
Received September 2, 2018, accepted October 14, 2018, date of publication October 22, 2018,
date of current version November 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2877138

Efficient Data Stream Clustering With Sliding
Windows Based on Locality-Sensitive Hashing
JONGHEM YOUN 1, JUNHO SHIM 2, (Senior Member, IEEE),
AND SANG-GOO LEE3, (Member, IEEE)
1Voost Inc., Seoul 06232, South Korea
2Department of Computer Science, Sookmyung Women’s University, Seoul 04310, South Korea
3Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea

Corresponding author: Junho Shim (jshim@sookmyung.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future
Planning through the Basic Science Research Program under Grant 2017R1E1A1A03070004 and in part by NRF funded by the Ministry of
Science, ICT and Future Planning through the PF Class Heterogeneous High Performance Computer Development under
Grant NRF-2016M3C4A7952587.

ABSTRACT Data stream clustering over sliding windows generates clusters as the windowmoves. However,
iterative clustering using all data in a window is highly inefficient in terms of memory use and computational
load. In this paper, we improve data stream clustering over slidingwindows using slidingwindow aggregation
and nearest neighbor search techniques. Our algorithm constructs and maintains temporal group features as a
summary of the window using the sliding window aggregation technique. In order to maintain a constant size
for the summary, the algorithm reduces the size of the summary by joining the nearest neighbor. We exploit
locality-sensitive hashing for rapid nearest neighbor searching. In addition, we also suggest a re-clustering
policy that determines whether to append a new summary to pre-existing clusters or to perform clustering on
the whole summary. We conduct experiments on real-world and synthetic datasets in order to demonstrate
that our algorithm can significantly improve continuous clustering on data streams with sliding windows.

INDEX TERMS Data stream, k-means clustering, locality-sensitive hashing, sliding window.

I. INTRODUCTION
Large-scale data streams are generated from various applica-
tions, including social media, news feeds, sensor networks,
transportation monitoring, and smart devices. Data streams
are massive, rapidly evolving, and continuously created. Data
stream clustering is an important task for analyzing or retriev-
ing information from the overall data streams. Since the data
streams are too large, data stream clustering algorithms are
designed by considering the computational load and memory
use. For example, news articles are continuously published
every moment throughout the web. In order to track recent
hot topics, articles with similar contents can be grouped by
clustering, as shown in Fig. 1. As time passes along with the
continuous movement of the sliding window, similar news
articles can be grouped by clusters. Since we need to perform
clusteringwhenever the windowmoves, it is indeed important
to determine how to effectively perform clustering in this
domain.

The general procedure for carrying out data stream clus-
tering consists of two steps: grouping and clustering [3], [4],
as shown in Fig. 2. The grouping step summarizes the original

FIGURE 1. Clustering with sliding windows for news articles.

data into specific data structures, called synopses, in order
to reduce memory use. The synopses are then used to grasp
the semantics of the original data from the summarization
without actually storing the entire data.

In general, the grouping step constructs synopses through
particular heuristic methods with linear time complexity. The
clustering step performs clustering on the synopses generated

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

63757

https://orcid.org/0000-0002-5770-9032
https://orcid.org/0000-0003-4315-4117

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

through grouping. Various clustering algorithms, such as
k-means [5], [6], k-median [7], [8], DBSCAN [9]–[11], and
affinity propagation [12], [13] have been employed to iden-
tify the partitions of the synopses. The clustering algorithms
that use the synopses are efficient because the synopses are
relatively small compared to the entire data. The processing
time for the data stream clustering depends primarily on the
time required to construct the synopses.

Early studies assumed that clustering is to be performed
over entire data streams, and directly applied one-pass clus-
tering algorithms to those data streams [14]. However, data
streams evolve continuously over time. In most data stream
applications, the most recent tuples are considered to be more
decisive and influential. This characteristic caused cluster-
ing algorithms with window models to be developed. Win-
dow models that are widely used by the algorithms include
the landmark window [6], [12], [13], [15] and the damped
window [10], [11], [16]. While these two window models
are effective in certain applications, they are insufficient for
domains requiring the sliding window model.

In the sliding window model, the window contains only
tuples with timestamps from a given timestamp in the past
up to the current timestamp. As time passes, the window
removes the tuples whose timestamps have expired. The exact
number of recent tuples is a critical and important factor
for implementing the sliding window model, such as for
topic extraction in news feeds and real-time trafficmonitoring
systems.

Clustering with sliding windows should produce results
for each window movement, and a seemingly straightfor-
ward approach would be to perform repeat clustering. This
is impractical and requires a substantial computational cost.
Therefore, a clustering algorithm is needed to delete expired
data and insert new data to construct the synopses and gener-
ate the cluster results.

There are two main problems that must be solved for the
algorithm. First, the synopses should support partial dele-
tion for expired data. The synopses require additional data
structures for deletion. The data structure should also remain
fast with little memory usage. Second, the clusters should be
updated without performing clustering. Clusters could not be
partially updated because clustering is a holistic function that
requires whole tuples to generate results [17]. An approxi-
mation method is required to insert and delete data into the
clusters.

We present an efficient data stream clustering algorithm
with sliding windows. The highlighted features of our algo-
rithm are as follows: First, it constructs fixed-size synopses
efficiently based on Locality-Sensitive Hashing [18]. It main-
tains temporal group features, as synopses, to reduce both
space and computation time. The data structure for synopsis
allows expired and new data to be handled, so that the algo-
rithm can maintain a precise range of tuples for the window.
The LSH is employed to efficiently search for the nearest
group feature in the synopses. Previous studies have used a
tree-based index structure. Second, the algorithm employs

a re-clustering policy for pre-existing clusters in order to
avoid clustering each time new data arrives. The clustering
operation is expensive because it needs to access all data
objects. We measure the difference between the quality of the
pre-existing clusters and the one that we could obtain if we
reconstructed the clusters.We then perform re-clustering only
when the difference is expected to be significantly large. Last,
we demonstrate the performance of the proposed algorithm
through extensive experimentation as well as a theoretical
analysis.

This paper is organized as follows: In Section II, we pro-
vide an overview of related studies on data stream clustering
algorithms. In Section III, we present background informa-
tion and the problem statement. In Section IV, we show
how coresets for clustering are constructed and maintained.
In Section V, we describe an improved algorithm for coreset
construction. In Section VI, a clustering methodology is pro-
posed. In Section VII, an analysis of our experimental results
is described. Finally, we present our concluding remarks in
Section VIII.

II. RELATED WORK
Multiple clustering algorithms for data streams have been
developed, and a detailed survey of these algorithms is pre-
sented in [19]. Data stream clustering algorithms are catego-
rized into partition-based [3], [6], density-based [10], [16],
and message passing-based [12], [13] clustering, and these
are developed under the landmark window model [6],
[12], [13], damped window model [10], [16], and slid-
ing window model [4], [7], [20], [21]. Table 1 shows the
related studies categorized by clustering algorithms and
window models. In the following subsections, we present
clustering algorithms for each window model, and also
explain the pros and cons of each as compared to our
algorithm.

