence
all these candidate SBSs contends for the update chance.
The active SBSs are randomly picked, and when a SBS,
e.g., SBSn, is selected, other candidate SBSs which are also in
Jn∪Zn should be silenced in this iteration. Note that in stan-
dard BR algorithm, when SBSn is selected, all other candidate
SBSs are silenced whether they are in Jn ∪ Zn or not. The
selection procedure will continue until all candidate SBSs are
either selected or silenced. The iteration loop stops when no
SBS proposes to update its strategy or the maximum iteration
step Tmax is reached. The detail of the C-BR algorithm is
given in Algorithm 1.

2) CONVERGENCE AND OPTIMALITY ANALYSIS FOR C-BR
Either the standard BR or the C-BR algorithm ensures an
increasing trend for the potential function. Besides, the for-
mulated locally cooperative game are with finite strate-
gies. Therefore, according to [35], the formulated game has
a finite improvement property (FIP), which implies that
the BR-based algorithms are guaranteed to converge to
the NE within a finite number of iterations. According to
Theorem 1, the solution obtained by BR-based algorithms is
locally or globally optimal.

B. CONCURRENT SPATIAL ADAPTIVE PLAY ALGORITHM
1) DESCRIPTION OF C-SAP ALGORITHM
Although BR-based algorithms rapidly converge to the NE
of the game, these algorithms have evident drawback that
the obtained NE may be locally optimal. To overcome this
drawback, we also propose the SAP-based algorithms, which
are featured with the capability of achieving the globally
optimal pure strategy NE with an arbitrary large probability.
The main technical difference between the SAP and the BR
algorithms lies in the strategy updating rule for each SBS
during the iteration. For the BR algorithm, the best strategy is

Algorithm 1 The C-BR Algorithm
1: Initialization:Each SBSn ∈ N classifies its neighboring

SBSs into Jn and Zn, and randomly selects a strategy
an(0) ∈ An, where an(t) is the selected strategy of SBSn
at the t-th iteration.

2: for t = 1 to Tmax do
3: Search for best strategy: Each SBSn gathers the

experienced aggregate interference I (n,k)inter and I (n,k)intra ,
and the signal power pn,kd

−α
n,n,k from each of its asso-

ciated UEs.
4: Each SBSn broadcasts its current strategy to SBSs in

Jn ∪ Zn, and its signal power and aggregate interfer-
ence to SBSs in Jn.

5: Based on its received information, each SBSn calcu-
lates its best strategy a∗n(t) as

a∗n(t) = arg max
an∈An

un
(
an, aJn (t), aZn (t)

)
. (22)

6: Contend to update strategy: Construct set S(t) ={
SBSn|SBSn ∈ N , an(t − 1) 6= a∗n(t)

}
, and U(t) = ∅.

7: if S(t) 6= ∅ then
8: while S(t) 6= ∅ do
9: Randomly pick a SBSn from S(t) and update its

strategy, i.e., an(t)← a∗n(t).
10: S(t)← S(t)\ ({SBSn} ∪ Zn ∪ Jn).
11: U(t)← U(t) ∪ {SBSn}.
12: end while
13: Each SBSn in U(t) keeps its strategy unchanged,

i.e., an(t)← an(t − 1).
14: else
15: Stop iteration.
16: end if
17: end for

deterministically selected for a SBS in each iteration,
whereas, for the SAP algorithm, the subchannel assignment
is determined in a stochastic manner. In specific, for the
SAP algorithm, denote by qn,s(t) the probability that SBSn
selects its s-th subchannel assignment strategy in An at the
t-th iteration. The selection probabilities for all strategies in
An constitute the mixed strategy vector denoted by qn(t)
for SBSn. The mixed strategy will be iteratively updated
according to (23) given as

qn,s(t) =
exp

(
µ(t)un

(
an,s, a−n

))∑|An|

s′=1 exp
(
µ(t)un

(
an,s′ , a−n

)) , (23)

where µ(t) is the positive learning parameter monotonically
increasing with t , and an,s is the s-th strategy in An. When
updating its mixed strategy, SBSn assumes that all other SBSs
will keep their strategies unchanged as a−n and calculates
for each strategy the expected utility, i.e., un

(
an,s, a−n

)
for

s ∈ {1, · · · , |An|}. It is revealed in (23) that when t → ∞,
we will haveµ(t)→∞ and one of the selection probabilities
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will approach one, implying that the mixed strategy will
converge to the pure strategy. In addition, similar to the BR
algorithm, the SAP algorithm admits a concurrent version,
which is termed the C-SAP algorithm and converges more
rapidly than the standard version. The detail of the C-SAP
algorithm is given in Algorithm 2.

