IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 23, 2018, accepted September 26, 2018, date of publication October 22, 2018,

date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2877296

Achieving Consistent Real-Time Latency at Scale
in a Commodity Virtual Machine Environment
Through Socket Outsourcing-Based

Network Stacks

OSCAR F. GARCIA™1, YASUSHI SHINJO', (Member, IEEE), AND CALTON PU"2, (Fellow, IEEE)

I Department of Computer Science, University of Tsukuba, Tsukuba 305-8573, Japan
2College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Corresponding author: Oscar F. Garcia (oscar@softlab.cs.tsukuba.ac.jp)

This work was supported by JSPS KAKENHI under Grants 16K12410 and 25540022.

ABSTRACT It is challenging to achieve a consistent real-time (RT) response time in commodity virtual
machine (VM) environments because they have longer and more complex network protocol stacks. This
paper analyzes such network stacks and proposes a method that achieves consistent latency in a Linux
KVM-based hosted environment. The analysis identifies a priority inversion in the interrupt-first host kernel
of vanilla Linux, and the proposed method addresses it by using the PREEMPT_RT patch. Subsequently,
the analysis identifies another priority inversion in softirq handling of the host kernel. The proposed
method addresses it by dividing softirq handling into RT and non-RT types. The analysis then identifies
the cache pollution problem by co-located non-RT servers and the latter priority inversion in a guest kernel.
The proposed method addresses them by socket outsourcing, in which a guest kernel delegates network
processing to the host kernel. The proposed method achieved consistent latency. Compared to the threaded
interrupt handling method, the proposed method reduced the standard deviation (SD) of the latencies of
a simple RT server by a factor of 6, achieving 5.6% higher throughput and 32% lower CPU utilization.
Compared to the exclusive CPU method, the proposed method reduced the SD by a factor of 2 and prevented
underutilization of the exclusive CPU. The proposed method was more scalable in terms of the number of
RT VMs. A four-CPU host was able to execute 40 RT VMs using the proposed method while maintaining

the throughputs of non-RT servers.

INDEX TERMS KVM, Linux, priority inversion, real-time latency, socket outsourcing.

I. INTRODUCTION

Web-facing applications with stringent quality-of-service
requirements (service level agreements, e.g., near-zero
latency), are being increasingly deployed in computing
clouds owing to the scalability of n-tier architectures and
virtual machine (VM) environments. However, the longer
execution and data flow paths in such environments also
introduce significant challenges to real-time (RT) appli-
cations (predictable latency requirements) owing to the
increased variance in network latency. Although advances in
network hardware (e.g., 100-Gb optical fiber and 5G wireless
connections) have reduced data transmission time, there is an
increasing impact on the execution time variance owing to
the lengthened (and increasingly complex) network protocol
stacks in virtualized environments.

End-to-end execution time variance in n-tier systems often
follows a negative exponential distribution with a long tail,
e.g., with the dominant majority of requests returning within
a few milliseconds, but with a small percentage taking a much
longer time (in the order of seconds). We acknowledge that
there are many speculated sources of long-tail latency [1] and
confirmed sources, such as the queueing effects caused by
millibottlenecks on resources that include CPUs, memory,
and I/O [2]-[4]. In this paper, we focus on the variances intro-
duced by the network protocol stacks, which are considerable
in commodity hosted VM environments such as Linux KVM.

When we run RT servers and non-RT servers together
in a hosted VM environment, we give higher priorities to
the threads of the RT servers. Nonetheless, non-RT servers
can interfere with RT servers and cause variances to the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 69961

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6865-4930
https://orcid.org/0000-0002-6616-8987

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

latter’s response times. This means that there exist priority
inversion problems in the message processing path from
interrupts to the RT servers. It is not trivial to find such
priority inversion problems in complex network stacks of
hosted VM environments.

We performed experiments and analyzed the message pro-
cessing path of RT and non-RT servers in vanilla (non-RT)
Linux and two production RT methods for Linux. We found
three major sources of variances. Two are priority inversion
problems during interrupt handling in the host operating sys-
tem (OS) and one is cache pollution by co-located non-RT
servers (Section II). Vanilla Linux has a priority inversion
problem in interrupt handling and executes interrupt handlers
first, prior to any high-priority processes including threads
of virtual machines (Section II-A). One production method
for Linux uses the PREEMPT_RT patch [5], which executes
interrupt handlers by threads with their own priorities and
addresses this priority inversion problem (Section II-B). We
call this method the threaded interrupt handling method.
Whereas threaded interrupt handling eliminates the first pri-
ority inversion problem, the second one in softirq handling
of the host kernel remains (Section II-C). The second pro-
duction method allocates an exclusive CPU to a group of
host RT threads. We call this method the exclusive CPU
method (Section II-D). Although the exclusive CPU method
removes the second priority inversion problem, it has two
disadvantages: low utilization of exclusive RT CPUs and
low throughput of co-located non-RT servers. Furthermore,
this method has the same cache pollution problem that the
threaded interrupt handling method has (Section II-E).

To solve these problems, we propose a new approach to
an RT network stack in a Linux KVM-based virtual machine
environment. We call our approach the “socket outsourc-
ing with partitioned RT softirq handling” method or the
outsourcing method for short. First, we address the priority
inversion problem in the interrupt-first host kernel using the
PREEMPT_RT patch (Section II-B). Next, we address the
priority inversion problem in the host’s softirq handling by
dividing softirq handling into RT and non-RT (Section III-A).
Finally, we mitigate the cache pollution problem and prevent
the priority inversion problem in a guest’s softirq handling by
extending socket outsourcing [6] (Section III-C).

The main contribution of the paper is an experimental
demonstration showing that RT network stacks are achiev-
able by using the outsourcing method, whose implementation
requires small modifications to Linux KVM, a commodity
OS-based VM environment. Compared to the threaded inter-
rupt handling method, the outsourcing method reduced the
standard deviation of the latencies of a simple RT server
by a factor of 6. At the same time, the outsourcing method
improved the non-RT throughput by up to 5.6% with 32%
lower CPU utilization. Compared to the exclusive CPU
method, the outsourcing method reduced the standard devi-
ation by a factor of 2 and avoided low utilization of the
exclusive RT CPU (Section I1V-B). Moreover, the outsourc-
ing method was effective for running two time-sensitive

69962

Host
Non-RT Non-RT RT Guest
Guest Guest
House-
[Heavy] [Heavy] keeping Critical RT
Receiver Receiver tasks l server
vCPU vCPU vCPU RT vCPU
VvNIC vNIC RT vNIC

‘ CPU ‘ ‘ CPU ‘
Non-RT network RT network

FIGURE 1. Running an RT server and co-located non-RT servers in a
virtual machine environment.

applications: a Voice-over-IP (VoIP) server and a key-value
store server (Section IV-G).

The outsourcing method was more scalable in terms of
the number of RT VMs. Our experimental results showed
that a four-CPU host was able to execute 40 RT VMs using
the outsourcing method while maintaining the throughputs of
non-RT servers.

This paper builds on of our research [7] and incorporates
the following updates:

1) Evaluation of scalability in the number of RT VMs.

2) Detailed analysis of message processing paths of an
RT server. This clarifies sources of latency and latency
variances.

3) Detailed analyses of message processing paths of a
non-RT server. This clarifies the interferences caused
by co-located non-RT servers.

4) Evaluation of the extended socket outsourcing by com-
paring with conventional socket outsourcing.

In addition, we have fixed some problems in priority param-
eters and performed all experiments again.

Il. FINDING CAUSES OF LATENCY VARIANCES IN
VANILLA LINUX AND TWO PRODUCTION RT METHODS

In this section, we illustrate the causes of latency variances in
vanilla Linux and two representative production RT methods.
We use a typical virtual machine environment that hosts two
types of servers (Figure 1):

o Critical RT server. Receives requests from clients occa-
sionally and sends response messages to the clients. It
requires short and consistent response times.

o Heavy Receiver. Receives messages persistently from
clients at the maximum speed and stresses the
receiver-side of the network stack. However, it does not
send response messages. A Heavy Receiver requires
high throughput.

In this figure, we run one of these servers in an individual

VM. Each VM has one or two vCPUs, which are implemented

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

by a host thread called vCPU thread. The VM of each Heavy
Receiver has a single vCPU thread with a normal priority. The
VM of the Critical RT server has two vCPUs, as in [8]. One
is a non-RT vCPU thread with a normal priority and executes
system tasks (e.g., housekeeping tasks) in the guest. The other
is an RT vCPU thread with a high RT priority,' and executes
the Critical RT server in the guest. We assume that a Critical
RT server requires a small amount of the CPU resources and
the Heavy Receivers use the rest of the CPU resources.

In Figure 1, the host is connected to the following two
networks:

o The RT network. The bandwidth and delay and are guar-
anteed as in [9]-[12]. The network interface card (NIC)
to this network is labeled as RT NIC.

o The non-RT network. This is a best-effort network.

In Figure 1, each VM has a vNIC thread that executes a
backend network driver of the VM. The host directs messages
from the RT network to the Critical RT server and those from
the non-RT network to either of the Heavy Receivers. The
vNIC thread of a Heavy Receiver runs with a normal priority,
whereas that of the Critical RT server runs with a high RT
priority.

A. THE PRIORITY INVERSION PROBLEM IN THE
INTERRUPT-FIRST HOST KERNEL OF VANILLA LINUX

In this subsection, we describe the priority inversion problem
in the interrupt handling of vanilla Linux. Figure 2a illus-
trates the interrupt handling of the RT and non-RT NIC in
vanilla Linux. Each NIC has two interrupt handlers: the hard
Interrupt Request (IRQ) handler and the softirqg handler. The
former executes the essential interrupt tasks while interrupts
from the device are disabled. In contrast, the latter executes
the rest of the interrupt tasks, including heavy TCP and
bridge processing, typically after enabling interrupts. Drivers
of high-performance NICs can use the polling mode [13].
The softirq handler of such a driver drains packets from a
NIC while interrupts from the NIC are disabled. After that,
the driver enables interrupts and hands control over to the
upper layers.