A. CLUSTERING WITH LANDMARK WINDOWS
The landmark window model splits data streams into fixed-
size, non-overlapping chunks and maintains the tuples that
arrive after the landmark; this model is usually used when
periodic results are needed (e.g., on a daily or weekly basis).
Clustering algorithms for landmark window model take the
early studies on data stream clustering, and exploit a method
of creating a data summary for clustering. BIRCH(Balanced
Iterative Reducing and Clustering using Hierarchies) [14] is
an initiative algorithm that enables k-means clustering for a
large data. In order to summarize a large amount of data,
BIRCH first introduces a concept of clustering feature (CF)
which stores a linear sum of the tuples, square sum of the
tuples, and the number of the tuples. For a new tuple, a nearest
CF absorbs the tuple if the radius of the CF is smaller than
a given threshold θ value. If the radius exceeds that value,
a new CF based on the tuple is created. Users may adjust the
threshold θ appropriately according to the memory capacity.
BIRCH runs quickly, but its clustering quality is poor, which
has been experimentally shown in [6].

63758 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

TABLE 1. Clustering algorithms with window models.

Since BIRCH, multiple algorithms have been developed
to exploit the concept of CF . Scalable k-means [22] uses
CF as statistics and suggests selectively retaining some data
points that might affect the clustering quality. STREAM [23]
is a k-median clustering algorithm for data streams with
constant-factor approximation in a single pass based on
divide-and-conquer strategy. STREAM processes data points
in a hierarchical scheme, and provides a theoretical analysis
to show how an approximated clustering quality relates to
the hierarchy. LSEARCH [15], [24] improves STREAM for
the k-median problem, by exploiting the concept of local
search. The algorithm begins with some initial clusters, then
refines those clusters by making local improvements. The
authors present how to find a good initial solution that leads to
an expected 8-approximation to the optimum.CluStream [3]
presents the concepts of micro-clusters and pyramidal time
frames for clustering data stream. The micro-cluster main-
tains statistics such as the spatial locality and the temporal
features of data. The pyramidal time frame is used to effec-
tively store the snapshots of themicro-clusters.DGClust [25]
is amonitoring and clustering algorithm for distributed sensor
networks. In this algorithm, local sensors do not send the
entire data to a central server, but maintain the statistics of
data, and the algorithm performs clustering on the statistics.
StreamKM++ [6] is one of the most recently developed
algorithms for data stream clustering with landmark win-
dows. It constructs a coreset tree for the synopses based on
a k-means++ [38] seeding procedure. However, the cost of
constructing such a tree is relatively high, making it unsuit-
able for sliding windows.

Recently, algorithms which do not construct summaries
have come to be studied. Ackerman and Dasgupta [26]
focus on an incremental clustering problem where existing

clusters would be modified with the new tuples being
inserted. E2SC [27] presents an efficient spectral clustering
algorithm based on a low rank approximation of the Lapla-
cian matrix. Any-OPTICS [29] is a density-based cluster-
ing algorithm, and it continuously produces and refines the
clusters by using the lower-bound distances which are the
approximations of the true distances.

In the massage passing-based clustering algorithms,
STRAP [12] is a data stream clustering algorithm based on
Affinity Propagation (AP) [39]. STRAP combines AP with a
statistical test for change detection in data distribution. The
clustering is performed whenever a change in data distribu-
tion is detected. IAP [13] (Incremental Affinity Propagation)
proposes two methodologies for incremental clustering: IAP
clustering based on K-Medoids (IAPKM) and IAP clustering
based onNearest Neighbor Assignment (IAPNA). SAIC [36]
proposes a clustering algorithm for dynamic datasets of arbi-
trary shapes and sizes based on incremental learning.

Some algorithms such as BIRCH have exploited various
approaches of constructing the summary for data stream clus-
tering. As long as they are based on the landmark window
model, they share a common disadvantage in that all data
should be accessed to rebuild the summary when the data
is deleted. Our algorithm is different in that it builds the
summary in an efficient way so as to support the deletion of
expired data.

B. CLUSTERING WITH DAMPED WINDOWS
In the damped window model, also known as the fading
window model, the tuples are associated with the weight
values that decrease over time. As is the case with the land-
markwindowmodel, the algorithmswith the dampedwindow
model are based on the insertion-only model, which assumes

VOLUME 6, 2018 63759

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

that the tuples would not be removed from the window once
they were received, and gives newer tuples higher weight
values than older ones. For example, the weight values can
decrease exponentially by a decay function f (t) = 2−λt over
time t , where λ > 0. The value of λ adjusts the effect of the
past data. If λ increases, the importance of the historical data
becomes more reduced.

Algorithms in this category are mainly based on
density-based clustering. DenStream [10] creates the
micro-clusters which are similar to CF , and identifies the
outlier micro-clusters based on the density of data. It applies
a variant of DBSCAN [40] not to the outlier micro-clusters
but only to the micro-clusters, which helps the algorithm be
robust to the noise data. D-Stream [9], [30] maintains the
clustering features in the grid units. The decay function is
applied to the entire grids at a specific interval, and removes
sparse grids as the outliers. The algorithm assumes that
the sparse grids do not become dense grids in the future.
MR-Stream [11] maintains the hierarchically-divided grids
within a tree data structure. A node is created with a new
data point, and added to a tree, where the weight values
are updated beginning from its parent node and iteratively
upto the root node. SOStream [31] automatically determines
a threshold value for the density-based clustering through
the use of competitive learning. ClusTree [16] maintains the
clustering features in an extended index structure based on
R-tree. When new data arrives, the algorithm searches for
the nearest micro-cluster by traversing the tree of which leaf
nodes contain all the micro-clusters.

A disadvantage of a density-based clustering algo-
rithm is that it requires more computation cost than does
a partition-based method, thus some scalable versions
of density-based clustering have recently been proposed.
DASC [32] is designed to cluster an incremental large
dataset with grid-based settings based on the MapReduce
framework. DBSTREAM [33] proposes a shared density
graph to capture the density between adjacent micro-clusters
for efficient reclustering. ADStream [34] identifies the ini-
tial micro-clusters using the affinity propagation method,
then generates the clusters in different time granularities
by using a density grid clustering. CEDAS [35] proposes
the hyper-spherical micro-clusters for high-dimensional
data.

The clustering algorithms with damped window model are
designed to consider that the influence of past data becomes
gradually reduced. However, as is the case with the landmark
window model, they should access the entire data when they
need to rebuild micro-clusters in order to perform clustering
only with unexpired data. This is because some damped
window may still contain expired data even though the effect
of those data is reduced.

C. CLUSTERING WITH SLIDING WINDOWS
In contrast to the landmark or damped window model, only
a small number of studies have focused on clustering algo-
rithms with sliding windows.

Babcock et al. [7] presented a technique for maintaining
the variance and k-median based on an exponential his-
togram(EH) for the sliding window. Zhou et al. [4] focus
on the problem of tracking the cluster evolution in the
sliding window, and developed SWClustering, a k-means
clustering algorithm based on an extension of EH, expo-
nential histogram of clustering features(EHCF), which com-
bines a temporal attribute with EH. From a theoretical
perspective, Braverman et al. [21] proposed a merge-and-
reduce technique to transform the coreset construction in the
insertion-only streaming model to the sliding window model.
The algorithms that exploit EH as a synopsis data structure
support both insertion and deletion of the window, but they
have a disadvantage in that the window contains expired
tuples when the window size increases [4], [7].