Algorithm 2 The C-SAP Algorithm
1: Initialization:Each SBSn ∈ N classifies its neighboring

SBSs into Jn and Zn, sets mixed strategy qn,s(0) = 1
|An|

,
∀s ∈ {1, · · · , |An|}, and randomly selects a strategy
an(0) ∈ An according to qn(0), where an(t) is the selected
strategy of SBSn at the t-th iteration.

2: for t = 1 to Tmax do
3: Update mixed strategy vector: Each SBSn gathers

the experienced aggregate interference I (n,k)inter and I (n,k)intra ,
and the signal power pn,kd

−α
n,n,k from each of its asso-

ciated UEs.
4: Each SBSn broadcasts its current strategy to SBSs in

Jn ∪ Zn, and its signal power and aggregate interfer-
ence to SBSs in Jn.

5: Based on its received information, each SBSn updates
its mixed strategy vector qn(t) by

qn,s(t) =
exp

(
µ(t)un

(
an,s, a−n

))∑|An|

s′=1 exp
(
µ(t)un

(
an,s′ , a−n

)) , (24)

Each SBSn randomly selects its strategy a∗n(t) accord-
ing to qn(t).

6: Contend to update strategy: Construct set S(t) ={
SBSn|SBSn ∈ N , an(t − 1) 6= a∗n(t)

}
, and U(t) = ∅.

7: if S(t) 6= ∅ then
8: while S(t) 6= ∅ do
9: Randomly pick a SBSn from S(t) and update its

strategy, i.e., an(t)← a∗n(t).
10: S(t)← S(t)\ ({SBSn} ∪ Zn ∪ Jn).
11: U(t)← U(t) ∪ {SBSn}.
12: end while
13: Each SBSn in U(t) keeps its strategy unchanged,

i.e., an(t)← an(t − 1).
14: else
15: Stop iteration.
16: end if
17: end for

2) CONVERGENCE AND OPTIMALITY ANALYSIS FOR C-SAP
Wenow characterize the convergence and optimality property
for the C-SAP algorithm. We firstly prove that, with the
C-SAP algorithm, a unique stationary distribution exists for
different subchannel assignment profiles. Then we prove that
the converged profile under the C-SAP algorithm will be the
optimal one with an arbitrary large probability.
Theorem 2: With the C-SAP algorithm, a unique station-

ary distribution πi exists for subchannel assignment profile

Ai ∈ A when µ > 0, and is given as

πi =
exp (µ8(Ai))∑

At∈A exp (µ8 (At))
, (25)

where 8(A) is the potential function defined in (16) given
the subchannel assignment profile being A, and A is the set
constituted by all possible subchannel assignment profiles.

Proof: Let Aj ∈ A be another arbitrary selected
subchannel assignment profile which is different from Ai.
Assume that, compared with Ai, totally V SBSs are with
different subchannel assignments in Aj. So the SBS set
can be split as N =

{
SBSn1 , · · · ,SBSnv , · · · ,SBSnV

}
∪{

SBSnV+1 ,SBSnV+2 , · · · ,SBSnN
}
, in which the former sub-

set is constituted by the SBSs with different subchannel
assignments in Ai and Aj. Let sn,i ∈ {1, · · · , |An|} and
sn,j ∈ {1, · · · , |An|} index the strategies of SBSn desig-
nated by Ai and Aj. Therefore we have sn,i 6= sn,j for
n ∈ V = {n1, · · · , nv, · · · , nV } and sn,i = sn,j for n ∈
{nV+1, nV+2, · · · , nN }. Due to the fact that A is obviously
a discrete time Markov process, which is irreducible and
aperiodic, there exists an unique stationary distribution forA.
Note that Ai and Aj are also referred to as two states of the
system.

