
Received August 24, 2018, accepted October 12, 2018, date of publication October 22, 2018,
date of current version November 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2877097

Multivariate Sensor Data Analysis for Oil
Refineries and Multi-mode Identification
of System Behavior in Real-time
ATHAR KHODABAKHSH 1, (Student Member, IEEE), ISMAİL ARİ 1, (Member, IEEE),
MUSTAFA BAKİR2, AND ALİ OZER ERCAN 3, (Senior Member, IEEE)
1Computer Science Department, Özyeğin University, 34794 Istanbul, Turkey
2Process Improvement and Software Department, Tüpraş, 41790 Kocaeli, Turkey
3Electrical and Electronics Engineering Department, Özyeğin University, 34794 Istanbul, Turkey

Corresponding author: Athar Khodabakhsh (athar.khodabakhsh@ozu.edu.tr)

This work was supported by a grant from Turkish Petroleum Refineries Inc. (TUPRAS) R&D Center.

ABSTRACT Large-scale oil refineries are equipped with mission-critical heavymachinery (boilers, engines,
turbines, and so on) and are continuously monitored by thousands of sensors for process efficiency,
environmental safety, and predictive maintenance purposes. However, sensors themselves are also prone
to errors and failure. The quality of data received from these sensors should be verified before being used
in system modeling. There is a need for reliable methods and systems that can provide data validation and
reconciliation in real-time with high accuracy. In this paper, we develop a novel method for real-time data
validation, gross error detection and classification over multivariate sensor data streams. The validated and
high-quality data obtained from these processes is used for pattern analysis and modeling of industrial plants.
We obtain sensor data from the power and petrochemical plants of an oil refinery and analyze them using
various time-series modeling and data mining techniques that we integrate into a complex event processing
engine. Next, we study the computational performance implications of the proposed methods and uncover
regimes where they are sustainable over fast streams of sensor data. Finally, we detect shifts among steady-
states of data, which represent systems’ multiple operating modes and identify the time when a model
reconstruction is required using DBSCAN clustering algorithm.

INDEX TERMS Complex event processing, gross error classification, gross error detection, oil refinery,
sensor data, stream data, system behavior.

I. INTRODUCTION
In an oil refinery, everything happens in big proportions:
liquids flow in tons/hour rate, temperatures are measured
in hundreds to thousands ◦C, and electricity is produced in
megawatts. Thousands of people andmillions of dollars are at
stake every moment as one tiny malfunction or mistake in the
system can cause serious damage to the entire plant and the
workers, or generate losses in revenue. Thus, achieving con-
tinuous safety, process efficiency, long-term durability and
planned (vs. unplanned) downtimes are among themain goals
for industrial plant management. Due to mission-criticality
of processes, oil & gas businesses have already implanted
thousands of sensors inside and around their physical sys-
tems [1]. Raw sensor data continuously streams via dis-
tributed control systems (DCS) and supervisory control and
data acquisition (SCADA) systems measuring temperature,
pressure, flow rate, vibration, level, etc. of drills, turbines,

boilers, pumps, compressors, and injectors. Another aspect in
real-time system identification is updating themodels accord-
ing to the currently received pattern from stream data [2].
Since the systems are dynamic and the quality of models
are dependent on both quality of data and system model,
it is crucial to assess the current context of the system as the
relations among model variables can change over time.

Achieving all these goals, necessitate to continuously
monitor and verify the accuracy of measurements stream-
ing in from numerous and various types of sensors placed
all around the refinery. However, sensors are also prone
to failures and measurement errors. At normal operation,
sensor measurements are assumed to be noisy (i.e. to have
random errors). Electro-mechanical effects such as malfunc-
tioning, un-calibrated or broken sensors, and human factors
also introduce systematic errors (a.k.a. ‘‘gross errors’’) to
these measurements. Ability to differentiate sensor errors
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from real system abnormalities is crucial for the safety of
the plants. However, there is a lack of real-time industrial
Data Reconciliation (DR) and Gross Error Detection (GED)
methods, or data cleaning services, that can be used by oil
refineries. To motivate and demonstrate the use of real-time
DR-GED, we obtained time-series data from the power and
petrochemical plants of a real refinery with approximately
11.5 million tons/year processing capacity [3].

Our contributions in this paper for DR-GED methods are
as follows:
• First, we analyze multivariate data including flow, tem-
perature, pressure using ARMA time-series modeling
technique and generate synthetic datasets for ground
truth tests.

• Second, we compare the accuracy of three GEDmodels:
an optimizer using Instantaneous Mass Balance con-
straint (IMB), Kalman Filter (KF), and Kalman Filter
with Unity Gain constraint (KF-UG counterpart) over
real and synthetic sensor data.

• Third, for the detected errors, we apply gross error clas-
sification (GEC) using a Complex Decision Tree (CDT),
neural network (NN), and K-Nearest Neighbor (KNN)
algorithms, and classify sensor errors into four types
called Bias, Drift, Precision Degradation and Failure [4].
Applying GEC on top of GED is crucial for oil refiner-
ies, and we demonstrate that the accuracy of GED tech-
niques can vary per error type. Each error type requires
a relevant action on sensors: some error types are fixable
whereas others aren’t and need sensor replacement.

• Fourth, we integrate these trained DR-GED, GEC mod-
els into a complex event processing (CEP) engine and
verify the accuracies and performances of the proposed
techniques over real refinery datasets.

• Finally, we use validated data for analysis of changing
system modes. The aim of operational mode analy-
sis is to identify the time where operation shifts from
one steady-state to another and a model reconstruc-
tion is required. The context shift is analyzed based on
fluctuations in streaming sensor data using DBSCAN
clustering.

Overall, we discuss selection and synergetic use of a set of
analytical tools from different domains including data min-
ing, statistics, and distributed systems to address challenges
faced in petrochemical industry. The aim of this paper is not
only detecting outliers and improving the accuracy of data,
but also recognizing the state of physical sensors and indus-
trial system and identifying the time of model reconstruction.
We hope that our contributions for oil refineries will also
contribute to Industry 4.0 and digital transformation efforts
of other future factories [5], [6].

II. BACKGROUND AND RELATED WORK
Data validation and reconciliation (DVR) techniques were
developed to improve data quality and satisfy plant models
within the last few decades. The process model equations
such as mass equilibrium and conservation laws were used

to perform DR-GED. Data reconciliation is a mathematical
model [7] that reduces inconsistency between measured data
and physical model by reducing the effect of random errors on
data. Reconciled estimates are expected to be more accurate
and without (or at least smoothed) outliers. To accomplish
accuracy improvement of data, outlier detection methods
were developed and applied together as a companion tech-
nique to DR. Shcherbakov et al. [8] studied outlier detection
and anomaly detection [9], [10] as data-driven approaches
developed for identification of unexpected patterns in data
and can be categorized into four types: distribution-based,
distance-based, clustering-based and density-based [11] that
are applicable to data directly. But, DR-GED techniques
use underlying physical system model to satisfy constraints
in addition to outlier detection. Approaches like statistical
outlier detection are applicable where data follows a certain
distribution. For model construction of a system fed with
stream data, time-series analysis such as auto-regression,
moving average and exponential smoothing are required to fit
model, monitor and understand underlying forces of process
model [12] in order to make future predictions and replace
possible missing values [13]. Time-series models are appli-
cable in a wide variety of sectors such as health-care [14],
transportation [12], forecasting [15], and stock market. Error
detection and classification such as ours provide a data quality
improvement for better system modeling and isolation of
faulty processes.