A device driver can create multiple hard IRQ and softirq
handlers for receiving multiple messages in parallel. For
example, the device driver of the Intel x520 NIC creates
multiple hard IRQ and softirq handlers (up to 64) for multiple
CPU cores [14]. In Figure 2a, each device driver in the host
OS has two hard IRQ and two softirq instances for the two
physical CPUs. On the other hand, each device driver in a
guest OS is a paravirtual driver and creates a single hard IRQ
and a softirq handler.

A NIC injects IRQs into arbitrary CPUs by default. In
Figure 2a, when a CPU receives an IRQ from a NIC in the
host OS, the CPU suspends the current running process and
executes the hard IRQ handler that is bound to the CPU.
Each CPU has its own instance of the softirq mechanism

! The Linux kernel executes the processes with a high RT priority in

preference to the processes with a normal priority. The processes with a
normal priority are scheduled by the Completely Fair Scheduler.

VOLUME 6, 2018

with per-CPU variables, and multiple NIC drivers share these
instances. The CPU receives the IRQ from the NIC and
executes both the hard IRQ and the softirq handler for cache
affinity. This is implemented through the poll_list, which
is a per-CPU variable in the softirq mechanism and con-
tains softirq handlers with interrupt tasks. The hard IRQ
handler of a NIC inserts the RT softirq handler into the
poll_list of the current CPU. After completing the hard IRQ
handler, the CPU enters its instance of the softirq mech-
anism. The CPU acquires the lock of the instance called
softirq_lock, executes each pending softirq handler in the
poll_list, and releases the softirq_lock. In a guest OS of
Figure 2a, on the other hand, each VM has a single vNIC with
a hard IRQ and a softirq handler. The vNIC of the Critical RT
server injects virtual interrupts into the RT vCPU, and this
vCPU executes the hard IRQ and softirq handlers in the RT
guest OS.

This interrupt handling has a priority inversion problem.
That is, the kernel of vanilla Linux executes interrupt handlers
first, prior to user processes. In Figure 2a, for instance, while
the host kernel is executing the RT vCPU thread with a high
priority, the kernel can execute the hard IRQ and softirq
handlers of a non-RT NIC. We address this priority inversion
problem in this paper.

This interrupt handling mechanism increases the latency
variance of the RT server. On the other hand, this mechanism
has an advantage in that it can yield high CPU utilization
and high throughput because all CPUs execute any vCPU and
VvNIC threads.

In a typical hosted VM environment, a network message is
handled by both the host kernel and a guest kernel. This often
causes extra message copying. In Figure 2a, a vNIC thread of
the host kernel and a guest kernel perform message copying.
Section II-E will discuss this copying problem.

B. THREADED INTERRUPT HANDLING METHOD

To address the priority inversion problem discussed in
Section II-A, a production method uses the PREEMPT_RT
patch [5]. We call this method the threaded interrupt handling
method. Applying the PREEMPT_RT patch transforms the
kernel into a more preemptible one because of the following
characteristics:

o Interrupt handlers are executed by threads (interrupt
handler threads). When a CPU receives an interrupt,
the CPU wakes an interrupt thread, which executes the
corresponding hard IRQ and softirq handlers.

o The patch translates spin locks into mutexes that imple-
ment a priority inheritance protocol.

Figure 2b illustrates interrupt handling in the threaded
interrupt handling method. Because this host has two physical
CPUs, the driver of each NIC creates two interrupt handler
threads for the two CPUs. Each interrupt handler thread is
bound to one CPU.

This method eliminates the priority inversion problem in
Section II-A as follows. Each interrupt handler thread exe-
cutes the hard IRQ and softirq handlers with its own priority.

69963

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

Host
Non-RT Non-RT RT Guest
Guest Guest House- _
[Heavy] [Heavy j keeping Critical RT
Receiver Receiver tasks server
[softirgm. | [_soffirgm. | [softirq m. |[softirqm. |
| polllist | [poll_list || pol_list || poll_list |
¥ ¥
‘ softirq H. ‘ ‘ softirq H. ‘ RT softirq H.
|HardRQH. | | HardIRQH. |
vCPU vCPU vCPU RT vCPU
0 % Virtual interrupts _—
vNIC vNIC RT vNIC

softirg mechanism

poll_list

softirg mechanism

poll_list

Host
Non-RT Non-RT RT Guest
Guest Guest House- _
[Heavy j [Heavy] keeping Critical RT
Receiver Receiver tasks server
[_softrgm. | [softirgm.] [softirgm.][softirgm.]
| poll_list | [polllist || poll_list || polllist |
¥ ¥
‘ softirq H. ‘ ‘ softirq H. ‘ RT softirq H.
| HardIRQH. | | HardIRQH. |
vCPU vCPU vCPU RT vCPU
1 t —
vNIC vNIC RT vNIC

softirg mechanism

poll_list

softirg mechanism

poll_list

m softirq H. RT softirq H. | RT softirq H.
HardIRQ H. HardIRQ H. RT HardIRQ H. RT HardIRQ H.

CPU
c - Interrupts

m softirq H. RT softirq H. | RT softirq H.
HardIRQ H. HardIRQ H. RT HardIRQ H. RT HardIRQ H.

[Int. H.Thread | [Int. H.Thread | [RT Int. H. Thread [RT Int. H. Thread

CPU

(b)
Host
Non-RT Non-RT RT Guest
Guest Guest House- .
[Heavy j [Heavy] keeping Critical RT
Receiver Receiver tasks server

vCPU vCPU vCPU RT vCPU

(a)
Host
Non-RT Non-RT RT Guest
Guest Guest
House- —

[Heav j [Heavy j keeping Critical RT
Receiver Receiver tasks server
softirg m. softirg m. [softrgm. | [softrgm.]
poll_list poll_list | | polllist | | polllist]

[2 [2

‘ softirq H. ‘ ‘ softirq H. ‘ RT softirq H.

| HardIRQH. || HardIRQH. |

(VCPU) [vCPU | [VvCPU RT vCPU

A
\ 1)
C_WNIC) (WwNIC RT vNIC
softirg mechanism softirg mechanism
poll_list poll_list
RT softirq H.
RT HardIRQ H.
[Int. H. Thread | RT Int. H. Thread
(©)

l:| Module

softirg mechanism

rt_poll_list
(Non-RT) poll_list

softirg mechanism
rt_poll_list
(Non-RT) poll_list

softirg H. RT softirg H.| RT softirq H.

HardIRQ H. HardIRQ H. RT HardIRQ H. RT HardIRQ H.

[Int. H. Thread | | Int. H.Thread | [RT Int. H. Thread RT Int. H. Thread

CPU

(d)

C) Thread

FIGURE 2. Interrupt handling by vanilla Linux and the RT methods. (a) Vanilla Linux. (b) Threaded interrupt handling. (c) Exclusive CPU.
(d) Outsourcing.

In Figure 2b, for example, the interrupt handler thread of the
non-RT NIC has a normal priority and does not preempt the
threads of the RT VM. In addition, because all CPUs execute

69964

any vCPU and vNIC threads as in vanilla Linux, this method
can also produce high CPU utilization and high throughput,
as vanilla Linux does.

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

C. THE PRIORITY INVERSION IN THE SOFTIRQ
MECHANISM OF LINUX
The threaded interrupt handling method eliminates the pri-
ority inversion problem discussed in Section II-A. However,
another type of priority inversion problem remains in the
softirq handling of Linux. We have found this through ana-
lyzing the message processing path from interrupts to the RT
servers using KernelShark [15].2

Figure 3 shows a trace of interrupt handling using the
threaded interrupt handling method. As shown in this figure,
while the CPU was executing a user process, a non-RT NIC
injected an IRQ to the CPU. Then, the CPU woke the interrupt
handler thread of the non-RT NIC driver, and this thread
executed the non-RT hard IRQ handler. The interrupt handler
thread of the non-RT driver placed the non-RT softirq handler
into the CPU’s poll_list.

RT vNIC
thread

RT interrupt
handler thread

Non-RT interrupt
handler thread

.
Time
IRQ from IRQ from

non-RT NIC RT NIC

[]non-RT hard IRQ handler
[l non-RT softirg handler

[_]RT hard IRQ handler
IRT softirqg handler

FIGURE 3. Priority inversion in the softirq handling in the host OS.

Next, the interrupt handler thread of the non-RT driver
entered the softirq mechanism of the CPU. The thread of
the non-RT driver acquired the softirq_lock of the CPU and
executed the non-RT softirq handler.

In Figure 3, while the CPU was executing the non-RT
softirq handler, an RT NIC injected an IRQ to the CPU. The
CPU preempted the interrupt handler of the non-RT driver
and woke the interrupt handler thread of the RT NIC driver.
Because the interrupt handler thread of the RT NIC driver
had a higher priority than that of the non-RT driver, the CPU
executed the former thread. This thread executed the RT hard
IRQ handler, which inserted the RT softirq handler into the
poll_list of the CPU.

Next, the interrupt handler thread of the RT NIC driver
entered the softirq mechanism of the CPU. This thread
attempted to acquire the softirq_lock. However, it was already
locked by the non-RT interrupt handler thread. Therefore,
the CPU suspended the interrupt handler thread of the RT NIC
driver and executed the interrupt handler thread of the non-RT
NIC driver. This thread then executed the non-RT softirq
handler. At this time, this thread executed the non-RT softirq
handler with a high priority based on the priority inheritance
protocol. The interrupt handler thread of the RT NIC driver

2 Unlike a hardware monitor in Section IV-A or lightweight probes in
Section IV-D, these results included large problem effects.