In their works, EH is defined as a collection of buckets on
a set of tuples. Due to the memory limitation, if the number
of buckets exceeds a user defined number, the buckets are
merged, with each merged bucket holding a number of tuples
equal to or double that held in the previous unmerged buckets.
For example, let us say that the input tuples are x1, x2, . . .
(xi+1 is newer than xi), and the current state of the buckets
is B1 = {x1, x2}, B2 = {x3}, B3 = {x4}. As a new tuple
x5 arrives, the old buckets are merged and a new bucket is
created with the new tuple, i.e., B1 = {x1, x2}, B2 = {x3, x4},
B3 = {x5}. When a sliding window moves, buckets whose
timestamps have expired are removed. However, there may
exist a deviation of timestamps in a bucket. If the size of the
sliding window is 4 in the example, it should drop the tuple
x1 from the window. However, the bucket B1 also contains x2
which is valid for the window, so it cannot be removed. This
case occurs more frequently as the window size increases.

G2CS (Generic 2-phase Continuous Summarization
framework) [28] proposes a mechanism for sliding window
maintenance, and C-BIRCH which is a data summarization
technique based on BIRCH. The problem that G2CS solves
is similar to ours. However, unlike our algorithm, G2CS does
not limit the size of the summaries and has a higher time
complexity with tree-based indexes. In addition, there is an
overhead to creating and maintaining unnecessary lattices
to deal with various windows queries on the databases. The
clustering quality of G2CS is worse than that of the other
clustering algorithms because C-BIRCH is based on BIRCH
which is sensitive to the arrival order of the data points.
ID-AP [37] is a semi-supervised clustering algorithm which
improves the clustering performance by using both the exist-
ing labeled and the unlabeled datasets. ID-AP is designed to
handle both increases and decreases of the data, but not to
precisely remove all expired tuples of the window.

In this paper, we propose an efficient algorithm for
partition-based clustering with sliding windows. The algo-
rithm aims to quickly produce high-quality clustering results.
Unlike with other algorithms, the novel data structure
and procedures for our algorithm enable clustering on
tuples in exact ranges and reduce the computational cost
of the operations, including insertion, deletion, searching

63760 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

and clustering. Our algorithm maintains the temporal group
features, as synopses, using a sliding window aggregation
to reduce the footprint and the computational load [41].
In the sliding window aggregation, a window is divided
into disjoint chunks, and a synopsis of the window is com-
puted by merging the synopses of these chunks. While the
BIRCH-alike algorithms use a tree structure to search for
the nearest CF , our algorithm exploits Locality-Sensitive
Hashing [18]. It reduces the synopses by joining the near-
est neighbors, and the LSH can be used to efficiently
search for the nearest group feature in the synopses. The
hash-based searching has an average time complexity ofO(1)
in searching for the nearest neighbor. Clustering operations
are very expensive, as they access all data objects iteratively,
thus our algorithm also avoids unnecessary clustering. The
re-clustering policy that our algorithm employs is unique
in that it allows appending new input tuples to pre-existing
clusters if the quality of the modified clustering results is
acceptable.

III. PRELIMINARIES AND PROBLEM STATEMENT
A. DATA STREAMS
A data stream is defined as an infinite sequence of tuples.

S = 〈x1, t1〉, 〈x2, t2〉, . . . , 〈xn, tn〉, . . .

where xi is a tuple, and ti is a timestamp. A tuple xi is repre-
sented using a multi-dimensional attribute vector. A tuple of
d dimensions is denoted by xi = (xi,1, . . . , xi,d). A timestamp
ti is a non-negative integer value, and t indicates the current
time. For the sake of simplicity, we assume that tuples arrive
in chronological order, i.e., for any i < j, a tuple si =
〈xi, ti〉 arrives earlier than sj = 〈xj, tj〉. The timestamp value
denotes a sequence number in tuple-based window, as well as
a particular time instance in time-based window.

B. SLIDING WINDOW
A sliding window contains only tuples whose timestamps are
within the range of the current timestamp and the starting
timestamp of the window. Formally, the window is defined as
a weight function of two variables, the timestamp of tuple ti
and the current timestamp t .

w(t − ti) =

{
1, if t − ti ≤ R
0, if t − ti > R

where R is the window’s time range. As time passes, the win-
dow removes the tuples whose timestamps have expired.
Since the sliding window is specified according to the most
general definition, a landmark window or a damped window
can also be defined using the sliding window. In continuous
queries in DSMS [42], the sliding window is specified by
the RANGE for the length of the window and SLIDE for the
movement intervals of the window.

For example, S [RANGE 1000 TUPLES SLIDE
100 TUPLES] is a sliding window that contains the most
recent 1,000 tuples, and the window is updated upon the

arrival of every 100 tuples from data stream S. Once another
100 tuples arrive, the oldest 100 tuples are removed from the
window and the new 100 tuples are appended. For the sake
of clarity, if we set SLIDE to L, the expression ‘‘a window
slides’’ or ‘‘a window moves’’ means that the oldest L tuples
in the window are deleted and new L tuples are added to the
window.

Windows are categorized into tuple-based and time-based
sliding windows according to the sliding condition and the
time unit. For ease of explanation, we only consider a
tuple-based window, but these same methodologies can be
just as easily applied to a time-based window as well.

C. K-MEANS CLUSTERING
Let S ⊆ Rd be a set of tuples in d-dimensional Euclidean
space with size |S| = n. For any two tuples x1, x2, we denote
the Euclidean distance between x1 and x2 by dist(x1, x2) =

‖x1− x2‖ =
√∑d

i=1(x1,i − x2,i)2, and the squared Euclidean
distance by dist2(x1, x2) = ‖x1 − x2‖2. For any finite set
C ⊂ Rd , we define dist2(x,C) = minc∈C‖x-c‖2. k-Means
clustering is defined as follows.
Definition 1 (k-Means Clustering [43]): For a set S ⊆

Rd , k-means clustering is to find a set C ⊂ Rd of k tuples
that minimize the cost(S,C), where

cost(S,C) =
∑
x∈S

dist2(x,C).

The objective of k-means clustering is to minimize the sum
of the squared distance of all tuples in S to their nearest tuple
in C , i.e., minC∈Rd cost(S,C).
Similarly, for any weight function w(x) for every x ∈ S,

the weighted k-means clustering is to find a set C ⊂ Rd of k
tuples that minimize the costw(S,C), where

costw(S,C) =
∑
x∈S

w(x) · dist2(x,C).

With sliding window, the cost includes a weight function of
the time parameter, i.e., costw(S,C) =

∑
x∈S w(t − tx) ·

w(x) · dist2(x,C), where t is the current time and tx is the
timestamp of x.
The optimal cost of k-means clustering of S is denoted by

costkOPT (S) = min
CO∈Rd ,|CO|=k

cost(S,CO).