DR-GED applications have been used in chemical or petro-
chemical processes [16], [17] since their analysis quality has
been known to directly improve the process performance and
increase profits as well as safety [18]. Most prior studies
focused on performing DR-GED offline using static samples
of data collected from relatively old system logs. Over the
past decades, the number of data resources such as sensors
used in industrial facilities and Internet of Things (IoT) has
risen dramatically. Yet, online data processing remains a
challenge. Attempting to store these data first to analyze
them later creates additional IT costs, unwanted delays to
actionable information, and mishandling of threats or oppor-
tunities. Fortunately, there are now tools to process data on-
the-fly as they move from DCS and SCADA systems to
selected destinations. Neither relational databases nor dis-
tributed batch processing systems [19] alone are designed
to cope with industrial data analytics. In sectors such as
finance and mobile telecommunications, enterprises started
employing CEP engines [20] for tracking Key Performance
Indicators (KPI) in real-time or for carrying out rule-based
alarm management. Nowadays, heavy industries also want to
complete their ‘‘digital transformation’’ or Industry 4.0 jour-
ney [21] by extending their data architectures with real-time
complex analytical [22], [23]) capabilities. However, data
needs to be validated first in real-time, for the rest of the
online analytical models to work accurately.

do Valle et al. [24] collected benchmarks for DR-GED
issues introduced in the literature for mass and energy balance
preservation. Zhang et al. [25] studied DR and parameter
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estimation (DR-PE) for systems with multi-operating condi-
tions and suggested a PCA-based steady-state detection tech-
nique extended with clustering to partition the data into dif-
ferent modes of operation, so that accurate reconciliation can
be applied for each mode. They also addressed the DR-GED
problem for dynamic systems using particle filters [26].
Guo et al. [27] proposed a systematic approach for DR of
a thermal system using mass balance and improved data
accuracy. Cai et al. [28] proposed a multi-source informa-
tion fusion based fault diagnosis methodology for multiple-
simultaneous faults using Bayesian networks that increases
accuracy. Ruan et al. [29] used a symbolic representation of
time-series data for reducing the volumewhile also extracting
patterns.

Rafiee and Behrouzshad [17] studied DR-GED using
material and energy conservation laws in natural gas process-
ing. Jiang et al. [30] studied GED for data obtained from a
coal-fired power plant. They modeled the system at steady-
state and reconciled the data using the mass and energy bal-
ance equations. They employed statistical global test to detect
gross errors and serial elimination technique to identify the
error sources. Their steady-state technique compares to the
basic Instantaneous Mass Balance (IMB) method described
in this paper. We find that IMB and similar ‘‘stateless’’
techniques are less effective compared to modified Kalman
filters that track system behavior when the system is not at
steady-state. They also did not discuss applying GED on top
of streaming data.

Since the industrial systems are dynamic it is crucial to
assess the correct time to update the cyber model. For this
purpose, Zhang et al. [31] proposed an incremental model
tracking framework for quality-directed adaptive analysis
named AQuA. Lughofer et al. [32] proposed an incremental
rule splitting concept to autonomously deal with gradual
drifts for local distributions. Zhu and Geng [33] proposed a
‘‘multi-scenario’’ parameter estimation for dynamic systems.
Zheng et al. [25] proposed parameter estimation with multi-
operating conditions for data reconciliation in steady-state.
For handling drifts in data streams Shaker and Lughofer [34]
proposed an adaptive forgetting factor depending on current
intensity of drift in stream data. The aim is to identify the
time where the state is shifting from one steady-state to
another and a model reconstruction is triggered. In this paper,
we detect the context shift of the system according to the error
fluctuations of the trained DBSCAN clusters.

Our approach combines steady-state modeling with real-
timemodel updates, operational mode identification, and data
cleaning via error detection all at once.

The rest of the paper is organized as follows. Section 3
describes the cyber-physical systems and proposed data
architecture for oil refineries. Section 4 details different
GED methods including IMB, KF, and DREDGE and dif-
ferent GEC methods including CDT, NN, and KNN and
describes DBSCAN analysis for recognizing the behavior
of industrial system and identifying the time for model
reconstruction. Section 5 discusses the experimental results,

compares the accuracy and computational performance of the
described methods for different error types and state analysis.
Finally, Section 6 concludes the paper and discusses future
work.

III. DESCRIPTION OF CYBER-PHYSICAL
SYSTEMS IN OIL REFINERIES
Cyber-Physical Systems (CPS) are described by
Rajkumar et al. [35] as ‘‘physical and engineered systems
whose operations are monitored, coordinated, controlled
and integrated by a computing and communication core’’.
Industry 4.0 will be realized [36] by connecting CPS with
Cloud via Internet of Things (IoT) and providing distributed,
secure, intelligent analytical data services at the Edge or the
Cloud [37], [38]. Oil & gas businesses have already implanted
thousands of sensors inside and around their physical sys-
tems. Sensor data continuously streams in via DCS and
SCADA systems measuring temperature, pressure, flow rate,
etc. of drills, turbines, boilers, pumps, compressors, and
injectors.

Figure 1 illustrates the the CPS and software architec-
ture of our oil refinery. The major ‘‘physical’’ compo-
nents are the power systems depicted in Figure 2 and the
crude oil processing columns depicted in Figure 3; their
‘‘cyber’’ counterparts are composed of the sensors, servers
and the data-based services that store and process the digi-
tal models. The power plant provides electricity to the rest
of the refinery and has about 80 megawatts of generation
capacity. There are 8 boilers with maximum flow capacities
of 100 tons/hour, which turn hot water into super-heated and
highly-pressurized vapor. The vapor output from every boiler
is directly fed into a corresponding steam turbine with an
alternator, which turns the thermo-kinetic energy into elec-
trical energy. The flow rates of the inputs (hot water) and
the outputs (vapor) of the boilers are measured by flow rate
sensors (S-In1, S-Out1, etc.) and these measurements are
fed into the models. Placing redundant (i.e. extra) sensors
around the physical systems increases reliability and allows
replacement of missing values that help to locate and classify
errors or detect sensor failures.

Crude oil columns take the oil as input and deliver several
by-products such as liquid propane gas, fuel oil, kerosene,
diesel, and asphalt. A preflash unit reduces the pressure
and provides the first vaporization, where the vapor goes
to a debutanizer for distillation and the liquid mix goes to
an atmospheric column for separation. On the digital side,
we have servers and software for online and offline process-
ing of received data. For offline data processing, we used
the Hadoop Distributed framework [19] for providing the
Extract, Transform and Load (ETL) services. This service
gathers raw data from all sensor streams and presents them
in a unified format. Using offline data, we can extract the
steady-state models for physical systems and use this prior
information to instantiate cyber models. Using online data,
we can tune the system models dynamically and detect gross
errors in real-time. We deployed DR-GED models and GEC
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FIGURE 1. Illustration of the cyber-physical systems inside our oil refinery; high-level operation of the power plant,
petrochemical plant for crude oil processing, and data stream processing services.

FIGURE 2. Illustration of a boiler power plant. Various types of sensors
are implanted for real-time data collection. The boiler can change states
among the desired stream pressure levels (low, high, very-high) or go
automatically into heating, cooling, recycling, and condensing modes.
VHP: Very-high power steam output; DSH: De-Super Heater.

algorithms inside a CEP engine. The benefits of using CEP
engines for data stream analytics are at least three-fold:
• They can turn raw data into actionable information
quickly, thus helping oil refineries catch critical issues
to avoid losses in real-time.

• They can eliminate unwanted data early in the data
pipeline, saving further CPU, memory, storage and
energy costs.

• They can catch transient or emerging patterns, which
never show up in an offline data mining analyses.

Considering all input-output lines and the different types
of measurements (water and vapor flow rates, temperature,

pressure, fuel oil and fuel gas flow rates), there are about
1,000 sensors in the power plant and 60,000 sensors in the
entire oil refinery, where a sample of one month real data
measured every minute is made available for academic use
at OpenML datasets web site [39]. Our goal is to process all
of this raw, streaming sensor data and create valuable data
services for generating clean and reconciled data, detecting
and classifying gross errors (i.e. avoid false positives - FP),
and raising alerts when the system is malfunctioning (i.e. true
positives - TP). The system can also be used to track a
set of KPI for the entire plant and report results in dash-
boards if the performances are below or above pre-defined
thresholds.

IV. METHODOLOGY FOR DREDGE
DR-GED requires a mathematical model to reduce inconsis-
tency between measured data and industrial process model.
In this study, we use two main models for data reconcili-
ation: mass balance constraints for systems in steady-state
and Kalman filters [40] for time-varying processes. We also
propose DREDGE, which is a special Kalman Filter imple-
mentation extended with Unity Gain that incorporates system
dynamics into mass balance constraints. After modeling sys-
tem, we apply a distribution-based outlier detection approach
on the estimated system model as GED method. All methods
are implemented into a CEP engine.

On the other hand, industrial systems can have multiple
operational modes and there can be shifts among them during
daily operation. Accordingly, the models are required to be
reconstructed and time-varying parameters updated, which
explains the emergence of local and window-based stream
online analysis to be more reliable than offline (or batch-data)
analysis.
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TABLE 1. Sample data for Yt , input-output flow values (ton/h) of one of
the boilers. The complete data spans 5 months worth of measurements
from 12/2014 to 4/2015.