VOLUME 6, 2018

with a higher priority had to wait until the non-RT thread
with a lower priority finished. This indicates that there was
a priority inversion.

Next, in Figure 3, the non-RT softirq handler exceeded the
execution quota limit in the number of iterations. Therefore,
the interrupt handler thread of the non-RT driver placed the
non-RT softirq handler at the end of the poll_list, released
the softirq_lock, and went to sleep. Because the softirq_lock
was released, the interrupt handler thread of the RT NIC
driver became executable and the CPU executed it. The RT
NIC driver thread acquired the softirq_lock and executed the
RT softirq handler. This handler processed network messages
from the RT NIC, placed them in a queue, and then woke
the RT vNIC thread. Next, the RT interrupt handler thread
obtained the non-RT softirq handler from the poll_list and
executed it with high priority. This means that there was a
virtual priority inversion because the RT vNIC thread had to
wait. Finally, the interrupt handler thread finished the non-RT
softirq handler, released the softirq_lock, and yielded the
CPU to the vNIC thread.

D. EXCLUSIVE CPU METHOD

Section II-C described the priority inversion in the softirq
mechanism of Linux. A popular production technique elim-
inates this by allocating an exclusive CPU to a group of RT
threads in commodity hosted environments [8], [16], [17]. In
this paper, we call this technique the exclusive CPU method.

Figure 2b illustrates interrupt handling in the exclusive
CPU method. In this method, we allocate an exclusive CPU
(labeled as RT CPU) to a group of threads that execute the
tasks of the Critical RT server. The driver of the RT NIC has a
single interrupt thread, hard IRQ handler, and softirq handler.
The RT NIC injects interrupts only to the RT CPU. The RT
CPU executes this interrupt thread, the RT vNIC thread, and
the RT vCPU in the host.

On the other hand, the driver of the non-RT NIC has its
own set of a single interrupt thread, hard IRQ handler, and
softirq handler. These are shared by the VMs of the two
Heavy Receivers. The non-RT NIC injects interrupts only to
the non-RT CPU. This means that interrupt handling of the
non-RT NIC driver never disturbs that of the RT NIC driver.
Therefore, there is no priority inversion problem as discussed
in Section II-C in the exclusive CPU method.

Although this method can achieve a consistently low
latency, it has a drawback. Because RT CPUs do not help
in the execution of non-RT threads, this method yields lower
CPU utilization.

E. CACHE POLLUTION BY CO-LOCATED NON-RT SERVERS
When we run RT servers and non-RT servers together in a
virtual machine environment, as shown in Figure 1, we can
control the allocation of CPU (cores) using priorities of
threads and CPU isolation. On the other hand, it is not triv-
ial to control the Last Level Cache (LLC) without recent
advanced hardware support, such as Intel’s Cache Allocation
Technology (CAT) [18] and ARM’s Cache Lockdown [19].

69965

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

For example, Intel Core i7 does not have such capability.
In such an environment, co-located non-RT servers pollute
the LLC and interfere with RT servers. In Figure 2b, for
example, the Heavy Receivers are receiving a large number
of messages persistently from clients. In a regular hosted
VM environment, this causes same-message copying in both
the vNIC threads and guest OSs. This duplicated copying pol-
lutes the LLC, which causes latency variance in the Critical
RT server.

It is worth mentioning that not only the threaded interrupt
handling method but also the exclusive CPU method has this
problem. We cannot dedicate a partition of LLC to RT servers
without advanced hardware support. In the next section,
we propose a software-based method for mitigating this LLC
pollution problem. This method works in commodity hosted
VM environments without requiring such advanced hardware
support.

Ill. OUTSOURCING METHOD

In Section II-B and Section II-D, we have described two
production RT methods, namely, the threaded interrupt han-
dling method and the exclusive CPU method. In this section,
we describe our proposed method, the ‘““socket outsourcing
with partitioned RT softirq handling” method or the out-
sourcing method for short.

Figure 2d shows the interrupt handling of the outsourc-
ing method. Similar to the threaded interrupt handling
method, this method avoids the priority inversion problem
in the interrupt-first host kernel, described in Section II-A,
by using the PREEMPT_RT patch and assigning high prior-
ities to RT threads. Second, this method avoids the priority
inversion problem in the host’s softirq handling, described
in Section II-C, by dividing softirq handling into RT and
non-RT types (Section III-A). Lastly, this method mitigates
the LLC pollution problem described in Section II-E and
avoids the priority inversion problem in a guest’s softirq
handling by extending conventional socket outsourcing [6]
(Section III-C).

A. DIVIDING SOFTIRQ HANDLING INTO RT AND

NON-RT TYPES

The outsourcing method divides the poll_list of the softirq
mechanism into the following two types (Figure 2d).

o (non-RT) poll_list: The poll_list for non-RT softirq

handlers.

o rt_poll_list: The poll_list for RT softirq handlers.

Similarly, we divide the softirq_lock into two locks:
(non-RT) softirq_lock and rt_softirg_lock.

Figure 4 shows a KernelShark trace of interrupt handling
using the outsourcing method. As in Figure 3 in Section II-C,
this CPU received two IRQs. The first was from the non-RT
NIC and the second was from the RT NIC.

First, the CPU performed typical functions until the IRQ
from the RT NIC arrived. The CPU woke the interrupt handler
thread of the non-RT NIC driver, and this thread executed the
non-RT hard IRQ handler. The interrupt handler thread of the

69966

RT-vCPU
thread

RT interrupt
handler thread — ‘

Non-RT interrupt
handler thread

Time

IRQ from IRQ from
non-RT NIC RT NIC

[[Jnon-RT hard IRQ handler
[l non-RT softirg handler

[JRT hard IRQ handler
Rt softirg handler

FIGURE 4. Separation of RT softirq handling from non-RT softirq handling.

non-RT driver inserted the non-RT softirq handler into the
CPU’s non-RT poll_list.

Next, the interrupt handler thread of the non-RT driver
entered the softirq mechanism of the CPU. The thread of the
non-RT driver acquired the non-RT softirq_lock of the CPU
and executed the non-RT softirq handler.

In Figure 4, while the CPU was executing the non-RT
softirq handler, an RT NIC injected an IRQ into the CPU. The
CPU preempted the interrupt handler of the non-RT driver
and woke the interrupt handler thread of the RT NIC driver.
Because the interrupt handler thread of the RT NIC driver
had a higher priority than that of the non-RT driver, the CPU
executed the former thread. This thread executed the RT hard
IRQ handler, which inserted the RT softirq handler into the
rt_poll_list instead of the non-RT poll_list.

Next, the interrupt handler thread of the RT NIC driver
entered the softirq mechanism of the CPU. Unlike in
Figure 3, this thread acquired the rt_softirq_lock instead of
the softirq_lock and executed the RT softirq handler. In con-
trast to the threaded interrupt handling method in Figure 3,
this thread executed the RT softirq handler but did not
execute the non-RT softirq handler because the rt_poll_list
only contained the RT softirq handler. This handler pro-
cessed network messages from the RT NIC, placed them in a
queue, and then woke the RT vNIC thread. Finally, the inter-
rupt handler thread finished the softirq handler, released the
rt_softirq_lock, and the CPU became available to the RT
vCPU thread. In contrast to Figure 3, Figure 4 indicates no
priority inversion in the softirq handling.

We have implemented this softirq mechanism in Linux.
First, we have added the rt_poll_list and rt_softirq_lock to
softnet_data, which is a per-CPU variable in the softirq mech-
anism. Next, we have copied the base functions of poll_list
and softirq_lock, modified them slightly, and obtained
those for RT. For example, we have copied the net_rx_
action () function that processes the softirq handlers in
the poll_list. We have modified the function to use the
rt_poll_list instead of poll_list and obtained rt_net_rx_
action (). Finally, we have changed the function napi__
schedule_irqgoff (), which is used by hard IRQ han-
dlers to place corresponding softirq handlers in the poll_list.

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

We have modified this function to use either the rt_poll_list
or non-RT poll_list according to the priority of the calling
interrupt handler thread. Because we did not change the
interface of napi_schedule_irgoff (), we can reuse
the existing device drivers of NICs without any changes.® We
have added the sysctl parameter net.core.rtnet_prio
for choosing either the rt_poll_list or the non-RT poll_list.
For example, if a system administrator sets the parameter with
the command sysctl -w net.core.rtnet_prio=47,
interrupt handler threads with a priority higher or equal to
47 use the rt_poll_list in napi_schedule_irgoff ().

These modifications required changing 150 lines of code
and they are independent of the virtual machine monitor,
Linux KVM. They can also reduce the latency of RT servers
in non-virtualized environments and container-based virtual
environments.

B. CONVENTIONAL SOCKET OUTSOURCING

To overcome the cache pollution problem and the pri-
ority inversion problem in a guest, we extend socket
outsourcing [6]. Socket outsourcing is a technique used to
realize fast networking, similar to paravirtualization. How-
ever, it differs in that socket outsourcing delegates high-level
operations from a guest kernel to the host kernel while par-
avirtualization performs driver-level operations. For example,
when a guest user process issues the recvfrom () system
call, the guest kernel delegates its processing to the host. The
network stack of the host receives messages from a NIC and
passes them to the guest process directly.

The implementation of socket outsourcing uses Virtual
Machine Remote Procedure Call (VMRPC) [6] as a com-
munication mechanism between a guest kernel and the host
kernel in a hosted VM environment. In VMRPC, a client
in a guest kernel sends request messages to a server in
the host kernel, and the server in the host kernel sends
back the response messages to the client in the guest ker-
nel. These request and response messages of VMRPC are
transferred using the shared memory between guest and
host.