Since k-means clustering problem is an NP-hard problem
even for k = 2 [44], heuristic algorithms have been pro-
posed. One of the classical heuristic algorithms is Lloyd’s
algorithm [5]. The process of the algorithm is described as
follows: Given k random initial cluster centers, 1) Each tuple
is assigned to the cluster Ci whose center is nearest 2) Each
cluster Ci updates its center to reflect the centroid of tuples
in the cluster. This process iterates until the cluster centers
go unchanged. Note that the algorithm may not converge to a
global optimum but only to a local optimum. The quality of
clustering depends on the initial cluster centers.

VOLUME 6, 2018 63761

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

FIGURE 2. Two steps for data stream clustering.

D. CORESET
A coreset for a set S is a small weighted set that approximates
S with respect to an optimization problem. The cost of the
coreset is an approximation for the cost of an original set
S within a factor (1 + ε) for 0 ≤ ε ≤ 1. The cost of the
coreset for k-means clustering is computed using weighted
k-means clustering, and is an approximation for the cost of
the original set S with relative error ε. Then, the coreset for
k-means clustering can be defined as follows.
Definition 2 ((k, ε)-Coreset [8]): Let S ⊆ Rd , k > 0, and

0 ≤ ε ≤ 1. A weighted set M ⊆ Rd is (k, ε)-coreset of S for
k-means clustering, if for all C ⊂ Rd , |C| = k , we have

(1− ε) · cost(S,C) ≤ costw(M ,C) ≤ (1+ ε) · cost(S,C).

The approximation algorithm using the coreset is efficient
because the algorithm is applied on a small sized core-
set rather than on the entire data. The algorithm using the
fixed-size coreset is expected to be completed within a certain
amount of time. The processing time of the algorithm is
primarily dependent on the time it takes to construct the
coreset. For example, the coreset construction time is linear to
the number of data n, the dimension of data d , and the number
k for the k-segmentation problem [45].

However, the coreset with an approximation guarantee can-
not be computed for the data streams. Previous approaches
have focused on the shown approximation guarantee of the
coreset when appropriate centers are given [8], [46], [47].
In practice, these centers are unknown, and the problem
of finding optimal centers is NP-hard [44] in the k-means
problem. The algorithms to find k centers with (1 + ε)-
approximation are unknown because the problem is also
APX-hard [48]. A state-of-the-art algorithm in the k-means
problem is k-means++, where the cost is E[Cost(S,C)] ≤
8(log k + 2) · costkOPT (S) [38].

Two common tasks typically performed by data stream
clustering algorithms [3], [4], [6], [8] are the 1) grouping task
and 2) clustering task, as shown in Fig. 2. The grouping task
constructs a coreset from the original data using a particu-
lar heuristic method. The clustering task applies a specific
clustering algorithm in order to the coreset to identify clusters
of the original data.

We used themore general term synopses to refer to summa-
rized data in the explanation in Section I. However, we refer to
a small weighted set generated through the grouping task as a
coreset from this section. Although the approximation factor
of the weighted set cannot be proven in the data streams,
we consider that the term coreset represents the concept more
clearly than does the term synopses.

E. GROUP FEATURE
Group Feature(GF) is defined as a data structure to store the
statistic summaries of a set of tuples contained in the coreset.
Previous studies have used the term Clustering Feature(CF)
to refer to statistic summaries [4], [14]. However, the term
Clustering Feature(CF) is confused with the results made
through the clustering task. Therefore, we will use the term
Group Feature(GF) which is an improved version of the CF
in our algorithm.
GF consists of a linear sum of the tuples LS, square sum

of the tuples SS, the number of the tuples N , and the most
recent timestamp of the tuples T . The tuples are in the range
of the sliding window. LS and SS are generated using an
element-wise summation of the tuples, i.e. for d-dimensional
n tuples, LS =

∑n
i=1 xi =

∑n
i=1(xi,1, . . . , xi,d) and

SS =
∑n

i=1 x
2
i =

∑n
i=1((xi,1)

2, . . . , (xi,d)2). LS and SS are
d-dimensional vectors, and N and T are numeric val-
ues. The basic components LS, SS, and N are proposed
in [14], and the timestamp component T is added in [4].
In addition, GF contains a hash value generated by LSH
for our algorithm, which we will explain in a following
section.
GFs hold incrementality and additivity. Incrementality

means that the GF is updated by adding a new tuple xj, while
additivity means that two disjoint GFs can be merged into a
new GF by adding their components [14]. These properties
enable modifying the coreset in a constant time.

Incrementality

LS = LS1 + xj
SS = SS1 + (xj)2

N = N1 + 1

T = tj

Additivity

LS = LS1 + LS2
SS = SS1 + SS2
N = N1 + N2

T = max(T1,T2)

63762 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

The values for clustering, such as the centroid, can be easily
calculated using the components of the GF , i.e., Centroid =
LS/N . GF is continuously updated as the tuples are input
from the data streams. For the sliding window, the expired
GFs are removed based on the timestamp T from the window,
and new GFs are appended to the window.

F. PROBLEM STATEMENT
Based on the definitions so far, we define the problem state-
ment as follows. Given a stream of tuples(S), user-specified
number of clusters (k), window size (RANGE R), sliding
interval (SLIDE L), and a coreset (M), the problem of the
data stream clustering with a sliding window involves how
to generate clusters of tuples in a sliding window while
considering both accuracy and runtime.

Our approach to the problem consists of two sub tasks
in general: 1) Construction and maintenance of a constant
size of coreset (M) with sliding windows (R and L) for data
streams (S) 2) Decision of whether to append a new coreset
to pre-existing k clusters or perform clustering on a whole
coreset to generate new k clusters.

FIGURE 3. A snapshot to cluster data with a sliding window.

Fig. 3 shows a simple example in order to illustrate howwe
approach the problem. Let us say that the input data streams
S = 〈x1, t1〉, 〈x2, t2〉, . . ., the number of clusters k = 3,
the window size R = 9, the sliding interval L = 3, and the
coreset size |M | = 5. For the ease of presentation, we simply
illustrate aGF with a set of grouped tuples, rather than show-
ing the summary values contained in the GF. First, the group-
ing step in the algorithm generates 5 GFs as a coreset at
time t1. Let GFs in the first window be GF1 = {x1, x2, x4},
GF2 = {x3, x7}, GF3 = {x5}, GF4 = {x6, x8}, GF5 = {x9},
the weighted k-means clustering be applied on GFs, and it
generate 3 clusters, C1 = {GF1,GF4} = {x1, x2, x4, x6, x8},
C2 = {GF2,GF5} = {x3, x7, x9}, and C3 = {GF3} = {x5}.
As the sliding window moves by the sliding interval L = 3,
x1, x2, and x3 are expired at time t2, and they should be

removed from theGFs and clusters, while x10, x11, and x12 be
appended. Because aGF maintains the statistics of the tuples,
GF1 and GF2 which include the expired tuples are removed.
GF3, GF4, and GF5 contain the valid tuples regarding the
slide interval and they remain. Since the coreset size is 5, two
newGFs can be generated.GFs for {x4, x11} and {x7, x12} are
created. There is no guarantee that the GFs and clusters of
the first window at t1 also minimize the cost(S,C) at t2 with
the new tuples. GFs and clusters for the tuples, x4, . . . , x12
should be constructed and maintained so as to minimize the
cost(S,C) at t2. Since the new tuples arrive rapidly in a data
stream environment, the algorithm needs to run efficiently
enough to make it practical, i.e., it should minimize the ineffi-
ciency of data re-processing while maximizing the clustering
quality.