A. DATA VALIDATION AND GROSS ERROR DETECTION
1) STEADY-STATE AND INSTANTANEOUS
MASS BALANCE (IMB)
In theory, a process is in steady-state if the parameters
that define the system’s behavior are not changing over
time. In practice, a process is never truly at steady-state.
However, a plant can normally operate around steady-state
for hours or days. For applications that have low frequency of
change, steady-state reconciliation can be performed. In tran-
sient periods of changing states a dynamic model can be
applied [4]. The general formulation of a linear steady-state
system model is described in Equation 1 where Yt is vector
of n measurements, xt is corresponding true values and ε is
vector of unknown random errors.

Yt = xt + ε (1)

Related constraints such as mass balance is represented by
Ax = 0 and the objective function for error minimization can
be represented Equation 2:

minx(Yt − xt )TW (Yt − xt ) (2)

where W is a diagonal matrix that represents weights that
are statistical properties of errors. The analytical solution
to above problem can be obtained using Lagrange multi-
plier optimization method in Equation 4. Data reconcilia-
tion is built on the assumption of a linear system model
with a normal distribution of random errors [4]. Distribution-
based outlier detection method is constructed to detect non-
random (gross) errors by applying the Global Test (GT)
shown in Equation 3, where σ is standard deviation of
data points used in calculation of normal distribution func-
tion and cumulative probability for the desired confidence
interval.

GT =
∑n

t=1

(
Yt − xt
σ

)2

(3)

The first method used for GED in this paper is called IMB,
which is a standard DR-GED method as explained above and
the solution for reconciliation is shown in Equation 4. IMB
enforces a mass balance constraint at every sensors’ mea-
surement instant and does not take into account the system
dynamics or the memory effect. IMB method is ideally used
with systems at steady-state.

x̂t = Yt − VAT (AVAT )−1AYt (4)

TABLE 2. Sample flow measurements for 17 sensors Yt (ton/h) of the
petrochemical system of Fig 3 and corresponding matrix A. The complete
data spans 2 months worth of measurements from 08/2014 to 10/2014.

If we assume Yt matrix contains the masses of input water
and De-Super Heater (DSH), and the mass of output vapor,
then ideally mass balance constraint should enforce Ax = 0,
where matrix A represents the system input flow +1, output
flow −1, and unused measurements 0. For the power plant
system, Yt is a 3-dimensional vector of these masses and a
sample is shown in Table 1 and matrix A =

[
+1 +1 −1

]
.

IMB method also uses a covariance matrix V , in order to
find out how attributes vary together. Covariance matrices
are obtained using historic data, where V is a N × N matrix
(N = 3 for power plant and N = 17 for petrochemical
plant) containing the variance-covariance of all the input-
output attributes:

V =

 104.998 1.825727 128.1891
1.825727 0.236576 2.163642
128.1891 2.163642 163.9264


Next, the data is reconciled using Equation 4 and x̂ denotes

the reconciled (or de-noised) data. Then, under the null
hypothesis H0 (H0: The system is working, so there is no
gross error), a statistical test analogous to global test is
applied for detecting gross errors known as Chi-Squared
test (X2), which is a non-parametric statistical test corre-
sponding to cumulative probability, exceeding the 95% cri-
terion gross error is detected. Given r the vector of residuals
of linear model that follows a normal distribution with zero
mean and the covariance matrix V , the statistical global test
is constructed. Statistics given by γ in Equation 5 follows
a X2-distribution with v degree of freedom, where v is the
rank of matrix A. The 1 × 3 Matrix A used in Equation 4
in IMB method has rank 1 and the Chi-Squared test for
this process has 1 degree of freedom and 95% confidence
(X2

95%(m) < 3.84) corresponding to cumulative probability
for desired confidence interval.

γ = rTV−1r (5)

For the petrochemical plant, the same approach is used for
DR-GED on raw values. As depicted in Figure 3, this plant
has 17 flow sensors over 3 main branches of material flows
and the corresponding sensor data streams. Each branch has
its own mass balance consideration as follows: 1 = 2+3+4,
3 = 5 + 6 + 7, 4 = 8 + . . . + 17. Table 2 shows sample
sensor measurements for Figure 3 and matrix A represents
the mass balance equation (V17×17 not shown for brevity).
The least squares estimation (LSE) method is used to obtain
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FIGURE 3. Petrochemical process showing crude oil input, preflash,
debutanizer, atmospheric columns, and sensors (1-17) measuring input
and output flows.

Ŷt and a Chi-squared test with rank(A) = 3 degree of freedom
is used for GED in this plant.

A =

1 −1 −1 −1 0 . . . 0 0 0
0 0 1 0 −1 . . . 0 0 0
0 0 0 1 0 . . . −1 −1 −1


2) CAPTURING SYSTEM MEMORY USING ARMA MODEL
Assuming plants are linear dynamical systems, their oper-
ation can be explained with the Auto-Regressive Moving
Average (ARMA) model [41]. This model can capture the
‘‘memory effect’’ of the systems with respect to sudden
changes in the input. For example, in the power plant any
sudden change in the amount of water input might not reflect
itself at the vapor output instantaneously, as somewater/vapor
gets stored in the system during heating. The ARMA model
is described by the recursive Equation 6:

yk + α1yk−1 + . . .+ αnyk−n = β0xk + . . .+ βmxk−m (6)

where yk are the output, and xk are the input of the system at
time k . For the power plant, yk is the vapor output and xk is
the water input, both in tons/hour. For the petrochemical pro-
cesses, yk is the various by-products (fuel, diesel, kerosene)
and xk is the crude oil input. Enforcing instantaneous mass
balance (i.e. IMB) at the input and output might not work
if the system is not in steady state. ARMA model captures
this system buffering, thus ‘‘memory effect’’. The order of
the model in Equation 6 is given by m and n parameters.
The higher the order is, the bigger the memory of the system.
In this system, discrete time is chosen, since the sensor values
are obtained in discrete time intervals. A set of training
data is chosen for fitting ARMA model and extracting the
coefficients αi and βj to identify system order.

Then for a given system order and corresponding coeffi-
cients, the estimated model is trained and applied on test data.

The system order that performs best on training data is
selected, which resulted in m = n = 1 with both of our
systems (power plant and petrochemical plant).

3) DREDGE
The time-varying Kalman Filter (KF) is a generalization
of the steady-state models, i.e. systems with non-stationary
noise covariance. Although the ARMA model takes into
account the dynamics of the boilers, it does not take into
account mass balance (i.e. all the water that goes in must
eventually come out of the system). The upgraded ARMA
model for this process requires to have a D.C. gain of 1 which
is a smoothing technique in the moving-average model for
reduction of random fluctuations in time-series. Given the
plants’ state obtained by ARMA model, power plant and
petrochemical plant are converted into a state-space repre-
sentation [40]. KF method tracks systems’ dynamic state,
however, mass balance is not considered. To incorporate
system dynamics into mass balance constraints, we integrate
Unity Gain constraint with the KF method and train these
models over real refinery datasets; calling it DREDGE. Unity
Gain constraint in ARMA model is defined with D.C. gain
of 1 allowing imbalance instantaneously, but enforcing mass
balance to be preserved in the long run. Equation 7 explains
this additional linear constraint with respect to Equation 6.

−α1 − α2 − . . .− αn + β0 + β1 + . . .+ βm = 1 (7)

ARMA model is applied with prior information and
requires to solve a least squares problem subject to unity gain.
The problem’s formulation is as follows:

Minimizing ||Aθ − b||2

Subject to CT θ = d (8)

where unity gain considered inCT θ is equal to one, and theC
matrix is a vector of ones. Vector b is real output system and θ
is to be estimated. The solution to this problem is obtained by
solving the Lagrangian relaxation with optimality condition.

Thus, KF method is modified to use a constrained LSE
step in estimating the system coefficients to enforce mass
balance. Combining a Chi-squared test and unity gain to KF,
we obtained a GEDmethod that mass balance is incorporated
in a time-varying process model. You can find details about
our modifications and additions to basic KF in Appendix.
Since DREDGE combines best of both worlds, we expect it to
achieve higher GED accuracy. DR-GED methods introduced
and proposed in this section are deployed inside the CEP
engine as the first component of the data quality service.