Similar to execution of system calls and regular Remote
Procedure Calls (RPCs) in distributed systems, VMRPC
blocks clients. This means that a straightforward invocation
stops the entire guest process of a client until the server of the
host sends back a response message. To address this prob-
lem, conventional socket outsourcing makes use of virtual
interrupts. For example, when a client in a guest performs a
VMRPC to the procedure recvfrom () in the host server,
the procedure should not block. Even though there is no
message, this procedure returns immediately. The guest client
puts the current process into sleep mode and changes the
context to another process. When a message arrives at the
host, the host’s server sends a virtual interrupt into the guest.
The interrupt handler of the guest wakes the receiving process

3In Section 1V, we used the device driver of the Intel x520 NIC. We did
not change any code of the device driver.

VOLUME 6, 2018

and the process calls the procedure recvfrom () in the host
again.

The current production RT methods, i.e., the threaded
interrupt handling method and the exclusive CPU method,
perform message copying two times. One occurs from the
host kernel to a guest kernel, and the other occurs from
the guest kernel to a guest user process. In contrast, socket
outsourcing requires message copying only once, from the
host kernel to a guest user process. When a guest process
invokes receive and send procedures (e.g. recvfrom () and
sendto ()), the host translates the address of the buffer in
the guest user process to that in the host kernel. The host
performs these socket procedures in the same way as for
regular user processes.

We have realized socket outsourcing in various guest oper-
ating systems, including Windows and NetBSD [6]. We used
socket outsourcing for improving security through natural
diversity, as well. We can run Internet Information Ser-
vices (IIS) of a Windows guest using the network stack of
the Linux host. In this case, we can defend against attacking
the network stack of Windows.

C. RT SOCKET OUTSOURCING

Conventional socket outsourcing can face the priority inver-
sion problem in the softirq mechanism as described in
Section II-C because it makes use of virtual interrupts as
described in Section III-B. We avoid this problem by remov-
ing interrupt handling from a guest OS for receiving RT mes-
sages. We call this new mechanism RT socket outsourcing.

We implement RT socket outsourcing by extending the idle
process. In Linux, the idle process is a special kernel thread,
and the scheduler executes the idle process when there is no
runnable process in the ready queue. The idle process usually
executes the halt instruction, and this stops the physical CPU
if this is executed in the host. The CPU will resume when the
CPU receives an interrupt. In RT socket outsourcing, the idle
process in the guest OS also executes the halt instruction
and this places the vCPU thread into sleep mode in the
host.

When the host receives a new message, the host vCPU
thread wakes. This vCPU thread enters the virtual machine
and executes the next instruction of the halt instruction in
the idle process. The extended idle process in RT socket out-
sourcing reads an event queue and the states of the sockets in
the shared memory. Next, the extended idle process makes the
receiving process runnable and returns to the scheduler. The
scheduler finds the receiving process immediately without
interrupt handling and executes the process.

This mechanism has an advantage in that the receiving
process does not disturb a running RT server. In other words,
the guest kernel handles messages for an RT server in a first-
in-first-out (FIFO) manner. When the RT server is process-
ing a previous request message and a new message arrives,
the guest kernel does not handle the new message immedi-
ately. The guest kernel handles it when the RT server com-
pletes processing the previous message and issues a system

69967

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

call to receive a new message or if the guest kernel becomes
idle.

We have decided to modify the idle process because of
the following reasons. The idle process is a safe point that
watches not only the events for sockets but also the regular
interrupts. We did not have to modify the existing interrupt
handling process on a guest OS. For example, a guest OS can
handle timer interrupts and inter-processor interrupts in the
idle process. Section IV-C compares this RT socket outsourc-
ing with conventional interrupt-based socket outsourcing.

We implemented RT socket outsourcing mainly as loadable
kernel modules. The kernel module for a guest overrides
the functions of the socket layer. Overridden functions send
requests to the server in the host using VMRPCs. The kernel
module for the host is the server that handles any requests
from the guest. We also extended the idle process in the guest.
This idle process calls a function that examines the event
queue and the states of the sockets in the shared memory.

IV. EXPERIMENTAL EVALUATION

In Section III, we have described our proposed outsourcing
method. In this section, we evaluate the outsourcing method
by comparing it with the two production RT methods. First,
we performed experiments using a simple RT server to show
that the outsourcing method was able to reduce the latency
and latency variances by eliminating the causes of the prob-
lems discussed in Section II. We also analyzed the execution
paths of the outsourcing method and other production RT
methods. Next, we ran a Voice-over-IP (VoIP) server and
a key-value store server as an RT server. Finally, we eval-
uated scalability of the outsourcing method in the number
of RT VMs.

A. EXPERIMENTAL SETUP FOR RUNNING A SIMPLE

RT SERVER

We have performed experiments using a simple RT server
in the experimental environment shown in Figure 5. First,
we ran netperf [20] as the Critical RT server. We have slightly

Host
Non-RT Non-RT RT Guest
Guest Guest
House-

[Heavy] [Heavy] keeping Critical RT
Receiver Receiver tasks server
vCPU vCPU vCPU RT vCPU

NIC ‘ ‘ NIC ‘ ‘ RT NIC ‘

Packet
Monitor
Non-RT network Non-RT network RT network

Heavy Critical RT
Sender (client) Client

Remote

Heavy
Sender (client) machines

FIGURE 5. The experimental environment.

69968

modified the client of netperf, which sent requests at random
inter-arrival times ranging from 1 to 10 ms using UDP. We
used iperf [21] in server mode as a Heavy Receiver. A Heavy
Sender was the client of iperf and it transmitted messages
persistently using TCP at the maximum speed.

We emphasize that varying inter-arrival times caused a
similar impact to the LLC as varying the non-RT workload.
If the heavy sender sends messages at a fixed rate, its impact
to the LLC is unchanged. Such a fixed impact can lead
to steady results. We should avoid this (by using random
intervals) because we measure the latency variance using
these RT methods. We could vary the non-RT workload by
changing the client of iperf. However, this was not easy.
Therefore, we decided to mimic varying the non-RT workload
throughput by varying inter-arrival times of the RT client,
which was easy to do. When a client of the Critical RT server
sent request messages at a shorter inter-arrival time, the LLC
retained more contents of the Critical RT server. This means
that the load of the non-RT Heavy Receiver was lower. When
the client sent messages at a longer inter-arrival time, the LLC
retained fewer contents of the Critical RT server. This means
that the load of the non-RT Heavy Receiver was higher.

As shown in Figure 5, the host of the VMs was con-
nected with three networks. One was an RT network and
the other two were non-RT networks. All the networks con-
sisted of 10GBASE-LR Ethernets over optical fibers. We
used Intel x520 Ethernet converged network adapters as the
NICs. We connected the VM host to two non-RT network
links to use up the CPU resources of the host. We performed
a preparatory experiment and found that using a single link
was not sufficient to use up the CPU resources because
the bottleneck was the network link. The maximum transfer
unit (MTU) of these networks was set to the default value,
1500 bytes.

We measured the latency, e.g., the response times of the
Critical RT server at the RT network, with a hardware monitor
(an Endace DAG 10x2-S card [22]). We chose to use the
hardware monitor because it had no probe effect. The RT net-
work in Figure 5 consisted of two optical links. Each link had
an optical splitter that divides signals into two destinations.
One destination was a network peer and the other destination
was the hardware monitor. The hardware monitor took both
the request and the response packets, timestamped them at a
resolution of 4 ns, and saved them into a file. Note that the
obtained results included delays in the NIC of the server, but
did not include any delays on the client side.

In the experiments, we used the physical machine
in Table 1. The CPUs were Intel Core i7. We activated two
of four cores of the VM host to measure response times for a
single RT server. In the exclusive CPU method, we allocated
a CPU as the non-RT CPU and another CPU as the RT CPU.
This RT CPU ran a group of RT threads as discussed in
Section II-D. In other methods including vanilla Linux, both
CPUs ran any threads. We activated all the cores of the other
machines. The OSs running on the physical machine were
Linux 4.1 except for the packet monitor. The machine for the

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

=21 =21
S)
S18 S18
(o] o
|9} 9]
?15 2150-
) O
§12 §12 :
29 o 9
26 26
@© ©
- -

3 3

0 10 20 30 0 10 20 30
Elapsed time (seconds) Elapsed time (seconds)
(a) (b)

m m
° T15
o o
9 312
%) %)
o o
S g 90
S S
- — 60
> >
2 2 30
3 g 30F
8 8
0 10 20 30 0 10 20 30
Elapsed time (seconds) Elapsed time (seconds)
(© (d)

FIGURE 6. Distribution of the Critical RT server response times. (a) Vanilla Linux. (b) Threaded interrupt handling. (c) Exclusive CPU. (d) Outsourcing.

TABLE 1. Specifications of the machines and their active cores in the
experiments.

Machine CPU / Cache (MB) Active | OS

cores
VM host Intel Core i17-6700K / 8 2 Linux 4.1
Critical RT | Intel Core i7-6700K / 8 4 Linux 4.1
client
Heavy Intel Core 17-3820/ 10 4 Linux 4.1
Sender
(client) 1
Heavy Intel Core 17-3820/ 10 4 Linux 4.1
Sender
(client) 2
Packet Intel Core 17-3820/ 10 4 Linux 3.16
monitor

packet monitor ran on Linux 3.16. The version of all guest
OSs was Linux 4.1.

To eliminate fluctuations in the hardware, we turned off the
following hardware features: Hyper-Threading, TurboBoost,
and C-States.* Further, we used the CONFIG_NO_HZ_FULL
option in both the host and the guest kernel of the Critical RT
server. This reduced the number of clock ticks in the physical
CPU and vCPU.