IV. CORESET CONSTRUCTION BASED ON NEAREST
NEIGHBOR SEARCH
A. ALGORITHM FOR CORESET CONSTRUCTION
In this section, we describe a method for constructing and
maintaining a coreset with sliding windows. The GF for
the sliding window contains statistic summaries of unexpired
tuples. The incrementality enables updating theGF with new
arrival tuples. However, once a tuple is subsumed in the GF ,
it cannot be subtracted from the GF unless the value of the
tuple is kept separately. Since it is inefficient to keep all
tuples in the sliding window, we propose a data structure for
the coreset based on pane-based aggregation of the sliding
window [41].

FIGURE 4. Data structure for the coreset in the sliding window.

Fig. 4 shows an overview of the coreset structure. A win-
dow is decomposed into panes composed of non-overlapping
sets of tuples. Suppose that RANGE is R, SLIDE is L. The
number of panes is dR/Le, and each pane represents at most
L tuples. For example, a slidingwindowwhich is defined byS
[RANGE 120 TUPLES SLIDE 30 TUPLES] has four
panes each of which contains 40 tuples. In S [RANGE 120
TUPLES SLIDE 29 TUPLES], window consists of five
panes, where four panes each contain 29 tuples, and the
last pane contains four tuples. For the ease of presentation,
we only discuss the case in which R is divisible by L.

VOLUME 6, 2018 63763

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

When the window slides, 1Wexpired is removed and 1Wnew
is appended. New GFs are generated based on tuples in
1Wnew. The detailed process of creating GF is described in
Algorithms 1 and 2.

Algorithm 1 ConstructCoreset
Input: A set of tuples B, coreset size m
Output: Coreset P

1: b1← an initial tuple in B
2: θ ←minimum distance between b1 and random samples
D from B

3: for each b ∈ B do
4: GFp← nearest GF in P to b
5: if dist(b,GFp) < θ or dist(b,GFp) < radius of GFp

then
6: GFp = GFp + b
7: else
8: create new GFb based on b, and P← P ∪ {GFb}
9: end if
10: if |P| ≥ 2m then
11: P← ReduceCoreset(P, m)
12: end if
13: end for
14: return P

Algorithm 2 ReduceCoreset
Input: Coreset P, reduced coreset size m
Output: Reduced coreset Q

1: Q← {}, and R← P
2: for each GFp ∈ P do
3: R← R− {GFp}
4: GFq← nearest GF in Q to GFp
5: GFr ← nearest GF in R to GFp
6: if dist(GFp,GFq) < dist(GFp,GFr) then
7: GFq← GFq + GFp
8: Q← Q ∪ {GFq}
9: else
10: GFr ← GFr + GFp
11: Q← Q ∪ {GFr }
12: R← R− {GFr }
13: end if
14: if |Q| + |R| ≤ m then
15: Q← Q ∪ R
16: break
17: end if
18: end for
19: return Q

Algorithm 1 shows a process for creating a coreset P for
a set of tuples B. For example, in Fig. 4, B is a set of tuples
in 1Wnew, and a coreset with m = 3 consists of three GFs,
denoted by {GF41,GF42,GF43}. A coresetM of the window
is made through the union of the coresets of each pane, and

its size |M | is 12. First, the algorithm calculates the minimal
distance between b1 and D, uses it as threshold θ (line 2).
The reason for using the minimum instead of the maximum
and the average is that the threshold becomes very large
when an outlier exists. The GF with large radius contains
too many tuples that cannot be split. However, even if a large
number of GFs are generated with a small threshold, they
are reduced to GFs of an appropriate radius and number
through ReduceCoreset. After determining the threshold θ ,
the tuples whose distances are below θ are grouped into the
same GF . If the distance between a tuple and a centroid
of GF , dist(b,GFp) is below θ or the radius of GF , the GF
absorbs the tuple (line 5).
GFs are continuously generated with θ . When the num-

ber of GFs reaches 2m, they are reduced to m through
ReduceCoreset in Algorithm 2. Since all GFs in coreset
P are merged once through ReduceCoreset, the number of
coreset becomes 1/2 the initial size. The algorithm employs
a nearest neighbor search. Specifically, target GFp is added
to the closer GF of unprocessed set R and processed set Q.
Next, the added GF is included in Q (line 5-13). If the size
of the input coreset is 2m, all GFs should be processed at
least once in order to reduce the size to m. If the size of the
input coreset is smaller than 2m, it is not necessary to process
all GFs. In this case, when the sum of the number of R and Q
becomes the desired size, the process ends.

As shown in Fig. 4, the data structure for the sliding
window consists of a level-1 coreset and a level-2 coreset.
The level-1 coreset has dR/Le columns, and each column
contains m GFs. The GFs are generated from tuples in the
new pane through ConstructCoreset, and they are inserted
into the last column of the level-1 coreset. The timestamps T s
of the inserted GFs are in (R − L,R]. When expired tuples
are removed, the first column of the level-1 coreset with
timestamps in [t1, t1+L] is truncated, where t1 is the earliest
timestamp. The removal operation for the level-1 coreset has
O(1) time complexity if an adequate data structure is utilized
such as a linked list queue. The exact number of tuples in the
level-1 coreset is R and remains constant.

The level-2 coreset is built through the union of those
GFs which are in the same column. Each GF in the level-1
coreset is multiplied with the weights and is merged into
the level-2 coreset. The weights can be defined as either a
time-decay function or as simply the same values. Let wi be
the weight for GFi. Then, the level-2 coreset is represented
as GFi =

⋃m
j=1 wjGFij, as shown in Fig. 4. The sliding

window updates the level-2 coreset by appending new GFs
and truncating the expiredGFs in the same way as the level-1
coreset. Clustering is performed on the generated level-2
coreset.

Algorithm 1, ConstructCoreset, takes linear time with
respect to the size of input |B|. The most time consuming
operation of the algorithm is the nearest GF search, and an
efficient algorithm to improve the search time is described in
Section V.

63764 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

B. THEORETICAL ANALYSIS OF CORESET CONSTRUCTION
In this section, we investigate the accuracy guarantee of
the coreset that is constructed by using ConstructCoreset in
Algorithm 1. As we state in Section III-D, the coreset with
an approximation guarantee cannot be computed for the data
streams. Therefore, we show the upper bound of the k-means
cost for our approach with the assumption that the tuples in
a given set are unchanged, and that the optimal centers are
known. We start by analyzing the cost for k = 1.
Lemma 1: Let S be a set of tuples, M be a set of group

features generated from S, and C be the optimal cluster
centers. For k = 1, it holds that cost(S,C) = cost(M ,C).