B. GROSS ERROR CLASSIFICATION (GEC)
The Second component of the proposed software service is
classification of detected errors called GEC. In the previous
section, we addressed models for GED in detail and in this
section, wemove a step further by formally classifying sensor
errors into four types using Complex Decision Trees (CDT),
Neural Networks (NN) and K-Nearest Neighbors (KNN)
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classifiers. CDT is a regression tree for modeling relation-
ship between variables [42], KNN a density-based classi-
fication method that classifies data based on top-k nearest
neighbor [43] and artificial NN is again used for pattern
recognition and classification. These algorithms were trained
with the sudden changes of mean and variance properties of
measured data.

Different types of gross errors have their own natural data
corruption behavior or characteristics. In relation to the phys-
ical defects of the sensors and their operational conditions,
common types of gross errors include:
• Bias: Due to un-calibrated sensors, the received values
contain a constant shift with respect to the correct value.

• Drift: Due to un-calibrated sensors, the data contains
increasing or decreasing amounts of error with time.

• Precision Degradation (PD): The sensor plates maywear
out or get dirty over time, resulting in received data
from sensors containing errors resembling random noise
around the nominal values.

• Failure: Due to sensor failure or measurement bound-
aries, the received data is constant or completely
random.

FIGURE 4. Different types of gross errors are inserted on top of refinery
power plant data. Blue dots show that gross errors can correctly detected
using KF. These errors are then classified by mean-variance tracking.

For comparison of GED accuracies of IMB, KF and
DREDGE, and GEC accuracies of CDT, NN, KN, we gen-
erated a synthetic dataset with 1 million data samples whose
properties were extracted from real data obtained from the
power plant. Next, error events representative of different
gross error types (Bias, Drift, PD, and Failure) were added to
the synthetic data as exemplified in Figure 4. For each gross
error type, we calculated the F-measure values of classifiers
including CDT, NN, and KNN. CDTwas modeled and evalu-
ated by 5-fold cross-validation technique and Gini’s diversity
index for the split criterion. NN was trained and tested using
scaled conjugate gradient back-propagation, which was a
two-layer feed-forward network, with sigmoid hidden and
softmax output neurons. Similar to CDT, KNN model was
trained and evaluated by 5-fold cross-validation technique,
and the Euclidean distance metric for 1 nearest neighbor.
F-measure is a harmonic mean of precision (TP/(TP+FP))
and recall (TP/(TP+FN)) which provides a unified score for
the classification quality evaluation.

FIGURE 5. General categorization of gross error types with respect to
changes in mean and variance of sensor data. The borders are extracted
after training classifiers with real data.

For applying a supervised learning algorithm to learn gross
error behavior, data should be labeled. But, our real data
obtained from oil refinery does not have any extra informa-
tion about types of gross errors. From the statistical studies
of sensor data for GED purposes and the observation of
changes in mean and variances, we developed a rule-based
algorithm for labeling. The model was trained with mean
(µ) and the variance (σ ) values of offline data and obtained
the model illustrated in Figure 5. This model is used for
labeling data and by measuring the latest mean (µ) and the
variance (σ ) values of the time-series data in current sliding
window and classify gross errors accordingly. Given one
method of GED that detects a gross error event, if the mean
changes up to 3σ (1M < 3σ ) and variance does not change
drastically (S < σ ), then the gross error is classified as
Drift. If both the mean and variance change significantly
(1.5σ < 1M&S < 3σ ), then it is classified as a Bias.
If the mean does not change significantly (1M < 1.5σ ), but
the variance increases (σ < S < 3σ ), then is classified as
Precision Degradation. Finally, if both variance and the mean
changes significantly, it is classified as a Failure-Random.
In case there is no movement at all, the sensor is classified as
Failure-Dead.

The classification categories illustrated in Figure 5 are
separated linearly without any overlap, but in real data, gross
error types might have overlaps or some detected data points
may contain more than one type of error. By training the
classifiers using these rules, the unclassified or misclassi-
fied data points can be detected and their true classes can
be extracted. These points are also revealed by accuracy
evaluation of supervised learning algorithms and F-measure
values.
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C. SYSTEM OPERATIONAL STATE ANALYSIS IN REAL-TIME
Another aspect of real-time stream analysis and parameter
estimation is the frequency of model update. In stream analy-
sis the entire data is not available at all time, the past data
may have a large volume, and the cyber model needs to
be constructed using a window-based approach, a.k.a. sub-
model identification. Yet, it is challenging to detect system’s
operational changes when the process is in a transient or drift
mode from one state to another. In model reconstruction,
a window should neither be too large to miss the patterns and
operational modes, not too small to make frequent, unneces-
sary updates. The performance evaluation shows that smaller
windows sizes are preferable because of lower CPU time and
memory usage. An optimal window size can be computed
using historical data analysis, but it does not necessarily
require a fixed length and can be changed over time based
on system’s behavior [44].

FIGURE 6. Model evaluation of pressure/temperature data.

Stream data context fluctuations in industrial systems is a
critical indicator for systemmodeling and necessity formodel
updates. This information is extracted using the cleaned,
high-quality data obtained form DR-GED process. Here,
the system is modeled using the analysis described for GED
and GEC in a window-based fashion, with a fixed window
size of 180 data points (6 hours) in consecutive tumbling
windows. By applying the model from previous window to
current window and measuring the Root Mean Square Error
(RMSE) from predicted model, the RMSE value is evaluated
for operating state identification. We observe that when there
is a drift in data context the RMSE increases dramatically as
shown in Figure 6 window #9. When the system works in
one steady-state, the previous model is applicable to current
window; for example between window #6-#8. But when the
RMSE increases suddenly, the system goes into a transient
state and is an indication of state change. This extracted
knowledge is interpreted as a requirement for model update
as described in Algorithm 1. The validation of this extracted
knowledge is tested using DBSCAN clustering method as
described next. Note that in SystemModeTracker Algorithm,

Algorithm 1 SystemModeTracker
1: procedure
2: W : initial window size
3: offline:
4: M=Model(W ) //predict model on steady-state data
5: online: DREDGE
6: for all windows W over stream do
7: GED(W )
8: RMSEcurrtModel = RMSE(M )
9: cluster = DBSCAN (W )
10: if (RMSEcurrtModel) > (RMSEprevModel) &
11: cluster>2 then
12: detectNewMode
13: M = updateModel(W )
14: RMSEprevModel = RMSEcurrtModel
15: end if
16: GEC(W )
17: end for

we only use offline models to get the sensor stream started;
after that models are trained and tuned online.

1) DBSCAN CLUSTERING
Real-time clustering methods can be used for detecting
the system’s operating states, where data points would be
grouped in one cluster denoting the steady-state and forma-
tion of new clusters is interpreted as a drift to new operating
conditions or emerging patterns. Note that the anomaly prop-
erties of transients will be different than steady-state modes.
As such, a locality based outlier detection approach, without
specifying cluster numbers in advance is beneficial. Density-
based clustering methods are suitable for this evaluation,
therefore we employed DBSCAN in this paper.

The applications for sub-model identification in real-time
stream analysis are operating state identification and local
outlier detection. DBSCAN algorithm can be used for dis-
covering clusters in arbitrary shapes based on the density of
data points. It requires two input parameters (Eps,minPts)
where Eps-neighborhood for a point p is all neighbors within
range Eps defined in Equation 9 that has more than minPts
data points [45].

NEps = {q ∈ D | dist(p, q) ≤ Eps} (9)

For all series of points q that are density-reachable from p
one cluster is formed from connected points and, points that
are not reachable are detected as outliers in a window-based
analysis.

V. EXPERIMENTAL RESULTS
In this section, the GED accuracy results of IMB, KF, and
DREDGE methods for different gross error types are dis-
cussed over synthetic data. Next, data reconciliation and
error classification are applied over the real refinery dataset.
Finally, the performance of different algorithms over dif-
ferent streaming window sizes are tested and compared to
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TABLE 3. GED results of IMB, KF, and DREDGE for Bias-type gross error
over synthetic data.

better understand the scalability and sustainability of these
DR-GED techniques over fast moving sensor datasets.