In these experiments, we set high priorities to the RT
threads and normal priorities to non-RT threads. Table 2
presents the scheduling policies and priorities of these
threads. The threads with the FIFO scheduling policy have
higher priorities than threads with the normal scheduling pol-
icy. Within the FIFO scheduling policy, a larger priority value
indicates a higher priority. As described in Section III-A,
we set sysctl —w net.core.rtnet_prio=47 and
made the RT IRQ handler use the rt_poll_list.

B. EXPERIMENTAL RESULTS USING A SIMPLE RT SERVER
We ran the simple RT server as in Section IV-A for 30 s using
the following methods:

4C-states are CPU modes for saving power. C-state transitions degrade the
performance of RT servers. We turned off C-states in the BIOS and in the
Linux kernel using the parameters intel_idle.max_cstate=0 and
idle=poll.

VOLUME 6, 2018

TABLE 2. Scheduling policy and priority of the threads in the host OS.

Threads Scheduling policy and priority
RT interrupt handler thread FIFO(50)

RT vNIC thread FIFO(48)

RT vCPU thread FIFO(47)

Non-RT interrupt handler threads | Normal

Non-RT vNIC threads Normal

Non-RT vCPU thread Normal

e (non-RT) Vanilla Linux.

o The threaded interrupt handling method.

o The exclusive CPU method.

o The outsourcing method.

We obtained the latencies, the response times of the
RT server shown in Figure 6, with the hardware moni-
tor as described in Section IV-A. Table 3 summarizes the
statistical values (the mean, 99th percentile, and standard
deviation (SD)). At the same time, we measured the total
throughputs of the Heavy Receivers and the CPU utilization
of the VM host. These results are shown in Figure 7 and
Figure 8, respectively.

TABLE 3. Statistical values of the Critical RT server response times
(microseconds).

ggth Standard
Method Mean | percentile deviation
(non-RT) Vanilla Linux 92.5 225.0 29.2
Threaded interrupt 100.8 202.9 29.0
handling
Exclusive CPU 70.5 96.0 11.8
Outsourcing 329 46.8 4.3

Vanilla Linux and the threaded interrupt handling method
had high latency variance, as shown in Figure 6a and
Figure 6b. In terms of the ggth percentile, the threaded inter-
rupt handling method was better than vanilla Linux, as shown
in Table 3. The total throughputs of the Heavy Receivers
were high, as shown in Figure 7. They were 18.8 Gbps and
17.8 Gbps with the two 10-Gbps links. Figure 8 illustrates
that vanilla Linux had spare CPU resources for running all
the servers (the single Critical RT server and the two Heavy
Receivers). The threaded interrupt handling method required

69969

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

N
o

-
[¢)]

[$)]

Total throughput (Gbit/s)
>

Vanilla Threaded Exclusive .
Linux interrupt cpy Outsourcing
handling

FIGURE 7. Total throughput of Heavy Receiver.

100
& 75
c
2
E 50
=
2 25
(&)
O Vanila Threaded ~Exclusive Outsourcin
Linux interrupt CPU 9
handling
[lcpuo [Jepui

FIGURE 8. Achievable CPU utilization.

more CPU resources than vanilla Linux owing to the overhead
produced by thread context switching.

The exclusive CPU method reduced the latency variance,
as shown in Figure 6¢ compared with the previous two meth-
ods. The 99™ percentile and standard deviation were around
half of the previous two methods. However, the CPU utiliza-
tion of the exclusive RT CPU was low, as shown in Figure 8.
This bounded the total throughput to 10.4 Gbps.

The outsourcing method produced the lowest latency
and latency variance among these methods, as shown
in Figure 6d and Table 3. The mean, goth percentile, and
standard deviation were less than half of the exclusive CPU
method. Furthermore, the outsourcing method produced the

same high throughput of 18.8 Gbps with a lower CPU utiliza-
tion than vanilla Linux.

In summary, compared to the threaded interrupt handling
method, the outsourcing method reduced the standard devi-
ation of the latencies of a simple RT server by a factor of 6
with 5.6% higher throughput and 32% lower CPU utilization.
Compared to the exclusive CPU method, the outsourcing
method had a lower standard deviation and a higher total
throughput (by a factor of 2), and avoided low utilization of
the RT CPU.

C. EFFECTS OF INDIVIDUAL TECHNIQUES
The outsourcing method comprises two techniques: adding
the rt_poll_list (Section III-A) and RT socket outsourcing
(Section III-C). We performed the same experiments as
in Section IV-A by enabling one of two techniques at a
time. Figure 9a shows the result using both techniques, and
Figures 9b and 9c show the results using one of the two
techniques without the other. When we enabled only one
of the two techniques, we obtained larger variances of the
response times than those obtained using both techniques.
In Section III-C, we described how to extend the idle pro-
cess to eliminate virtual interrupt handling from a guest OS.
We compared these two mechanisms using the same experi-
ments as in Section I'V-A. Figure 9a and Figure 9d show the
results. Using the extended idle process (Figure 9a) showed
better real-time characteristics than using virtual interrupts
(Figure 94d).

D. PROCESSING PATH ANALYSIS WITH

LIGHTWEIGHT PROBES

We analyzed the processing path of request messages from
the RT NIC to the Critical RT server and their corresponding
response messages from the Critical RT server to the RT NIC
in detail using lightweight probes.

1) MEASURING LATENCIES WITH LIGHTWEIGHT PROBES

We have implemented lightweight probes for measuring
latencies of components in hosted VM environments. Every
lightweight probe is identified by a unique number. When a
lightweight probe is executed, the probe takes a timestamp

9150 21501 %15 %150

5 § 5 5

812 ©120 912 g120

8 2 g0, g 8

5° 5° 5% 5%

Ee E 60 £ 60" £ 60,

> i > > >

2 3 2 30 2 3 2 30

2 3z L 3

© T 0 | ! © : |] " .

- 10 20 30 - 10 20 30 - 10 20 30 - 10 20 30
Elapsed time (seconds) Elapsed time (seconds) Elapsed time (seconds) Elapsed time (seconds)

(@ (b) © ()

FIGURE 9. Distribution of the Critical RT server response times with the outsourcing method using individual techniques. (a) RT socket outsourcing
(enabling two techniques and using the extended idle process). (b) Only adding the rt_poll_list. (c) Only using RT socket outsourcing. (d) Using virtual

interrupts.

69970

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

from the CPU instruction ‘“‘read time-stamp counter (rdtsc)”’
and places the timestamp and its identification number into a
buffer in the kernel memory. When the experiment finishes,
the buffer is dumped into a file.

We measured the probe effect of lightweight probes using
the hardware monitor (Endace DAG 10x 2-S card). The probe
effect was less than 0.5 s when using four lightweight
probes.

2) RESULTS OF PROCESSING PATH ANALYSIS
We divided the processing path into the following segments
(Figure 10):
o Host receive: Host execution from the receipt of an IRQ
to a VM entry.
o Guest: Guest execution from the VM entry to a VM exit
when sending a message.
« Host send: Host execution from the VM exit to a mes-
sage transmission to a NIC.
We inserted a lightweight probe at the beginning of each
segment and at the end of the message transmission. Next,
we repeated the experiments in Section IV-A.

| Host receive| Guest | Hostsend|

Iio VMentry VMexit Transmit to

NIC

FIGURE 10. Division of the message processing path into three segments.

Figure 11 presents the results of these experiments.
Figure 11a shows the results using vanilla Linux. By com-
paring Figures 11b, 11c, and 11d, we identified that most
of the latency variances were located in the “‘host receive”
segment and the ‘“guest” segment. We found the two pri-
ority inversion problems in the ‘“host receive” segment as
described in Section II-A and Section II-C. These priority
inversion problems were not present when using the exclusive
CPU method, as described in Section II-D, and when using
the outsourcing method, as described in Section III.

The threaded interrupt handling method and the exclusive
CPU method had higher latency variances in the “guest”
segment than the outsourcing method. This is because the
execution of the non-RT Heavy Receivers polluted the LLC
and removed the contents of the Critical RT servers.

E. CACHE POLLUTION IN THE RT METHODS
Using the same experiments as in Section IV-A, we analyzed
the impact on the LLC. We obtained the numbers of cache
references and misses using the perf command of Linux [23].
This command uses the hardware performance counters of
cache references and cache misses. We calculated the cache
miss ratio by dividing the number of cache misses by the
number of references.

Figure 12 presents the results of these experiments. The
cache pollution when using the outsourcing method was the

VOLUME 6, 2018

lowest among the three methods because message processing
had a smaller memory footprint. The cache pollution problem
existed in the exclusive CPU method, as the Heavy Receivers
also interfered with the execution of the Critical RT server
because the RT CPU shared the LLC with the non-RT CPU.

F. MESSAGE PROCESSING PATHS OF NON-RT SERVER
The outsourcing method shortens the message processing
path of co-located non-RT servers and reduces cache pollu-
tion by the non-RT servers. In this section, we analyze the
message processing paths of a Heavy Receiver and confirm
the reduction of cache pollution by using the same experi-
ments as in Section IV-A.

Figure 13 compares the message processing paths using
the threaded interrupt handling method and the outsourc-
ing method. We obtained execution times by using the
lightweight probes, as indicated in Section IV-D. In Figure 13,
“User process’ and ““Socket processing” mean the execution
of the Heavy Receiver and system call layer in a kernel.
Figure 13b has two ‘““Socket processing” executions. The
upper one is the execution in the guest kernel and the lower
one is that of the host kernel. In Figure 13, message copying
is marked with diagonal lines.

Figure 13a illustrates the message processing path using
the threaded interrupt handling method. In this method, mes-
sage copying was performed two times, i.e., once between the
host kernel and a guest kernel in the vNIC thread, and another
from the guest kernel to the guest user process in the guest OS.
By contrast, Figure 13b illustrates the message processing
path using the outsourcing method. In this method, message
copying was performed once, from the host kernel to the guest
user process.