Proof: The center for optimal 1-mean cost is the center
of mass, which is calculated by the linear sum of the tuples
divided by the number of tuples. If all GFs in M are merged
into one GF , the LS of the merged GF is equal to the linear
sum of the tuples due to the additivity property. The number
of tuples is also preserved in the GF .
We see that ConstructCoreset does not increase the optimal

cost for k = 1. For k ≥ 2, we consider that ReduceCoreset
is applied between the GFs in the same cluster, and between
GFs in the different clusters separately. For the sake of sim-
plicity, we assume that the threshold θ = 0.

FIGURE 5. Constructing GF s by ConstructCoreset.

Let us see an example illustrated in Fig. 5. The nearest
center for the tuples in GF1 is center c1. The nearest center
for GF1 is also center c1. In this case, the cost of GF1 is the
optimal 1-mean cost according to Lemma 1. If all GFs are
generated only from tuples in the same cluster, the k-means
cost calculated from the GFs is optimal.
The distance between tuple x1 and tuple x2 in GF2 is

relatively far from the other tuples in their clusters, but close
to each other. Since the nearest neighbor of x1 is x2, they are
combined into GF2. GF2 is located on two clusters. GF2 will
be assigned to the center c1 or center c2. If GF2 is assigned
to center c1, x1 is correct and does not cause an error. How-
ever, for x2, the cost is increased because it is misclassified.

Then, the following equations can be established.

‖x1 − c1‖ > ‖x1 − x2‖ (1)

‖x2 − c2‖ > ‖x1 − x2‖ (2)

‖
x2 + x1

2
− c2‖ > ‖

x2 + x1
2
− c1‖ (3)

Lemma 2: Let x be a tuple in GF , and cx be the nearest
center of x, and cg is the nearest center ofGF . For an arbitrary
tuple z ∈ GF ,

‖x − cg‖2 < 2(‖x − cx‖2 + ‖z− cg‖2) (4)

Proof: For an arbitrary tuple z in GF2 and an incorrectly
assigned tuple x2, the following equation is derived by the
triangle inequality and Caucy-Schwarz inequality.

‖x2 − c1‖2 = ‖x2 − z+ z− c1‖2

< 2‖x2 − z‖2 + 2‖z− c1‖2

Equation (2) implies ‖x2 − c2‖ > ‖x2 − z‖. This yields that

‖x2 − c1‖2 < 2‖x2 − c2‖2 + 2‖z− c1‖2

⇔ ‖x − cg‖2 < 2(‖x − cx‖2 + ‖z− cg‖2).

We now provide the upper bound of a generalized cost
considering that GF contains two or more tuples.
Theorem 1: Let S be a set of tuples, M be a set of group

features generated from S, C be the optimal cluster centers,
and Q be a set of incorrectly assigned tuples. Then, it holds
that costw(M ,C) < cost(S,C)+ 9

∑
x∈Q‖x − cx‖

2 .
Proof: For intuitive presentation, consider the case of

GF3 in Fig. 5. The optimal cost with GF3 is

cost(S,C) =
∑

x∈P3−{x3,x4}

‖x − c3‖2

+

∑
x∈P2−{x5,x6,x7}

‖x − c2‖2

+‖x3 − c3‖2 + ‖x4 − c3‖2

+‖x5 − c2‖2 + ‖x6 − c2‖2

+‖x7 − c2‖2.

Let us say that the constructed coreset is M and GF3 is
assigned to c3. The Euclidean distance between GF3 and c3
is ‖ x3+x4+x5+x6+x75 −c3‖. The cost for M is

costw(M ,C) =
∑

x∈P3−{x3,x4}

‖x − c3‖2

+

∑
x∈P2−{x5,x6,x7}

‖x − c2‖2

+ 5 · ‖
x3 + x4 + x5 + x6 + x7

5
− c3‖2. (5)

Note that we consider only the unweighted input tuples for
the sake of clarity. The coreset construction can be extended
to the weighted tuples. The equation for the cost of assigning
x5, x6, x7 incorrectly to c3 instead of c2 is ‖x5− c3‖2+‖x6−
c3‖2 + ‖x7 − c3‖2. Then the sum of this equation and ‖x3 −
c3‖2+‖x4−c3‖2 should be greater than 5 · ‖

x3+···+x7
5 −c3‖2.

VOLUME 6, 2018 63765

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

By applying this inequation into the cost difference
between M and S, we obtain the following:

costw(M ,C)− cost(S,C)

= (‖x3 − c3‖2 + ‖x4 − c3‖2 + ‖x5 − c3‖2

+‖x6 − c3‖2 + ‖x7 − c3‖2)

− (‖x3 − c3‖2 + ‖x4 − c3‖2 + ‖x5 − c2‖2

+‖x6 − c2‖2 + ‖x7 − c2‖2)

By using Lemma 2, we have

costw(M ,C)− cost(S,C)

< ‖x5 − c2‖2 + ‖x6 − c2‖2 + ‖x7 − c2‖2

+ 2 · ‖z− c3‖2 + 2 · ‖z− c3‖2 + 2 · ‖z− c3‖2. (6)

Tuple z can be an arbitrary tuple inGF3, and we set z to the
center of GF3, cg3. By Equation (3), we have ‖cg3 − c2‖ >
‖cg3 − c3‖. For example, for x5, it holds that ‖cg3 − c2‖ <
‖cg3−x5‖+‖x5−c2‖ by using the triangle inequality.We also
obtain ‖x5−c2‖ > ‖x5−cg3‖ by Equation (2). Based on these
statements, we have

‖z− c3‖2 = ‖cg3 − c3‖2 < ‖cg3 − c2‖2

< 2‖x5 − c2‖2 + 2‖x5 − cg3‖2

< 4‖x5 − c2‖2.

Then, the Equation (6) can be restated as follows.

costw(M ,C)− cost(S,C)

< 9‖x5 − c2‖2 + 9‖x6 − c2‖2 + 9‖x7 − c2‖2.

In order to generalize the above equation, let Q be a set of
incorrectly assigned tuples, and cx be the nearest for x in the
optimal solution. Then,

costw(M ,C)− cost(S,C) < 9
∑
x∈Q

‖x − cx‖2

Theorem 1 means that the cost does not exceed nine times
the optimal cost of the incorrectly assigned tuples. As the
optimal solution of cost(S,C) cannot be obtained as men-
tioned in Section III-D, let us say that we obtain a solution
by the α-approximation algorithm, i.e., cost(S,C) = α ·

costkOPT (S). To compute the upper bound of the cost, we can
assume that all tuples are assigned incorrectly.

costw(M ,C) = α · costkOPT (S)+ 9
∑
x∈S

‖x − cx‖2

≤ (α + 9)costkOPT (S)

The cost (α + 9)costkOPT (S) may seem relatively high for
guaranteeing the accuracy. However, it represents only the
worst case cost. If the number of tuples which are assigned
incorrectly is small, the cost would be close to the optimal
cost of the algorithm.