A. RESULTS FOR SYNTHETIC DATA
Table 3 shows the GED accuracy results of IMB, KF, and
DREDGEmethods in detecting Bias type gross error over the
synthetic dataset, to which N = 2, 755 Bias events/epochs
were synthetically inserted at random points. Logically, there
will be (N + 1) 2,756 periods where there is no gross error.
Each Bias event contains a set of Biased values, the count of
which randomly varies between 5 and 25 to provide statistical
significance. A ‘‘True (T)’’ event signifies the existence and
a ‘‘False (F)’’ event signifies the non-existence of a gross
error in that period. As seen in Table 3, our DREDGEmethod
gives the most accurate prediction results for Bias type gross
events, where the 2,755 synthetically inserted events were
all correctly detected (true positive-TP) and no misdetec-
tions (false positive-FP or false negative-FN) were recorded.
However, the KF algorithm misses 14 of the Bias events.
The IMB method is the least accurate in this case, where 40
‘‘non-gross error’’ events were detected as gross error events.
Since the DREDGE method takes into account both system
dynamics and mass balance constraint, it performs the best.
Note that an FP increases the total number of both gross
error and non-gross error events, whereas an FN decreases
both since we have time-series event data. The experiments
are repeated for all 4 types of errors (Failure, Bias, Drift,
Precision Degradation) and summarized results in Table 4.

Table 4 shows the precision and recall rates in confusion
matrix for the GED methods over all gross error types.
The precision of both KF and DREDGE are very high
(99.54-100%), since they make little or no FP. Since IMB
does not track the dynamics of the system it has lower
precision ratios (81.3-98.57%) due to FPs. One interesting
phenomenon is the relatively low recall rates for KF (78.05%)
and DREDGE (90.8%) during detection of PD type errors.
This happens because they both suffer from over-fitting their
models and include precision degradation errors as regular,
non-gross error events. In summary, we learned IMB can
cause a lot of false alarms and DREDGE and KF methods
are more dependable in their predictions compared to IMB.
Therefore, KF-based methods are preferable for GED over
time-varying systems found in refineries.

Applying GEC technique on top of GED methods, Table 5
and Table 6 show the F-measure, precision, and recall of all
classifiers per error type. The F-measure values are between
0 ≤ F ≤ 1 and the higher F-measure shows that the classifi-
cation has a higher predictive power. In Table 5, we generally
observe that the F-measure values of classifiers over synthetic
data are higher than the real data. This can be attributed to
the higher number and separation of gross errors inserted in
the synthetic data, whereas in the real data the errors may be
overlapped.

Over synthetic data, CDT has the highest F-measure values
0.994 ≤ F ≤ 1.0 and the lowest values are achieved by KNN
0.965 ≤ F ≤ 0.995. This shows that the classifiers can learn
the labeled data and they have a high predictive power. Next,
these classification algorithms are validated over real data.

B. RESULTS FOR REAL REFINERY DATA
After evaluating the accuracy of GED and GEC methods on
synthetic data, these methods were validated on real data.
IMB, KF, and DREDGE models were trained using a com-
mon dataset from a single day (8/1/2013) and tested again on
another common dataset from the following day (8/2/2013).
The visualization in Figure 7(a) shows the gross errors
detected by KF for the flow rate measures (in tons/hour)
on the two main lines (water-vapor) of the power plant
(time = 2000 minutes). Note that, the transient jumps in data
are marked (∗) by KF algorithm and there are not gross error
marks in the steady-state regions of the data.

In Figure 7(b), we see the petrochemical material flow
measurements and the gross errors detected therein. We first
observe that GED can be applied on different lines simulta-
neously to identify and potentially locate which lines have
which type of gross errors. We see some locality among the
gross errors on different lines, but also some independence.
This proves that we can detect, locate, differentiate, classify,
and fix gross errors on different sensors for different indus-
trial processes. For sensor 3, where 3 = 5 + 6 + 7, we used
reconciled values obtained from line 1, 1 = 2+ 3+ 4 (Refer
to Figure 2 for system details).

Our GED methods can also be applied among sen-
sor measurements of different types such as temperature-
pressure, temperature-flow, etc. Figure 8(a) and Figure 8(b)
respectively show that, beyond the use of flow rates, water
temperature-pressure and vapor temperature-pressure mea-
surements can be utilized for GED purposes. Usingmultivari-
ate data is beneficial if some gross errors are not detectable
in one set of data, but can be extracted from among different
sensor measurements.

Next, we applied the GEC technique over real data from
the power plant and report results in Table 7. IMB declared
522 measurements as gross errors, which was significantly
more than KF (215) and DREDGE (241). We know from
Table 4 that IMB has a low Precision (81.36%) for detecting
PD types, therefore the higher GEDnumbers can be attributed
to higher FPs for PD.
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TABLE 4. GED results for IMB, KF, and DREDGE over different gross error types on synthetic data.

TABLE 5. F-measure for GEC results of CDT, NN, and KNN over different gross error types on Real and Synthetic data.

TABLE 6. GEC results for CDT, NN, and KNN over different gross error types on real data.

FIGURE 7. (a) GED for the water/vapor lines of the Power Plant data, (b) GED for debutanizer lines 3 = 5 + 6 + 7 of the Petrochemical
process data.

The F-measure obtained from CDT model over real
data is 0.958 ≤ F ≤ 1.0 for each type of gross
error. NN’s F-measure for gross error classification is

0.867 ≤ F ≤ 0.989. The F-measure achieved by KNN are
0.836 ≤ F ≤ 0.984 as shown in Table 5. The lowest
F-measure values belong to Failure and Bias which is related
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FIGURE 8. (a) Water temperature/pressure lines of power plant used for GED, (b) Vapor temperature/pressure lines of power plant used
for GED, by DREDGE.

TABLE 7. GEC results of IMB, KF, and DREDGE over real dataset.

to the overlaps between these two types due to their similar
behavior. Table 6 also compares the GEC results, but reports
the precision and recall details. Lower precision values can
be attributed to FPs or ‘‘misdetections’’, whereas lower recall
values can be attributed to FN or ‘‘missed detections’’. While
it is desirable to have higher values in both precision and
recall, having low recall values may have worse outcomes
for oil refineries. As seen in Table 6, KNN may achieve a
recall of 83.3% for Failure and 82.1% for Bias type errors.
This means that the operators won’t be informed 16-17% of
the time when those sensor errors are happening, which is not
acceptable. In comparison, the highest F-measure, precision
and recall values are obtained by CDT. Also, the model’s per-
formance is an important concern in stream data processing.

As a result, we trained and applied the CDT classifier on CEP
engine because of its high accuracy and relatively lower time
complexity (i.e. O(logn)).

Figure 9 shows classification of errors detected by IMB vs.
KF-based GEDmethods. We observe in both Figures 9(a)-(b)
that Water-Vapor flow rates cluster around 45-70 tons/hours
creating a concentrated green region, whichwewill refer to as
the normal range; GEDmethods detect and mark gross errors
on top of this cluster. IMB works as a sharp, multi-linear
classifier for error detection, where values above and below
the normal ranges are declared as errors. CDT classifies
those above the normal range as Drift, Bias, PD and errors
below normal range as Failure types. As seen in Figure 9(b),
KF-based models also detect the same Failure types,
as detected by IMB in the lower region of cluster, but do
not agree in most of the Drift, Bias, PD types (FPs) declared
by IMB in the upper region; They agree on a few of the
Bias types in this upper region. However, Drift and PD errors
detected by KF-based models are more dispersed among the
normal values. This is because KF and DREDGE can track
Drifts and PDs that are a part of the dynamic system behavior
even inside normal ranges.

The validated sensor data that is de-noised through
DR-GED process can be used in modeling and other anal-
ysis process of the refinery and results of GEC is used for
identification of sensor malfunction or system anomaly.
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FIGURE 9. (a) GEC for errors detected by IMB, (b) GEC for errors detected by DREDGE.