G. APPLICATION BENCHMARKS

In previous sections, we ran netperf as a Critical RT server
and analyzed the fundamental features of RT methods. In this
section, we ran two time-sensitive applications as a Critical
RT server and compared these RT methods. The experimental
environment and configurations were the same as those in
Section IV-A.

1) A VOICE-OVER-IP (VOIP) SERVER

We ran a VoIP server as a Critical RT server and measured
the forward delays of the VoIP server. The VoIP server was
Kamailio [24], which exchanges messages based on the Ses-
sion Initiation Protocol (SIP) [25]. We ran two SIPp [26]
instances as communication peers of the Kamailio server
in a remote machine. One instance acted as a user agent
client (UAC) and the other acted as a user agent server (UAS).
The VoIP server relayed messages between the UAC and the
UAS.

Using the hardware monitor (Endace DAG 10x2-S card),
we obtained the forward delays between the message that the
VoIP server received and the message that the VoIP server
sent during SIP calls. A single SIP call required forwarding

69971

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

(a) (b) (c) (d)
100
=)
T
c
(o)
T |
o |8
alg
3 |E
o | %
< |3
® | g
-
¢ 12 18 24 30 6 12 18 24 30 6 12 18 24 30 6 12 18 24 30
Elapsed time (Seconds) Elapsed time (Seconds) Elapsed time (Seconds) Elapsed time (Seconds)
100+
m
©
C
o
(&)
S
O e
()
Q| E
u e
>
(S
C
2
©
-
6 12 18 22 30 6 12 18 24 30 6 12 18 24 30 6 12 18 24 30
Elapsed time (Seconds) Elapsed time (Seconds) Elapsed time (Seconds) Elapsed time (Seconds)
100!
90
oo
T 80
S
T |5’
gr 8 601
n | 2 501
o | E
S >‘40
o | O
C
o)
(]
-
0 6 12 18 24 30 6 12 18 24 30 6 12 18 24 30 6 12 18 24 30
Elapsed time (Seconds) Elapsed time (Seconds) Elapsed time (Seconds) Elapsed time (Seconds)

FIGURE 11. Latencies in three segments of the processing path of RT messages.

of the following six messages by the VoIP server.

1) An INVITE message from the UAC to UAS. (At this
time, the server also sent a TRYING message to the
UAC.)

2) A RINGING message from the UAS to the UAC.

3) An OK message from the UAS to the UAC.

4) An ACK message from the UAC to the UAS.

5) A BYE message from the UAC to the UAS.

6) An OK message from the UAS to the UAC.

69972

Similar to wusing the modified netperf client in
Section IV-A, we used a modified SIPp program. The modi-
fied SIPp program initiated SIP calls at random rates ranging
from 17 to 167 calls per second. This means that the server
forwarded 100 to 1000 messages per second. We ran the same
Heavy Receivers employed in the previous experiments.

Figure 14 illustrates the percentiles (50, 99 and 99.9t)
of the forward delays. The outsourcing method had the lowest
tail latencies among the RT methods. In the 99™ percentiles

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

25
20
S
2 15
o)
7
= 10
(6}
-
-+ 5
0
Vanilla Threaded Exclusive .
Linux interrupt CPU Outsourcing
handling

FIGURE 12. LLC miss ratio of the RT threads.

User process |]
Socket procesing MH
Softirg (guest) I:I
Hard IRQ (guest) I:I

vNIC Wz
Softirq (host)

Hard IRQ (host) D

0 10 20 30 40 50 60
Time (microseconds)
)Message copy

(@

User process |]

Socket procesing H HH

Idle process [I |:|

Socket processing IMI

(host)

Softirg (host) |:|

Hard IRQ (host)ﬂ
o0 10 20 30 40 50 60
Time (microseconds)
Message copy

(b)

FIGURE 13. Message processing path of a non-RT Heavy Receiver.
(a) Threaded interrupt handling. (b) Outsourcing.

results, for instance, the outsourcing method had 63% lower
latency than the threaded interrupt handling method and 27%
lower latency than the exclusive CPU method.

2) MEMCACHED
We ran Memcached [27] as a Critical RT server. Memcached
is a distributed key-value store that is widely used for caching.
The benchmark program was memaslap [28], which was exe-
cuted in a remote machine.

Similar to wusing the modified netperf client in
Section IV-A, we modified memaslap. The modified

VOLUME 6, 2018

500
450
400
350
300 T
250
200
150

Latency (microseconds)

100
50

 99.9th

[JOutsourcing

50th ~ 99th

Threaded 0O
interrupt
handling

Exclusive

OVvanilla Linux O CPU

FIGURE 14. Forward delays of a Voice-over-IP server (Kamailio).

memaslap sent requests at random intervals ranging from
100 to 1000 requests per second. The size of a key was
64 bytes, and the size of the request value was 1024 bytes.
Memaslap sent GET/SET requests at a ratio of 9:1. We
measured the response times of the GET requests using the
hardware monitor (Endace DAG 10x2-S card). We ran the
same Heavy Receivers employed in the previous experiments.

Figure 15 illustrates the percentiles (50, 99", and 99.9t)
of the response times. The outsourcing method produced the
best results among those RT methods. In the 99" percentiles
results, the outsourcing method exhibited 67% and 46% lower
latency than the threaded interrupt handling method and the
exclusive CPU method, respectively.

400-
@ 350
c
S 300
b
S 250- T
=)
£ 200
0y
2 150-
g
S 100-
50-
0,

~99.9th
[JOutsourcing

~ 99th
Threaded DExclusive
interrupt CPU
handling

50th
Ovanilla Linux [

FIGURE 15. Response times of Memcached.

H. SCALABILITY OF RT VIRTUAL MACHINES
In Sections IV-B to IV-G, we fixed the number of RT VMs to
one and we compared the latencies and the latency variances

69973

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

of the RT methods. In this section, we increase the number of
RT VMs and evaluate the scalability of these methods.

In this section, we performed experiments using the same
configuration as in the previous sections except that we set
the number of active CPU cores to four. We ran a Heavy
Receiver in a single non-RT VM, and we ran two non-RT
VMs as in the previous sections. We ran a Critical RT server
in a single RT VM and increased the number of RT VMs
up to 100 for the threaded interrupt handling method and
the outsourcing method, and up to three for the exclusive
CPU method. For the exclusive CPU method, we assigned
one CPU as a non-RT CPU and the remaining CPUs as RT
CPUs. We set high priorities to the RT threads and normal
priorities to non-RT threads, as listed in Table 2. We ran the
same number of clients in a remote machine as in the VMs.
We measured the response times of the Critical RT servers
using the hardware monitor (Endace DAG 10x2-S card).

Figures 16, 17, and 18 show the experimental results.
In these figures, the x-axis represents the number of RT
VMs. Figure 16 shows the 99 percentiles of the Critical RT

500
450 -
400 7

350 v

300 ’

250 ’

200

150 //

50 == = e == ===

% 20 40 60 80 100
Number of RT virtual machines

Latency (microseconds)

Threaded Exclusive _
= interrupt Fed CPU Outsourcing

handling

FIGURE 16. Critical RT response time’s 99t percentiles when scaling the
number of RT virtual machines.

20, .
sz hmm === Ameoo..
181 T=a_ ‘\
So .~
16 \‘ ~.
214 s Hes
o \\ Sel
212 LN T
3100 ~
% 8 \\\
§ 6 ‘\\
= SNa
4,
2,
0 . : '
0 20 40 60 80 100
Number of RT virtual machines
Threaded :
-] interrupt Fe] (E:>F<)Ejlu5|ve Outsourcing
handling

FIGURE 17. Total throughput of Heavy Receiver when scaling the number
of RT virtual machines.

69974

100
90+ a="
80 A
70 o ‘—___JL
60, ~» .-
50 .
40a~-"
30+
20
104

% CPU utilization

0 20 40 60 80 100
Number of RT virtual machines

Threaded Exclusive ,
= interrupt] CPU Outsourcing
handling

FIGURE 18. Achievable CPU utilization when scaling the number of RT
virtual machines.

response times, Figure 17 shows the total throughput of the
non-RT Heavy Receivers, and Figure 18 shows the achievable
CPU utilization.

As shown in Figure 16, the exclusive CPU method did not
scale. Both the threaded interrupt handling method and the
outsourcing method scaled up to 100 VMs. The outsourcing
method produced smaller latency variances of the Critical
RT servers than the threaded interrupt handling method.
As shown in Figures 17 and 18, the outsourcing method
achieved higher throughputs of the Heavy Receivers and
lower CPU utilization than the threaded interrupt handling
method. Furthermore, the outsourcing method maintained
the total throughput of the Heavy Receivers up to 40 VMs,
as shown in Figure 17.

V. RELATED WORK

We described two current production RT methods in
Sections II-B and II-D. Rostedt and Hart [5], van Riel [8],
Christofferson [16], and Crespo et al. [17] discussed the
threaded interrupt handling method and the exclusive CPU
method. We compared their performance with that of the
outsourcing method in Section I'V. In this section, we discuss
other related work.

Improving network stacks of commodity operating sys-
tems is an important issue at any time as these systems
evolve. Lazy receiver processing (LRP) [29] delays the inter-
rupt handling of receiving processes in the 4.4 BSD OS
until these receiving processes are scheduled according to
the priority of the processes. The work in [30] prioritizes
interrupt handling of Solaris for consistent latency of asyn-
chronous transfer mode (ATM) networks. Some techniques
enable user space applications to send and receive packets by
polling mode and eliminate overheads of interrupt handling in
operating systems. Polling threads [31] and Netmap [32] are
examples of such user space I/O techniques. The data plane
development kit (DPDK) is used not only for implementing

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

IEEE Access

network appliances, such as routers and content delivery
networks (CDNs) but also for fast user space I/O in hosted vir-
tual machine environments [33]. These efforts for improving
network stacks have different goals and trade-offs between
throughput and CPU utilization as well as latency and vari-
ance in latency. Required modifications to the respective
commodity operating systems are also different.