C. THEORETICAL ANALYSIS OF SLIDING WINDOWS
Theorem 1 is a cost analysis for the case with regard to reduc-
ing the tuples from S to M . In this subsection, we provide
another aspect of cost analysis of our algorithm, with its
regard to the sliding window. Given RANGE R and SLIDE L,
a sliding window contains b = dR/Le panes. A pane includes
|S|/b tuples, and the coreset which contains |M |/b GFs
is produced. In order to present the accuracy guarantee,
we adopt a similar methodology that is used for the k-Median
problem [15], [23], where the entire tuples are partitioned
first and the summaries of each partition are merged later.
Lemma 3: Let S1, . . . , Sp be arbitrary partitions of a set S.

Then,
p∑
i=1

cost(Si,C) = cost(
p⋃
i=1

Si,C) = cost(S,C).

Proof: Because partitions are not overlapped, each tuple
belongs to exactly one partition. Therefore, the cost of a
partition is equal to the sum of the squared distances of the
tuples which the partition contains.
Lemma 4: Let M be a set of group features which are

generated from S, and S1, . . . , Sp be arbitrary partitions of
a set S. Coresets M1, . . . ,Mp are generated from S1, . . . , Sp
respectively. Then,

p∑
i=1

costw(Mi,C) ≤ (α + 9)costkOPT (S) (7)

Proof: From Lemma 3, we know that the cost of a tuple
set is the sum of the costs of its partitions. Let C be a set
of k centers, and Qi be a set of the incorrectly assigned
tuples in Mi.

p∑
i=1

costw(Mi,C)− cost(S,C)

=

p∑
i=1

costw(Mi,C)−
p∑
i=1

cost(Si,C)

=

p∑
i=1

(costw(Mi,C)− cost(Si,C))

≤

p∑
i=1

9
∑
x∈Qi

‖x − cx‖2 = 9
∑

x∈
⋃p
i=1 Qi

‖x − cx‖2

As was the case previously, if we consider the worst case in
which all tuples are assigned incorrectly, the following holds,

p∑
i=1

costw(Mi,C) ≤ cost(S,C)+ 9
∑

x∈
⋃p
i=1 Qi

‖x − cx‖2

≤ α · costkOPT (S)+ 9
∑
x∈S

‖x − cx‖2

≤ (α + 9)costkOPT (S).

63766 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

Based on Lemma 4, the cost difference between
M1, . . . ,Mp and M is

p∑
i=1

costw(Mi,C)− costw(M ,C)

=

p∑
i=1

costw(Mi,C)−
p∑
i=1

cost(Si,C)

− (costw(M ,C)−
p∑
i=1

cost(Si,C))

=

p∑
i=1

(costw(Mi,C)− cost(Si,C))

− (costw(M ,C)− cost(S,C))

≤ 9
∑

x∈
⋃p
i=1 Qi

‖x − cx‖2 − 9
∑
x∈Q

‖x − cx‖2

Intuitively, there is no relationship between
⋃p

i=1 Qi andQ.
However, if both sets contain the same incorrectly assigned
tuples, the cost of M1, . . . ,Mp and the cost of M become
equal. Now, we consider a case where the window slides. Let
Si be the set of tuples in the ith pane of the sliding window,
the window contains p panes, and S = {S1, . . . , Sp}. As the
window slides, S1 is deleted and Sp+1 is appended. Let the
updated sliding window be S∗ = {S2, . . . , Sp+1}.

Previously, we computed the cost for optimal centers C
under the assumption that the tuples are unchanged. However,
because the tuples are appended and deleted, their optimal
centers may also be changed. Let a set of optimal centers for
S∗ be C∗. Let us compare the cost for C with the cost for C∗.
As S1 is removed from the window and Sp+1 is added to the

window, their corresponding coresets M1 and Mp+1 are also
removed, and newly created and added, respectively. Since
each partition does not overlap with each other by Lemma 3,
addition and deletion do not affect the cost of coresets in
another partitions.
Theorem 2: Let a data stream S be S = {S1, . . . , Sp}, its

updated sliding window be S∗ = {S2, . . . , Sp+1}, Mi be the
generated coreset from Si, and C and C∗ be a set of optimal
centers for S and S∗ respectively. For the common tuples in
S and S∗, it holds that

costw(
p⋃
i=2

Mi,C∗) < 2 · costw(
p⋃
i=1

Mi,C)+ γ

where γ is constant.
Proof: Let cx and c∗x be the nearest center for x in

C and C∗, respectively. By triangle inequality, we have

‖x − c∗x‖ < ‖x − cx‖ + ‖cx − c
∗
x‖

⇔ ‖x − c∗x‖
2 < 2‖x − cx‖2 + 2‖cx − c∗x‖

2

Let us apply the sum of the above expression for every x
in

⋃p
i=2Mi, and replace 2

∑
x∈

⋃p
i=2Mi
‖cx − c∗x‖

2 by γ ,

as follows.∑
x∈

⋃p
i=2Mi

‖x − c∗x‖
2

< 2
∑

x∈
⋃p
i=2Mi

‖x − cx‖2

+ 2
∑
x∈M1

‖x − cx‖2 + γ

⇔

∑
x∈

⋃p
i=2Mi

‖x − c∗x‖
2 < 2

∑
x∈

⋃p
i=1Mi

‖x − cx‖2 + γ

⇔ costw(
p⋃
i=2

Mi,C∗) < 2costw(
p⋃
i=1

Mi,C)+ γ

Theorem 2 shows that the cost for a sliding window with
an expired partition removed is about twice as much as the
cost for the previous window. By appending the cost for a
new partition, the cost for the updated sliding window holds
that

costw(
p+1⋃
i=2

Mi,C∗)

< 2costw(
p⋃
i=1

Mi,C)+ costw(Mp+1,C∗)+ γ.

This indicates that the cost for the updated sliding window
is increased by the cost for new tuples, costw(Mp+1,C∗),
regardless of the cost of the previous window. The data stream
clustering using the partitioning with sliding windows needs
processing within a certain upper bound of error. This is why
employing a re-clustering policy like ours, as explained in
Section VI, is indeed necessary in practice.

V. CORESET CONSTRUCTION BASED ON
LOCALITY-SENSITIVE HASHING
Our proposed algorithm is designed to take into account
several problems in [4] and [7]: 1) the appropriate threshold
should be determined according to dataset, 2) there is no limit
to the number of groups, and 3) expired tuples may exist
in the synopses. In addition, there are still time-consuming
operations that can be improved for practical use.

Assume that we have a coresetM = {GF1, . . . ,GFm} from
a set of input tuples {x1, . . . , xi} ⊂ B, where |M | = m,
|B| = n, and i < n. For the next input tuple xi+1 ∈ B,
Algorithm 1 needs to find the nearest neighbor GF ∈ M of
xi+1. Finding the nearestGF is a computationally heavy oper-
ation since it scans all GFs in M and computes all distances
for each GF . The search operation requires O(dmn) time to
obtain a coreset per window slide, which is too slow for
a large window or for high-dimensional data. Furthermore,
Algorithm 2 computes the distances between all pairs of
GFs in the coreset, and it requires O(dm2) time. Therefore,
we propose an improved algorithm based on the concept of
Locality-Sensitive Hashing (LSH) [18] in order to reduce the

VOLUME 6, 2018 63767

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

distance computation. The proposed algorithm also works for
the data streams.