Then we verify that the distribution in (25) satisfies the
detailed balance equation (DBE) of the Markov process,
which suffices to prove that (25) is the unique stationary
distribution. Denote by Pi→j the state transition probability
from Ai to Aj. To transit from Ai to Aj, each SBSn ∈{
SBSn1 , · · · ,SBSnV

}
should change its strategy from an,sn,i

to an,sn,j , and the transition probability is calculated according
to (23) as

qn,sn,j =
exp

(
µun

(
an,sn,j

))∑|An|
s=1 exp

(
µun

(
an,s

)) . (26)

In each iteration, the mixed strategies of different SBSs are
updated independently, so Pi→j can be rewritten as

Pi→j =
∏
n∈V

qn,sn,j =
∏
n∈V

exp
(
µun

(
an,sn,j

))∑|An|
s=1 exp

(
µun

(
an,s

)) . (27)

So we have

πiPi→j

=
exp (µ8(Ai))∑

At∈A exp (µ8 (At))

∏
n∈V

exp
(
µun

(
an,sn,j

))∑|An|
s=1 exp

(
µun

(
an,s

))
=

1∑
At∈A exp (µ8 (At))

∏
n∈V

1∑|An|
s=1 exp

(
µun

(
an,s

))︸ ︷︷ ︸
λ

× exp

(
µ

(
8(Ai)+

∏
n∈V

un
(
an,sn,j

)))
. (28)

According to Theorem 1, the formulated game is an exact
potential game, which implies that

8(Ai)−8
(
Aj
)
=

∏
n∈V

(
un
(
an,sn,i

)
− un

(
an,sn,j

))
. (29)
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Therefore (28) can be rewritten as

πiPi→j

= λ exp

(
µ

(
8(Ai)+

∏
n∈V

un
(
an,sn,j

)))

= λ exp

(
µ

(
8
(
Aj
)
+

∏
n∈V

un
(
an,sn,i

)))

=
exp

(
µ8(Aj)

)∑
At∈A exp (µ8 (At))︸ ︷︷ ︸

πj

∏
n∈V

exp
(
µun

(
an,sn,i

))∑|An|
s=1 exp

(
µun

(
an,s

))︸ ︷︷ ︸
Pj→i

= πjPj→i, (30)

which satisfies the DBE of the Markov process. This com-
pletes the proof.

Theorem 2 provides the stationary probability of the con-
verged subchannel assignment profile. Now we discuss the
optimality of the C-SAP algorithm in Theorem 3.
Theorem 3: Given a sufficiently large learning parame-

ter µ, the C-SAP algorithm converges to the globally optimal
solution Aopt with an arbitrarily large probability.

Proof: According to (11) and (16), we have8
(
Aopt

)
=

maxU (A) > 0. Hence, when µ→∞, we have

exp
(
µ8

(
Aopt

))
�exp (µ8 (At)) , ∀At ∈A\Aopt. (31)

The stationary distribution of πopt can be rewritten as

lim
µ→∞

πopt

=
exp

(
µ8

(
Aopt

))∑
At∈A\Aopt

exp (µ8 (At))+ exp
(
µ8

(
Aopt

)) = 1.

(32)

This completes the proof.
It should be noted that the learning parameter µ plays an

important role in the SAP-based algorithms since it appears
in both the updating rule in (23) as well as the stationary
distribution in (25). In specific, when a SBS selects its strat-
egy according to (23), the difference in the probabilities of
the alternative strategies will be narrow if µ is small. For
example, setting µ = 0 will make a SBS select any strategy
under equal probabilities. On the contrary, if µ is set to be a
large value, the strategies bringing in higher utilities in that
iteration will be more likely to be selected. For example,
setting µ → ∞ will make a SBS deterministically select
the best strategy in that iteration, which is the same as the
BR-based algorithms. In a word, a small value of µ will
be more efficient for the SAP-based algorithms to escape
from a local optimum and search for a better NE, while a
large value of µ will lead to the convergence and prevent the
algorithm from fluctuating among different good solutions.
Therefore, it is recommended that, the learning parameter be
set as a small value at the beginning of the iteration to explore
better possible NEs and gradually increases with the iteration
index to exploit the optimal current strategy and converge.

Upon this guidance, we set the learning parameter as
µ(t) = β · t in the simulation, where β is the learning step
balancing the tradeoff between exploration and exploitation,
and t is the iteration index.