To reduce host-guest memory copying in VM environ-
ments, some researchers proposed techniques based on mem-
ory sharing [34]-[36]. Although these approaches increase
the throughput by avoiding message copying and reducing the
number of VM context switches, they do not consider latency
and latency variance.

The threaded interrupt handling and exclusive CPU meth-
ods are the favorite choices for adding RT support to current
commodity OSs. RTLinux [37] and Time-Sensitive Linux
(TSL) [38] are early examples, and Xenomai [39] is a more
recent one. While these systems effectively reduced latency
variance, the persistent evolution of the base operating sys-
tem code introduces new sources of variance. In this paper,
we tackle new sources of variance, the priority inversion in
the softirq handling, and cache pollution, as described in
Sections II-C and II-E.

Socket outsourcing and similar techniques [6], [40]—[42]
offload guests’ high-level socket operations to the host. These
techniques improve throughput by eliminating message copy-
ing and by sending TCP acknowledgment packets efficiently.
XWAY [43] and XenVMC [44] implement a similar tech-
nique for co-located VMs in the Xen hypervisor. In these sys-
tems, the guest kernel intercepts socket calls. If the receiver is
a co-located VM, messages are sent through shared memory.
We adopted socket outsourcing to eliminate message copy-
ing and mitigate the cache pollution problem caused by the
non-RT servers. Furthermore, we eliminated virtual interrupt
handling, as described in Section III-C.

The proposals in [45]-[47] use advanced hardware facili-
ties to improve mainly I/O throughputs in VM environments.
This paper proposes a software-based method for consistent
latency and compares it with other software-based meth-
ods for the same goal. Using software-based methods and
advanced hardware facilities together for consistent latency
is an interesting research topic for future work.

For realizing real-time characteristics at the network level,
proposals such as those of [9], [48], and [49] have been
proposed to control the bandwidth according to the priori-
ties of the tenants. To avoid performance degradation and
unpredictability, other proposals advocate using bare-metal
clouds [50]-[52]. In this study, we eliminated priority inver-
sion problems in complex network stacks in hosted virtual
execution environments.

VI. CONCLUSION

In this paper, we described the outsourcing method, which
is a new approach for implementing real-time (RT) net-
work stacks in a Linux KVM-based hosted environment.
We evaluated the outsourcing method by comparing it with

VOLUME 6, 2018

two representative production methods: the threaded interrupt
handling method and the exclusive CPU method.

In this study, we ran a high priority RT server and low prior-
ity non-RT servers together using these RT methods and ana-
lyzed the host and guest kernels. First, we found that vanilla
Linux as a host of virtual machines had a priority inversion
between RT user processes and non-RT interrupt handling,
and this introduced latency variance to the network protocol
stack. Next, we confirmed that the threaded interrupt handling
method, which makes use of the PREEMPT_RT patch, can
eliminate this priority inversion. However, we found that
there existed another priority inversion in the softirq handling
by the host kernel. Next, we showed that the exclusive CPU
method, which allocates an exclusive CPU to a group of RT
threads, can remove the priority inversion in softirq handling.
However, this method has disadvantages: low utilization of
the exclusive processor and low total throughput of co-located
non-RT servers. Furthermore, these existing RT methods
have the cache pollution problem caused by co-located non-
RT servers.

In this paper, we have shown that the outsourcing method
can achieve consistent RT latency in a commodity virtual
machine environment. This method consists of two tech-
niques along with the existing PREEMPT_RT patch. The first
technique divides the softirq handling into RT and non-RT
types and removes the priority inversion in softirq handling
by the host kernel. The second technique delegates the oper-
ations of a guest’s network stack to the host of the virtual
machine, and thus mitigates the cache pollution problem and
removes the priority inversion in softirq handling of a guest
kernel.

Compared to the threaded interrupt handling method,
the outsourcing method reduced the standard deviation of
the latencies of a simple RT server by a factor of 6. At the
same time, the outsourcing method improved the throughputs
of non-RT servers by up to 5.6% with 32% lower CPU
utilization. Compared to the exclusive CPU method, the out-
sourcing method reduced the standard deviation by a factor
of 2 and avoided low utilization of the exclusive CPU. More-
over, the outsourcing method was effective for running two
time-sensitive applications: a Voice-over-IP (VoIP) server and
a key-value store server.

In this paper, we have shown that the outsourcing method
has scalability in terms of the number of RT virtual machines.
A four-CPU host was able to execute 40 RT VMs of sim-
ple RT servers using the outsourcing method while main-
taining the throughputs of non-RT servers. The outsourcing
method was more scalable than the threaded interrupt han-
dling method and the exclusive CPU method.

In the future, we would like to use advanced hardware tech-
niques together with the outsourcing method. For example,
we would like to use Intel’s Cache Allocation Technology
(CAT) [18] to further avoid the cache pollution problem. We
are also interested in evaluating partitioned RT softirq han-
dling in non-virtualized environments and container-based
virtual environments.

69975

IEEE Access

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment

ACKNOWLEDGMENT
This paper was presented at the SCF International Conference
on Cloud Computing in Seattle, WA, USA, in 2018.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74-80, Feb. 2013.

J. Park, Q. Wang, J. Li, C.-A. Lai, T. Zhu, and C. Pu, “Performance
interference of memory thrashing in virtualized cloud environments:
A study of consolidated n-tier applications,” in Proc. 9th IEEE Int. Conf.
Cloud Comput. (CLOUD), Jun./Jul. 2016, pp. 276-283.

C. Pu et al., “The millibottleneck theory of performance bugs, and its
experimental verification,” in Proc. 37th IEEE Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2017, pp. 1919-1926.

Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang, and C. Pu, “A study of
long-tail latency in n-tier systems: RPC vs. Asynchronous invocations,”
in Proc. 37th IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 207-217.

S. Rostedt and D. V. Hart, “Internals of the RT patch,” in Proc. Linux
Symp., 2007, pp. 161-172.

H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato, “Fast networking
with socket-outsourcing in hosted virtual machine environments,” in Proc.
ACM Symp. Appl. Comput. (SAC), 2009, pp. 310-317.

O. Garcia, Y. Shinjo, and C. Pu, “Implementation and comparative
evaluation of an outsourcing approach to real-time network services in
commodity hosted environments,” in Proc. SCF Int. Conf. Cloud Com-
put. (CLOUD), 2018, pp. 189-205.

R. van Riel, “Real-time KVM from the ground up,” in Proc. KVM Forum,
2015. [Online]. Available: https://wiki.linuxfoundation.org/_media/
realtime/events/rt-summit2016/kvm_rik-van-riel.pdf

K. Jang, J. Sherry, H. Ballani, and T. Moncaster, ““Silo: Predictable mes-
sage latency in the cloud,” in Proc. ACM Conf. Special Interest Group Data
Commun. (SIGCOMM), 2015, pp. 435-448.

M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-resource
fairness for correlated and elastic demands,” in Proc. 13th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2016, pp. 407-424.

P. Xiong, H. Hacigumus, and J. F. Naughton, “A software-defined
networking based approach for performance management of analytical
queries on distributed data stores,” in Proc. ACM Int. Conf. Manage.
Data (SIGMOD), 2014, pp. 955-966.

C. Werner, C. Buschmann, T. Jdcker, and S. Fischer, “Bandwidth and
latency considerations for efficient SOAP messaging,” Int. J. Web Services
Res., vol. 3, no. 1, pp. 49-67, 2006.

NAPI. The Linux Foundation. Accessed: Jul. 23, 2018. [Online]. Available:
https://wiki.linuxfoundation.org/networking/napi

Intel Corporation. Intel Ethernet Converged Network Adapter
X520 Product Brief. Accessed: Jul. 23, 2018. [Online]. Available:
https://www.intel.com/content/www/us/en/ethernet-products/converged-
network-adapters/ethernet-x520-server-adapters-brief.html

Steven and D. Rostedt. KernelShark—A Front end Reader of trace-CMD.
Accessed: Jun. 10, 2018. [Online]. Available: http://rostedt.homelinux.
com/kernelshark/

M. Christofferson, “4 ways to improve performance in embedded Linux
systems,” in Proc. Korea Linux Forum, 2013. [Online]. Available: https:/
events.static.linuxfound.org/sites/events/files/slides/Four%20Ways%20to
9%?20Improve%20Embedded%20Linux%20Performance%20-%20KLF
9%202013.pdf

A. Crespo, I. Ripoll, and M. Masmano, ‘‘Partitioned embedded architecture
based on hypervisor: The XtratuM approach,” in Proc. IEEE Eur. Depend-
able Comput. Conf. (EDCC), Apr. 2010, pp. 67-72.