C. COMPUTATIONAL PERFORMANCE EVALUATION
We learned that with careful selection of system analysis
model (DREDGE, KF, or IMB), we can accurately detect and
simultaneously classify gross errors. However, the question is
whether these methods are sustainable over fast data streams.
This section aims to provide an answer by detailed obser-
vation of performances for each method. The performance
evaluation is done using an open-source CEP engine for
Event Stream Processing, called ESPER. The system spec-
ifications are ESPER v.4.6.0 installed on RedHat Enterprise
Linux Server 5.4 64-Bit OS, Java 1.7.0-05 and JRE v7 on
an IBM HS22 Blade Server with Intel Xeon E5530 CPUs
(8 cores, 2.40 GHz) and 24 GB DRAM. Data used in these
experiments are 200,000 records from (Water, DSH, Vapor)
flow sensors sampled every 60 seconds for about 5 months in
the TUPRAS power plant. This data was replicated 5 times to
form 1 million lines to better represent the real sensor loads.
Every line has records of 3 flow sensors in power plant dataset
and 17 flow sensors in petrochemical dataset. Therefore,
we have 3 million sensor ‘‘events’’ in the first and 17 million
‘‘events’’ in the second dataset. We publicly provided a
1-month sample of this real data at OpenML datasets site [39]
for academic use. Performances of four representative con-
tinuous queries (a, b, c, d described below) were evaluated at
different window sizes {100, 250, 500, 1000} using a tum-
bling window type. Tumbling window is a sliding window,
where the slide-size is equal to the window size. Continuous
queries are:

(a) Select(*) from Boiler: This query returns all sensor
data for Boiler’s Water, DSH, and Vapor sensors. It is
implemented as a reference query with the lowest com-
putational and reference I/O loads.

(b) GEC: We measured the impact of GEC method that
primarily uses statistical (stddev and average) library
functions inside ESPER.

(c) - (d) GED (IMB and KF-based) methods using the
JBLAS linear algebra library for matrix computations.

We start with performance (memory and CPU usage)
analysis of queries using the water-vapor dataset from the
refinery’s power plant. Each experiment is repeated 5 times
for each window size and the average values (as well as
min and max) are depicted in Figure 10. Figure 10(a) shows
the total memory used by different window sizes. For the
Select(*) and GEC queries the memory usage is almost con-
stant w.r.t the growth of window length as the data is quickly
moved in and out of the window. However, for KF-based and
IMB GED methods, memory consumption increases linearly
w.r.t window size. Figure 10(b) shows the total CPU time
consumed for GED by different methods over the power
plant data. We see that it is possible to process 1 million
rows on average in 30 seconds with a single core mapping
to a rate of 100,000 events/sec (1 Million events/30sec =
3 events/row × 33,333 rows/sec). The total time consumed
for processing all data with Select(*) and GEC meth-
ods shows a slight growth w.r.t. window size. IMB time
increases almost exponentially w.r.t. window size, whereas
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FIGURE 10. Power Plant: (a) computational loads of reference queries
and GED algorithms with respect to total memory usage (MB) for
different window sizes over streaming data, (b) total processing time
(second) for different window sizes over streaming data.

KF-based only increases linearly. IMBmethod executes high-
dimensional matrix computations for GED. At window size
1000, IMB takes 43 seconds to complete the task (50% slower
than for window size 100). Therefore, we conclude that large
window sizes are less preferable for GED since we do not
want to miss important events due to delays in response.
In Figure 11, we continue with performance (memory usage
and CPU time) analysis of queries tested with petrochemical
processing plant (17-lines) dataset and for different slid-
ing window sizes. In Figure 11(a), we see that the mem-
ory consumption of Select(*), Classification, and KF-based
increase slightly w.r.t. windows size, but these memory loads
are not demanding compared to the memory capacity of
our server. Similarly, their CPU processing times show a
slight linear increase Figure 11(b) from 2 to 3 minutes.
However, the processing time of the IMB algorithm grows
exponentially as the window size increases from 5 minutes
to 310 minutes for the 1000 window size; beyond our charts
limits. Again, we conclude that smaller window sizes and use
of KF-based are preferable.

FIGURE 11. Petrochemical Plant: (a) computational loads of reference
queries and GED algorithms with respect to total memory usage (MB) for
different window sizes over streaming data, (b) total processing
time(min) for different window sizes over streaming data.

D. USING DBSCAN FOR MODE CHANGE DETECTION
As the data stream arrives, DBSCAN algorithm is applied
for operating state identification and outlier detection of
current window. In Figure 12, the behavior of the system
using water/vapor relation is studied. As shown in the figure,
until 8th window data there is only one main cluster, but
outliers are beginning to show the emergence of a second
cluster. However, in 9th window, the data split into 3 clusters,
which indicates a transient in the system. The data received
in 10th and 11th window stays in the new steady-state mode.
DBSCAN clearly enables detecting the outliers without any
prior assumption about the distribution of data or any rela-
tionship among variables, and whether the system is working
under a steady-state operational mode. If a transient happens,
DBSCAN can detect the drift by partitioning data into more
than one cluster of inliers and outliers.

In the meantime, the operation of the system is evaluated
from other sensor measurements of the boiler, pressure and
temperature values. As shown in Figure 12, the behavior
of the system using flow-rate measurement is evaluated for
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FIGURE 12. DBSCAN model on streaming sensor data water/vapor flow rate: in 8th window (ref. Figure 6) DBSCAN model shows the formation of one
cluster of inliers indicating one operational state, as new data samples are received from window #9, data gets split into 2 main clusters and some
outliers that indicates a drift in data context and that the system is in a transient mode. Windows #10-#11 shows that the system is operating under a
new steady-state mode. (a) DBSCAN: 8th window. (b) DBSCAN: 9th window. (c) DBSCAN: 10th window. (d) DBSCAN: 11th window.

operating state identification. However, using other sensor
data such as pressure and temperature as shown in Figure 13
we can observe the same behavior with more distinction.
In window #8 the system is operating under one steady-state,
and by receiving the new set of data in window #9 a transient
is observable since the data is split into 3 different clusters.
Windows #10-#11 approve this transition and stay in the new
operating state.

E. DISCUSSION: SENSOR ERROR OR SYSTEM ANOMALY
One crucial question to answer is whether an outlier mea-
surement would occur due to a sensor malfunction or system
anomaly. The identification of these correlated high-level
events could be difficult [46]. However, due to redundant

sensors and laws of mass and energy preservation, the system
can be monitored in multiple locations (in & out) as well
as in multiple dimensions (flow, temperature, pressure) to
differentiate sensor vs. system issues. In our experiments,
we observed that the systemwill sometimes shift among regu-
lar operational modes and go through transient states, which
get detected as gross errors in our scenarios. Consequently,
in ‘‘bias’’ and ‘‘drift’’ types of gross errors, the system goes
through a transient state until it reaches a new steady-state
operation. In ‘‘precision degradation’’ type there is no steady-
state and in ‘‘failure’’ type there is no sensor or system
operation at all.

The system is declared as operating in a steady-state when
the model from previous window that is applied on new
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FIGURE 13. DBSCAN model on streaming sensor data water-vapor pressure/temperature: similar to flow rate, in 8th windows DBSCAN model shows
formation of one cluster of inliers indicating one operational state, in window #9, data gets split into 2 main cluster and some outliers that is a distinctive
indication of drift in data context and the system goes into transient mode, requiring a model update. Windows #10-#11 show that the system is
operating under a new steady-state mode. (a) DBSCAN: 8th window. (b) DBSCAN: 9th window. (c) DBSCAN: 10th window. (d) DBSCAN: 11th window.

window data fits well by RMSE value evaluation. However,
a new operational mode formation can be identified when
the prediction error of the previous model on current win-
dow increases dramatically. The operational mode identifi-
cation compared and is confirmed by DBSCAN clustering
method.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed problems associated with erro-
neous sensor readings in oil refineries and we proposed a
real-time data validation, gross error detection (GED) and
classification (GEC) service, leveraging tools from statis-
tics, signal processing, data mining and a CEP engine
integrated with cyber-physical systems. For comparison of

GED and GEC accuracies as well as computational per-
formances, we obtained time-series data from the power
and petrochemical plants of an oil refinery. We found that
our proposed DREDGE method has accurate error detection
(99.1-100%) and sustainable performance at smaller window
sizes. IMB method had lower accuracy results and its perfor-
mance degraded exponentially with increasing window size.
After comparison of three gross error classification (GEC)
methods, we found the Complex Decision Tree (CDT) to
have the highest precision and recall values (95.8-100%),
where KNN had the lowest recall values (e.g. 82.1%) that
would be unfit for oil refineries and their safety requirements.
Therefore, we implemented CDT technique into CEP engine
for real-time GEC.
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Our approach combines data cleaning via gross error detec-
tion, steady-state system modeling, real-time operational
mode identification and model updates, all at once. This
study is applicable for many data-driven systems dealing with
sensor streams to ensure data quality and improve system
modeling. Devices in interconnected CPS can communicate
for more accurate system monitoring and avoid total failure
by predicting and detecting abnormal behavior of the sys-
tem. We believe that our study has the potential to bridge
the gap between generic big data software available in the
market and real challenges faced by oil refineries: detecting
erroneous data and sensors with high accuracy (no false
positives or negatives) over high volume stream data. Error
detection and classification such as ours provide a data quality
improvement for better system modeling and isolation of
faulty processes. In future work, we plan to integrate models
from our system into the real refinery, apply techniques from
deep learning [47], real-time model updates, and apply the
proposed architecture to other production plants.