V. SIMULATION RESULTS AND DISCUSSION
In this section, we provideMATLAB based simulation results
to evaluate the proposed distributed algorithms. The SBSs
are randomly deployed in a square region to form a SCN.
The number of associated UEs for each SBS is assumed to
be identical as Kn = K . The serving area for each SBS
is assumed to be a circle with a radius of 10 m. Each SBS
transmits with equal power pn = 2 W on each of its occupied
subchannels. The path-loss exponent is fixed as α = 3.7,
the NOMA power proportional decay factor is η = 0.4,
and the IM threshold is Ith = 0.001. Totally M = 5
subchannels are available in the system, and the bandwidth
of each subchannel is 100 kHz. The power of the noise is set
to be −174 dBm/Hz.

FIGURE 3. Converging procedure of the S-BR, S-SAP, C-BR, and C-SAP
algorithms, with 10 SBSs randomly deployed in a 100× 100 m2 area,
β = 0.001, and K = 3.

In Fig. 3, the convergence procedure of the S-BR, C-BR,
S-SAP, and C-SAP algorithms are illustrated. It is revealed
that, the proposed algorithms all converge after a number of
iterations. For the BR-based algorithms, the iterations con-
verge at a much faster speed than the SAP-based algorithms,
but the converged throughput performance is poorer. This is
due to the difference in the updating rules that the BR-based
algorithms deterministically select the best strategy for each
SBS in each iteration, which guarantees a faster convergence
speed but may easily get trapped at the local optimal solution.
Whereas, the SAP-based algorithms update strategies in a
stochastic manner, which brings in the superiority of escaping
from the local optimum as well as the deficiency of a slower
converging speed. This stochastic manner also explains the
observation that the curves for the SAP algorithms may
fluctuate at some iterations in spite of the overall converg-
ing trend. Meanwhile, we also compare the standard and
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concurrent algorithms from the aspects of the converging
speed and the network throughput for both the BR-based
and SAP-based algorithms. For the SAP-based algorithms,
we can see that the C-SAP algorithm requires fewer itera-
tions than the S-SAP algorithm to converge. This shows the
advantage of the C-SAP algorithm over the S-SAP algorithm
in the aspect of converging speed, which is brought in by
allowing multiple uncoupled SBSs to update their strategies
simultaneously. Besides, the converged performance of the
C-SAP and S-SAP algorithms are almost the same. This is
because, in the C-SAP algorithm, the SBSs that are allowed to
update strategies in the same iteration are uncoupled in GIM.
Simultaneously updating the strategies of multiple uncou-
pled SBSs will not influence the optimality efficiency of
the converged solution. Similar results can be observed by
comparing the C-BR and S-BR algorithms.

FIGURE 4. Converging speed comparison between C-BR and S-BR
algorithms under different network size.

Fig. 4 presents the cumulative distribution function (CDF)
of the required convergence iteration number for the
BR-based algorithms to further illustrate the advantages of
the concurrent algorithms over the standard algorithms. Sim-
ulation results are obtained under the same SBS density in
different area assumptions, i.e., 100 × 100 m2 for N = 10
and 100

√
2 × 100

√
2 m2 for N = 20. The advantage of

the concurrent algorithms in the aspect of converging speed
is confirmed as discussed in the results of Fig. 3. Another
observation is that, the superiority of the concurrent algo-
rithm is more evident when the network size is scaled up.
In specific, the standard algorithm will require much more
iterations to converge whether the simulation area size is
extended or more served UEs are added for a SBS. But for
the concurrent algorithm, the required number of iterations
only slightly varies.

In Fig. 5, the converged average SBS throughput perfor-
mance of the C-BR and C-SAP algorithms are compared
with that of the random selection and exhaust search solu-
tions. The results of the C-BR and C-SAP algorithms are

FIGURE 5. Average SBS throughput v.s. SBS density under different
algorithms, with fixed 20 SBSs but linearly scaled area, K = 3, and
β = 0.0001.

averaged over 5 independent random network topologies
through 5000 trials. Note that the exhaustive search is
extremely time consuming since the number of the possible
subchannel assignment profile is quite large, i.e., 53×20 ≈
8.6 × 1041. So we alternatively use the best results obtained
through C-BR algorithm to approximate the exhaustive
search results. It is revealed that the average SBS throughput
performance monotonically degrades with the SBS density
for all algorithms, which is due to the increased interference
level. We can also see that the converged throughput per-
formance of the C-SAP algorithm is better than the C-BR
algorithm with a much smaller gap to the results obtained
by the exhaustive search solution. This advantage is due
to the stochastic selection feature of the C-SAP algorithm,
which helps the iteration escape from the local optimum. In
addition, both the C-BR and C-SAP algorithms significantly
outperform the random selection.