Intel Corporation. Introduction to Cache Allocation Technology in the
Intel Xeon Processor E5 v4 Family. Accessed: Jul. 26, 2018. [Online].
Available: https://software.intel.com/en-us/articles/introduction-to-cache-
allocation-technology

ARM Limited. ARM 9 Technical Reference Manual-Cache Lock-
down. Accessed: Aug. 21, 2018. [Online]. Available: http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ddi0201d/133878.html

R. Jones. (1996). Netperf. Accessed: Jun. 3, 2018. [Online]. Available:
https://hewlettpackard.github.io/netperf

A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. (2005). Iperf: The
TCP/UDP bandwidth measurement tool. Accessed: Jun. 3, 2018. [Online].
Available: http://iperf.sourceforge.net

69976

(22]

(23]

[24]

[25]

(26]
(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

(44]

(45]

(46]

Endace Technology Limited. Endace DAG10X2-S Datasheet. Accessed:
Jun. 3, 2018. [Online]. Available: https://www.endace.com/dag-10x2-s-
datasheet.pdf

The Linux Foundation. Perf: Linux Profiling With Performance
Counters. Accessed: Jun. 10, 2018. [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main_Page

Kamailio SIP Server. The Kamailio SIP Server Project. Accessed:
Jun. 3, 2018. [Online]. Available: https://www.kamailio.org/w

J. Rosenberg et al., SIP: Session Initiation Protocol, RFC Standard 3261,
Internet Engineering Task Force, Fremont, CA, USA, 2002. [Online].
Available: https://tools.ietf.org/html/rfc3261

R. Gayraud et al. (2014). SIPp. Accessed: Jun. 3,2018. [Online]. Available:
http://sipp.sourceforge.net

(2015). Memcached—A Distributed Memory Object Caching System.
Accessed: Jun. 3, 2018. [Online]. Available: https://memcached.org

M. Zhuang and B. Aker. Load Testing and Benchmarking a Server.
Accessed: Jun. 3, 2018. [Online]. Available: http://libmemcached.org/
libMemcached.html

P. Druschel and G. Banga, “Lazy receiver processing (LRP): A network
subsystem architecture for server systems,” in Proc. 2nd USENIX Symp.
Oper. Syst. Design Implement., 1996, pp. 261-275.

F. Kuhns, D. C. Schmidt, and D. L. Levine, “The design and performance
of a real-time I/O subsystem,” in Proc. 5th IEEE Real-Time Technol. Appl.
Symp., Jun. 1999, pp. 154-163.

J. Liu and B. Abali, ““Virtualization polling engine (VPE): Using dedicated
CPU cores to accelerate I/O virtualization,” in Proc. 23rd ACM Int. Conf.
Supercomput., 2009, pp. 225-234.

L. Rizzo, “Netmap: A novel framework for fast packet I/0,” in Proc.
USENIX Conf. Annu. Tech. Conf., 2012, pp. 101-112.

The Linux Foundation. =~ DPDK-Vhost
Aug. 21, 2018. [Online]. Available:
guides/prog_guide/vhost_lib.html

H. R. Mohebbi, O. Kashefi, and M. Sharifi, “Zivm: A zero-copy inter-VM
communication mechanism for cloud computing,” Comput. Inf. Sci., vol. 4,
no. 6, pp. 18-27, 2011.

C. Pinto, B. Reynal, N. Nikolaev, and D. Raho, “A zero-copy shared
memory framework for host-guest data sharing in KVM,” in Proc. IEEE
Conf. Ubiquitous Intell. Comput., Adv. Trusted Comput. Scalable Comput.
Commun. (ScalCom), Jul. 2016, pp. 603-610.

F. Ning, C. Weng, and Y. Luo, “Virtualization I/O optimization based on
shared memory,” in Proc. IEEE Int. Conf. Big Data, Oct. 2013, pp. 70-77.
A. Barabanov and V. Yodaiken, “Introducing real-time Linux,” Linux J.,
vol. 34, p. 9, Feb. 1997.

A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole, ““Supporting time-
sensitive applications on a commodity OS,” in Proc. 5th USENIX Symp.
Oper. Syst. Design Implement., 2002, pp. 165-180.

P. Gerum. (2004). Xenomai—Implementing a RTOS Emulation
Framework GNU/Linux. Accessed: Jun. 5, 2018. [Online]. Available:
http://www.xenomai.org/documentation/xenomai-2.5/pdf/xenomai.pdf

S. Gamage, R. R. Kompella, D. Xu, and A. Kangarlou, *‘Protocol responsi-
bility offloading to improve TCP throughput in virtualized environments,”
ACM Trans. Comput. Syst., vol. 31, no. 3, 2013, Art. no. 7.

A. Nordal, A. Kvalnes, and D. Johansen, “Paravirtualizing TCP,” in
Proc. 6th ACM Int. Workshop Virtualization Technol. Distrib. Comput.
Date (VTDC), 2012, pp. 3-10.

J. Nakajima et al., “Optimizing virtual machines using hybrid virtualiza-
tion,” in Proc. ACM Symp. Appl. Comput., 2011, pp. 573-578.

K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim, “Inter-domain
socket communications supporting high performance and full binary com-
patibility on Xen,” in Proc. 4th ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environ. (VEE), 2008, pp. 11-20.

Y. Ren et al., “A fast and transparent communication protocol for co-
resident virtual machines,” in Proc. 8th IEEE Int. Conf. Collabora-
tive Comput., Netw., Appl. Worksharing (CollaborateCom), Oct. 2012,
pp- 70-79.

A. Gordon, N. Har’El, A. Landau, M. Ben-Yehuda, and A. Traeger,
“Towards exitless and efficient paravirtual 1/0,” in Proc. 5th ACM Annu.
Int. Syst. Storage Conf. (SYSTOR), 2012, Art. no. 10.

A. Gordon et al., “ELI: Bare-metal performance for I/O virtualization,”
in Proc. 17th ACM Int. Conf. Archit. Support Program. Lang. Oper. Syst.,
2012, pp. 411-422.

Library. Accessed:
https://doc.dpdk.org/

VOLUME 6, 2018

O. F. Garcia et al.: Achieving Consistent RT Latency at Scale in a Commodity VM Environment I EEEACC@SS

[47]

[48]

[49]

[50]

[51]

[52]

C.-C. Tu, M. Ferdman, C.-T. Lee, and T.-C. Chiueh, “A comprehensive
implementation and evaluation of direct interrupt delivery,” in Proc. 11th
ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ. (VEE),
2015, pp. 1-15.

M. P. Grosvenor et al., “Queues don’t matter when you can jump them!”
in Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 1-14.

L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the network in cloud computing,” in
Proc. ACM SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput.
Commun., 2012, pp. 187-198.

P. Rad, A. T. Chronopoulos, P. Lama, P. Madduri, and C. Loader, “Bench-
marking bare metal cloud servers for HPC applications,” in Proc. IEEE Int.
Conf. Cloud Comput. Emerg. Markets (CCEM), Nov. 2015, pp. 153-159.
Y. Omote, T. Shinagawa, and K. Kato, “Improving agility and elasticity in
bare-metal clouds,” in Proc. 12th ACM Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), 2015, pp. 145-159.

S. Crago et al., “Heterogeneous cloud computing,” in Proc. IEEE Int.
Conf. Cluster Comput. (CLUSTER), Sep. 2011, pp. 378-385.

OSCAR F. GARCIA received the B.S. degree in
systems and computation engineering from the
Universidad de Los Andes, Colombia, in 2008, and
the M.S. degree from the University of Tsukuba,
Japan, in 2015, where he is currently pursuing the
Ph.D. degree with the Graduate School of Sys-
tems and Information Engineering. His research
interests include operating systems, real-time sys-
tems, cloud computing, and visual programming
languages.

VOLUME 6, 2018

YASUSHI SHINJO (S’91-M’93) received the
Ph.D. degree from the University of Tsukuba
in 1993. He is currently an Associate Professor
with the Department of Computer Science, Uni-
versity of Tsukuba. He is interested in the areas
of operating systems, parallel and distributed com-
puting, security, privacy, decentralized social net-
working services, and virtual systems. He has
authored papers in these areas. His research has
been supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan, and the Japan
Science and Technology Agency. He is a member of the ACM, IPSJ, and
Japan Society for Software Science and Technology. He has been serving
on the Program Committee for the IEEE International Conference on Cloud
Computing since 2015.

CALTON PU (S’81-M’87-SM’05-F’16) received
the Ph.D. degree from the University of
Washington. He was a Faculty Member with
Columbia University and the Oregon Graduate
Institute. He is currently a Professor and the
John P. Imlay, Jr. Chair of software with the
College of Computing, Georgia Institute of Tech-
nology. He is involved in several projects in sys-
tems and database research. He has authored over
70 journal papers and book chapters, and 270 con-
ference and refereed workshop papers. His recent research has focused on
big data in Internet of Things, automated N-tier application performance,
and denial of information. He is a fellow of AAAS. He served for more
than 120 program committees. He served as a General (Co-)Chair and a PC
(Co-)Chair for more than 20 times.

69977

	INTRODUCTION
	FINDING CAUSES OF LATENCY VARIANCES IN VANILLA LINUX AND TWO PRODUCTION RT METHODS
	THE PRIORITY INVERSION PROBLEM IN THE INTERRUPT-FIRST HOST KERNEL OF VANILLA LINUX
	THREADED INTERRUPT HANDLING METHOD
	THE PRIORITY INVERSION IN THE SOFTIRQ MECHANISM OF LINUX
	EXCLUSIVE CPU METHOD
	CACHE POLLUTION BY CO-LOCATED NON-RT SERVERS

	OUTSOURCING METHOD
	DIVIDING SOFTIRQ HANDLING INTO RT AND NON-RT TYPES
	CONVENTIONAL SOCKET OUTSOURCING
	RT SOCKET OUTSOURCING

	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETUP FOR RUNNING A SIMPLE RT SERVER
	EXPERIMENTAL RESULTS USING A SIMPLE RT SERVER
	EFFECTS OF INDIVIDUAL TECHNIQUES
	PROCESSING PATH ANALYSIS WITH LIGHTWEIGHT PROBES
	MEASURING LATENCIES WITH LIGHTWEIGHT PROBES
	RESULTS OF PROCESSING PATH ANALYSIS

	CACHE POLLUTION IN THE RT METHODS
	MESSAGE PROCESSING PATHS OF NON-RT SERVER
	APPLICATION BENCHMARKS
	A VOICE-OVER-IP (VOIP) SERVER
	MEMCACHED

	SCALABILITY OF RT VIRTUAL MACHINES

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	OSCAR F. GARCIA
	YASUSHI SHINJO
	CALTON PU