APPENDIX
KALMAN FILTER
Kalman filter is a state space model used for tracking and
parameter estimation formulated with the system Equation 10
where xn+1 is the state vector at time n that is transformed to
yn the measurement vector. A,B,C are state transition and
measurement matrices and wn and vn are white Gaussian
noise with zero mean.

System statemodel : xn+1 = Axn + Bun + wn
Measurement model : yn = Cxn + vn (10)

KF has two phases: prediction for projecting current state
obtaining a priori estimate as shown in Equation 11, and cor-
rection step for obtaining posteriori estimate by incorporating
actual measurement into the a priori estimate as x̂n|n, P is the
estimate error covariance, Q and R are covariance matrices
and,Mn is theKF gain [4]. The prediction and correction steps
are executed recursively as follows:

Prediction step

x̂n+1|n = Ax̂n|n + Bun
Pn+1|n = APn|nAT + Qn (11)

Correction step

x̂n|n = x̂n|n−1 +Mn(yn − Cx̂n|n−1)

Mn = Pn|nCT (CPn|n−1CT
+ Rn)−1

Pn|n = (I −MnC)Pn|n−1 (12)

Given the observed input data, the system state is tracked
in a KF. The ‘‘innovation’’ is computed in the correction step
of the KF, which is subjected to a Chi-Squared test. If the
test fails, a gross error is detected. KF is used for random
error detection and data reconciliation in sensor data and an
adapter is required to turn its output prediction error (called
innovations) into a GED tool, similar to the statistical global

test used in IMB. Constructing a statistical test in dynamic
linear systems is possible by utilizing the properties of KF
innovations (i.e. output prediction error), which is computed
in the correction step ofKF. Innovations have normal distribu-
tions with expected values and a covariance matrix Vk given
by Equation 13, where Pk|k−1 is a priori estimate covari-
ance, C is observation model and Qk is noise covariance
matrix [4].

Vk = CPk|k−1CT
+ Qk (13)

Equation 14 is used to obtain a γ value, where Vk is innova-
tion covariance and vk is innovation residual at time k . The
γ value follows a Chi-squared distribution with 1 degree of
freedom and if it exceeds the criterion 95% corresponding
probability for the desired confidence interval, the test fails
and the gross error existence, as well as its location, are
detected [4].

γ = vTk V
−1
k vk (14)

REFERENCES
[1] R. K. Perrons and J. W. Jensen, ‘‘Data as an asset: What the oil and gas

sector can learn from other industries about ‘big data,’’’ Energy Policy,
vol. 81, pp. 117–121, Jun. 2015.

[2] E. Lughofer and M. Sayed-Mouchaweh, ‘‘Autonomous data stream clus-
tering implementing split-and-merge concepts–towards a plug-and-play
approach,’’ Inf. Sci., vol. 304, pp. 54–79, May 2015.

[3] TUPRAS-Refinery. Accessed: Aug. 24, 2018. [Online]. Available:
http://tupras.com.tr/en/rafineries

[4] S. Narasimhan and C. Jordache, Data Reconciliation & Gross Error
Detection: An Intelligent Use of Process Data. Houston, TX, USA: Gulf
Publishing Company, 2000.

[5] C. Harrison et al., ‘‘Foundations for smarter cities,’’ IBM J. Res. Develop.,
vol. 54, no. 4, pp. 1–16, 2010.

[6] P. C. Evans and M. Annunziata, ‘‘Industrial Internet: Push-
ing the boundaries of minds and machines,’’ Gen. Electr.,
Boston, MA, USA, White Paper, 2012. [Online]. Available:
http://www.ge.com/docs/chapters/Industrial_Internet.pdf

[7] J. Gertler, ‘‘Fault detection and diagnosis,’’ in Encyclopedia of Systems and
Control. London, U.K.: Springer, 2015.

[8] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, V. A. Kamaev,
O. M. Gerget, and D. Devyatykh, ‘‘Outlier detection and classification in
sensor data streams for proactive decision support systems,’’ J. Phys., Conf.
Ser., vol. 803, no. 1, p. 012143, 2017.

[9] D. Jankov, S. Sikdar, R. Mukherjee, K. Teymourian, and C. Jermaine,
‘‘Real-time high performance anomaly detection over data streams: Grand
challenge,’’ in Proc. 11th ACM Int. Conf. Distrib. Event-Based Syst., 2017,
pp. 292–297.

[10] A. Varga, Solving Fault Diagnosis Problems. Springer, 2017.
[11] B. Tang and H. He, ‘‘A local density-based approach for outlier detection,’’

Neurocomputing, vol. 241, pp. 171–180, Jun. 2017.
[12] C. Guarnaccia, L. Elia, J. Quartieri, and C. Tepedino, ‘‘Time series analysis

techniques applied to transportation noise,’’ in Proc. IEEE Ind. Commer-
cial Power Syst. Eur. Environ. Elect. Eng., Jun. 2017, pp. 1–6.

[13] G. Krempl et al., ‘‘Open challenges for data streammining research,’’ACM
SIGKDD Explorations Newslett., vol. 16, no. 1, pp. 1–10, 2014.

[14] M. Cruz, M. Bender, and H. Ombao, ‘‘A robust interrupted time series
model for analyzing complex health care intervention data,’’ Statist. Med.,
vol. 36, no. 29, pp. 4660–4676, 2017.

[15] G. Reikard, S. Haupt, and T. Jensen, ‘‘Forecasting ground-level irradiance
over short horizons: Time series, meteorological, and time-varying param-
eter models,’’ Renew. Energy, vol. 112, pp. 474–485, Nov. 2017.

[16] A. Vasebi, É. Poulin, and D. Hodouin, ‘‘Dynamic data reconciliation in
mineral and metallurgical plants,’’ Annu. Rev. Control, vol. 36, no. 2,
pp. 235–243, 2012.

[17] A. Rafiee and F. Behrouzshad, ‘‘Data reconciliation with application
to a natural gas processing plant,’’ J. Natural Gas Sci. Eng., vol. 31,
pp. 538–545, Apr. 2016.

64404 VOLUME 6, 2018



A. Khodabakhsh et al.: Multivariate Sensor Data Analysis for Oil Refineries and Multi-mode Identification

[18] S. Yin, X. Li, H. Gao, and O. Kaynak, ‘‘Data-based techniques focused on
modern industry: An overview,’’ IEEE Trans. Ind. Electron., vol. 62, no. 1,
pp. 657–667, Jan. 2015.

[19] Apache Hadoop Project. Accessed: Aug. 24, 2018. [Online]. Available:
http://hadoop.apache.org

[20] ESPER Espertech Inc. Event Stream Intelligence.
Accessed: Aug. 24, 2018. [Online]. Available: http://www.espertech.com

[21] C.-L. Yang et al., ‘‘Streaming data analysis framework for cyber-physical
system of metal machining processes,’’ in Proc. IEEE Ind. Cyber-Phys.
Syst. (ICPS), May 2018, pp. 546–551.

[22] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, and F. Herrera,
‘‘A survey on data preprocessing for data stream mining: Current status
and future directions,’’ Neurocomputing, vol. 239, pp. 39–57, May 2017.

[23] E. Olmezogullari and I. Ari, ‘‘Online association rule mining over fast
data,’’ in Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jun. 2013,
pp. 110–117.

[24] E. C. do Valle, R. de Araújo Kalid, A. R. Secchi, and A. Kiperstok,
‘‘Collection of benchmark test problems for data reconciliation and
gross error detection and identification,’’ Comput. Chem. Eng., vol. 111,
pp. 134–148, Mar. 2018.