FIGURE 6. Converging speed comparison for the C-SAP algorithm under
different learning steps, with 20 SBSs randomly deployed in a
100
√

2× 100
√

2 m2 area, and K = 3.

In Fig. 6 and 7, we investigate the impact of the learn-
ing parameter on the converging speed and the converged
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FIGURE 7. Average SBS throughput v.s. SBS density under different
learning steps, with fixed 20 SBSs but linearly scaled area, and K = 3.

throughput performance of the C-SAP algorithm. Fig. 6
shows that a larger learning step β will lead to a faster con-
verging speed for the C-SAP algorithm. When µ(t) = 0.01t ,
the algorithm requires fewer than 20 iterations to converge,
but when µ(t) = 0.0001t , the converging procedure extends
to more than 100 iterations. The reason is that decreasing
the learning step β will require a larger iteration index t
to make the selection probability of the optimal strategy
approach one. Nontheless, a small learning step helps the
algorithm explore better solutions during the iteration, with
the network throughput curve for β = 0.0001 being the
highest one. Fig. 7 reveals similar results as Fig. 6 that
the C-SAP algorithm will converge with a better through-
put performance if the learning step is set to be a smaller
value.

FIGURE 8. Throughput performance comparison between NOMA and
OMA under the C-SAP algorithm and different serving UE numbers, with
fixed 20 SBSs but linearly scaled area, and β = 0.0001.

In Fig. 8, we plot the converged average SBS throughput
obtained through the C-SAP algorithm to investigate the
advantage of NOMA over OMA. It is shown that NOMA

obviously brings in a higher average throughput than tra-
ditional OMA. To explain this advantage, recall that the
NOMA technique provides an opportunity for the network
to profit as follows: 1) When only one of the several sub-
channels is lightly interfered, a SBS can apply NOMA to
serve multiple UEs on this subchannel and let them share
the benefit of the low inter-cell interference if the intra-cell
interference is not severe, which meets with the selfish nature
of an individual SBS. 2) When a SBS applies NOMA, it can
release its occupancy of some other subchannels and thus
reduce its interference to the nearby SBSs occupying the same
subchannels, which altruistically makes profit for the whole
network although the throughput of this SBS may be influ-
enced. Fig. 8 also shows a relatively larger performance gap
between NOMA and OMA with the increase in the serving
UE number, i.e., the throughput approximately increases 13%
for K = 2, and 40% for K = 3. This implies that the
superiority of NOMA is more evident when the network is
heavily loaded.

VI. CONCLUSION
In this paper, we explored the potential of NOMA in interfer-
ence mitigation for the downlink SCN. By opportunistically
applying NOMA, we proactively introduced intra-cell inter-
ference to balance the severe inter-cell interference brought in
by ultra dense networking, which was different from previous
work in the NOMA literature. We considered subchannel
assignment problem to maximize the network throughput.
To this end, we formulated a locally cooperative game to
motivate SBSs to act in a locally altruistic manner, as well
as to study the interaction between SBSs. The existence of
NE was validated in the formulated game by proving it as an
exact potential game, and two concurrent distributed learn-
ing algorithms were proposed to converge towards the NE
with boosted converging speed. Simulation results showed
that: 1) The proposed two concurrent distributed algorithms
both converge to the NE of the game, and the converging
speed is faster than their standard versions. 2) The SAP-based
algorithm provides a learning parameter to balance the con-
verging speed and the efficiency of the optimum, whereas
the BR-based algorithm converges with the fastest speed but
the converged solution is very likely to be trapped in the
local optimum. 3) Compared with OMA, NOMA further
enhances the performance of distributed interference mitiga-
tion in SCN, and this leads to higher network throughput for
the system.

The work in this paper allows several extensions in the
future work. The first is applying advanced learning algo-
rithms, e.g., stochastic learning automata, to further reduce
the amount of information exchange between SBSs. The sec-
ond direction can be jointly taking into account the feature
of WiFi and NOMA to design new protocols for balanc-
ing the interference between the WiFi networks and the
LTE-unlicensed band communications. Besides, noting that
the realistic user throughput demands are different and that
NOMA has a great potential in increasing the overall quality
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of experience (QoE), our work can also be extended from the
user-centric perspective.
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