[25] Z. Zhang, Y.-Y. Chuang, and J. Chen, ‘‘Methodology of data reconciliation
and parameter estimation for process systems with multi-operating condi-
tions,’’ Chemometrics Intell. Lab. Syst., vol. 137, pp. 110–119, Oct. 2014.

[26] Z. Zhang and J. Chen, ‘‘Simultaneous data reconciliation and gross error
detection for dynamic systems using particle filter and measurement test,’’
Comput. Chem. Eng., vol. 69, pp. 66–74, Oct. 2014.

[27] S. Guo, P. Liu, and Z. Li, ‘‘Data reconciliation for the overall ther-
mal system of a steam turbine power plant,’’ Appl. Energy, vol. 165,
pp. 1037–1051, Mar. 2016.

[28] B. Cai et al., ‘‘Multi-source information fusion based fault diagnosis
of ground-source heat pump using Bayesian network,’’ Appl. Energy,
vol. 114, pp. 1–9, Feb. 2014.

[29] G. Ruan, P. C. Hanson, H. A. Dugan, and B. Plale, ‘‘Mining lake time
series using symbolic representation,’’ Ecol. Inform., vol. 39, pp. 10–22,
May 2017.

[30] X. Jiang, P. Liu, and Z. Li, ‘‘Data reconciliation and gross error detec-
tion for operational data in power plants,’’ Energy, vol. 75, pp. 14–23,
Oct. 2014.

[31] W. Zhang, M. Hirzel, and D. Grove, ‘‘AQuA: Adaptive quality analyt-
ics,’’ in Proc. 10th ACM Int. Conf. Distrib. Event-Based Syst., 2016,
pp. 169–180.

[32] E. Lughofer, M. Pratama, and I. Skrjanc, ‘‘Incremental rule splitting in
generalized evolving fuzzy systems for autonomous drift compensation,’’
IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 1854–1865, Aug. 2017.

[33] Z. Zhu, G. Geng, and Q. Jiang, ‘‘Multi-scenario parameter estimation for
synchronous generation systems,’’ IEEE Trans. Power Syst., vol. 32, no. 3,
pp. 1851–1859, May 2017.

[34] A. Shaker and E. Lughofer, ‘‘Self-adaptive and local strategies for a smooth
treatment of drifts in data streams,’’ Evol. Syst., vol. 5, no. 4, pp. 239–257,
2014.

[35] R. R. Rajkumar, I. LEE, L. Sha, and J. Stankovic, ‘‘Cyber-physical sys-
tems: The next computing revolution,’’ in Proc. 47th Design Autom. Conf.,
2010, pp. 731–736.

[36] J. Lee, B. Bagheri, and H.-A. Kao, ‘‘A cyber-physical systems architec-
ture for industry 4.0-based manufacturing systems,’’ Manuf. Lett., vol. 3,
pp. 18–23, Jan. 2015.

[37] M. Wollschlaeger, T. Sauter, and J. Jasperneite, ‘‘The future of industrial
communication: Automation networks in the era of the Internet of Things
and industry 4.0,’’ IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27,
Mar. 2017.

[38] J. Wan, H. Cai, and K. Zhou, ‘‘Industrie 4.0: Enabling technologies,’’
in Proc. Int. Conf. Intell. Comput. Internet Things (ICIT), Jan. 2015,
pp. 135–140.

[39] Turkish Petroleum Refineries, Boiler Data. Accessed: Aug. 24, 2018.
[Online]. Available: https://www.openml.org/d/41170

[40] L. Zhang and X. Peng, ‘‘Time series estimation of gas sensor baseline drift
using ARMA and Kalman based models,’’ Sensor Rev., vol. 36, pp. 9–34,
Jan. 2016.

[41] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[42] L. Breiman, Classification and Regression Trees. Evanston, IL, USA:
Routledge, 2017.

[43] G. O. Campos et al., ‘‘On the evaluation of unsupervised outlier detection:
Measures, datasets, and an empirical study,’’ Data Mining Knowl. Discov-
ery, vol. 30, no. 4, pp. 891–927, 2016.

[44] A. Khodabakhsh, I. Ari, M. Bakir, and S. M. Alagoz, ‘‘Stream analytics
and adaptive windows for operational mode identification of time-varying
industrial systems,’’ in Proc. IEEE Int. Congr. Big Data (BigData Congr.),
Jul. 2018, pp. 242–246.

[45] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘‘DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,’’ ACM
Trans. Database Syst., vol. 42, no. 3, p. 19, 2017.

[46] A. Akbar et al., ‘‘Real-time probabilistic data fusion for large-scale IoT
applications,’’ IEEE Access, vol. 6, pp. 10015–10027, 2018.

[47] M. Längkvist, L. Karlsson, and A. Loutfi, ‘‘A review of unsupervised
feature learning and deep learning for time-series modeling,’’ Pattern
Recognit. Lett., vol. 42, pp. 11–24, Jun. 2014.

ATHAR KHODABAKHSH (S’15) received the
B.Sc. degree in software engineering from the
Computer and Electrical Engineering Department,
Islamic Azad University, Zanjan, Iran, in 2005.
She is currently purusing the Ph.D. degree with
the Computer Science Department, Özyeğin Uni-
versity, Istanbul, Turkey. She is also a Teaching
and Research Assistant at Özyeğin University. Her
fields of interest include data science, data mining,
cloud computing, and distributed systems.

ISMAİL ARİ received the Ph.D. degree from
the University of California Santa Cruz in 2004.
He was with HP Labs, Palo Alto, CA, USA, until
2009. From 2013 to 2018, he was the Deputy Gen-
eral Manager of Teknopark Istanbul and the Vice
President of TUBITAK (The Scientific and Tech-
nological Research Council of Turkey). He is cur-
rently an Assistant Professor with the Computer
Science Department, Özyeğin University. He has
publications and patents in the fields of big data,

cloud computing, and networked storage systems. He was a recipient of
several IBM Faculty Awards, the EU Marie Curie Award, the TUBITAK
Career Award, and the Rector’s Merit Award.

MUSTAFA BAKİR is currently pursuing the Ph.D.
degree with the Computer Science Department,
Gebze Technical University, Kocaeli, Turkey.
He is also a Manager with the Process Improve-
ment and Software Department, Tüpraş Refinery,
where he is responsible for the company’s digital
transformation.

ALİ OZER ERCAN (S’02–M’07–SM’15) received
the B.S. degree in electrical and electronics engi-
neering from Bilkent University, Ankara, Turkey,
in 2000, and the M.S. and Ph.D. degrees in
electrical engineering from Stanford University,
CA, USA, in 2002 and 2007, respectively. From
2007 to 2009, he was with the Berkeley Wire-
less Research Center, University of California at
Berkeley, Berkeley, CA, USA, for post-doctoral
studies. He joined Özyeğin University, Istanbul,

Turkey, in 2009, as an Assistant Professor. His research interests are in the
areas of signal and image processing, and wireless communication networks.
He was a recipient of the FP7 Marie Curie International Reintegration Grant
and the TUBITAKCareer (3501) Award. He served as the Publications Chair
of the IEEE 3DTV Conference (3DTV-CON) in 2011 and the Technical
Program Co-Chair and Publications Chair of the IEEE Signal Processing and
Communication Applications Conference in 2012.

VOLUME 6, 2018 64405


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	DESCRIPTION OF CYBER-PHYSICAL SYSTEMS IN OIL REFINERIES
	METHODOLOGY FOR DREDGE
	DATA VALIDATION AND GROSS ERROR DETECTION
	STEADY-STATE AND INSTANTANEOUS MASS BALANCE (IMB)
	CAPTURING SYSTEM MEMORY USING ARMA MODEL
	DREDGE

	GROSS ERROR CLASSIFICATION (GEC)
	SYSTEM OPERATIONAL STATE ANALYSIS IN REAL-TIME
	DBSCAN CLUSTERING


	EXPERIMENTAL RESULTS
	RESULTS FOR SYNTHETIC DATA
	RESULTS FOR REAL REFINERY DATA
	COMPUTATIONAL PERFORMANCE EVALUATION
	USING DBSCAN FOR MODE CHANGE DETECTION
	DISCUSSION: SENSOR ERROR OR SYSTEM ANOMALY

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	ATHAR KHODABAKHSH
	ISMAIL ARI
	MUSTAFA BAKIR
	ALI OZER ERCAN