The basic concept of the LSH in Euclidean space is to map
similar vectors to hash values that have a higher probability
of collision than the hash values of dissimilar vectors. In other
words, if two vectors are close to each other, the vectors
remain close after projection. The hash function hEa,b(Ex) :
Rd
→ N is a scalar projection that maps a vector Ex to

an integer. For example, the hash function can be given as
follows: hEa,b(Ex) = b(Ea · Ex + b)/wc, where Ea is a randomly
drawn d-dimensional vector, w is the width of the quantiza-
tion bin, and b is a random variable in the interval [0,w). The
general LSH generates hash values that are computed from
hash functions in order to decrease the probability that dis-
similar vectors fall into the same quantization bin. We define
the global hash function obtained by concatenating the val-
ues from multiple hash functions, e.g., when we have three
hash functions, the global hash function g(Ex) is (h Ea1,b(Ex),
h Ea2,b(Ex), h Ea3,b(Ex)). Although there is an overhead to generate
and compute the hash value, it is an acceptable load if we use
the proper number of hash functions.

The main idea of our algorithm is that vectors with a near
distance have similar values of LSH. Based on the concept of
LSH, if the distance between two vectors x and y, dist(x, y),
is less than θ , the distance after projection is also less than θ .
Therefore, by setting the width of the quantization bin w
of the hash function to θ , each element of the hash table
contains vectors whose distances are within θ . The distance
computation is not necessary to combine vectors within the
distance θ .
Our algorithm utilizes a hash table whose key is a hash

value generated by LSH, and each bucket stores their GFs.
For data streams, the algorithm processes the input tuple
in realtime. The algorithm appends the input tuple to an
existing or newGF in the bucket, and it reduces the hash table
by merging buckets when the hash table exceeds a certain
size.

Algorithm 3 describes the detailed process of creating a
coreset based on LSH. First, the algorithm initializes the hash
table H and the global hash function g. The number of hash
functions is given by the user, and it creates d-dimensional
random unit vectors a1, . . . , al . The process of obtaining the
threshold value θ is omitted here because the same method
is used in Algorithm 1. The global hash function g is defined
using the unit vectors and θ . For each tuple b, the algorithm
generates a hash value by g(b). If the hash value g(b) does not
exist in the hash table, it creates a newGF of b, and stores the
GF with the key of g(b) in the table. If the hash value exists,
theGF of the key g(b) absorbs b, and the hash table is updated
with the GF . When the hash table exceeds the user-specified
size, it is reduced through ReduceCoreset2.

We keep the first tuple b of the group feature as an index
tuple. For an index tuple b, we denote the corresponding
group feature by GFb. In order to calculate the distance
between the new input tuple and theGFs withmore precision,
the center of the GF should be indexed. However, since the

Algorithm 3 ConstructCoreset2
Input: A set of tuples B, coreset size m, number of hash
functions l
Output: Coreset P

1: initialize hash table H , and hash function g(x) =
(h Ea1,θ (Ex), . . . , h Eal ,θ (Ex))

2: for each b ∈ B do
3: if g(b) /∈ H then
4: create new GFb based on b
5: H [g(b)] = GFb
6: else
7: GFb←H [g(b)],GFb = GFb+p, andH [g(b)] =
GFb

8: end if
9: if |H | ≥ 2m then
10: H ← ReduceCoreset2(H , m)
11: end if
12: end for
13: return GFs in H

center of the GF continues to change as tuples are appended,
it is inefficient to update the key of the hash table every time.
We thus use the fixed key of the index tuple with some error
tolerance.

The time complexity of Algorithm 3 is O(dln), since the
search time of the hash table is O(1) and the generation time
of the hash value for a tuple is O(dl). Since l � m and
O(dln) < O(dmn), Algorithm 3 runs much more quickly
than Algorithm 1. In particular, for high-dimensional data,
Algorithm 3 can be more efficient because the cost of the dis-
tance calculation ismuch higher than the cost of the retrievals.
The algorithm uses at most 2m space.

Algorithm 4 ReduceCoreset2
Input: Hash table H , reduced size m
Output: Reduced hash table H

1: while |H | < m do
2: Q ← a set of key pairs with minimal difference in

hash value
3: for each (x, y) ∈ Q do
4: GFx ← H [g(x)]
5: GFy← H [g(y)]
6: GFx = GFx + GFy
7: H [g(x)] = GFx
8: remove the bucket of g(y) from H
9: if |H | ≤ m then
10: break
11: end if
12: end for
13: end while
14: return H

Algorithm 4 shows the process of reducing the hash table.
The algorithm requires a list of key pairs ordered by the
differences of the keys. The calculation of the differences of

63768 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

FIGURE 6. Merging buckets in hash table for coreset.

all key pairs isO(lm2), which is less than the originalO(dm2),
but it is still a heavy computational operation. Therefore,
we adopt a simple heuristic for linear time complexity.

The heuristic method requires a list of keys ordered by
comparing all components of the hash values. A sorted list
can be created in the ReduceCoreset2, but we maintain an
additional sorted list of keys in ConstructCoreset2, which is
updated whenever data arrives. With the sorted list, we com-
pute the difference between adjacent buckets only, not all
pairs. We organize the key pairs according to the difference
in the computed result, and the key pairs are merged in order
of a small difference.

Fig. 6 shows an example of merging buckets. The keys
are sorted, and their differences between adjacent buckets
are computed. For example, if we calculate the difference by
the Manhattan distance, then the difference between the first
and second buckets of the left hash table is 3, while the second
and third is 1. After calculating the key differences between
adjacent buckets, we iterate to merge adjacent two buckets
with the smallest difference into one bucket. For example,
wemay begin to search for any adjacent buckets of one differ-
ence, and if found, they are merged. In the figure, the second
and third buckets are merged into a bucket that now con-
tains {x1, x2, x4, x11, x6, x8}. Then the fourth and fifth buckets
have the next smallest difference, and they are merged to
contain {x3, x7, x12, x9, x10}. After merging, the differences
are computed again for newly adjacent buckets. For example,
the difference between the second and third buckets of the
right hash table is four. If the reduced hash table size is greater
than m, this entire process iterates until the desired size is
reached.

In our implementation of hash table, we employ a
multi-linked list in order to traverse the adjacent buckets

with the same difference in order of the smallest value first.
Each bucket represents a GF , and it also stores the statistic
summaries of the grouped tuples, such as LS, SS, N , and T ,
as they are explained in Section III-E. In addition, we do not
physically remove a bucket when merging it into its adjacent
one, but just reset the link pointers of the buckets in order
to avoid the time for dynamically changing the hash table.
For detailed information on the hash table data structure,
interested readers may refer to [1].

VI. RE-CLUSTERING POLICY
We perform weighted k-means clustering using the weighted
centroids of theGFs in the coreset. The centroid is computed
by LS/N , and N is used as the weight. There is no additional
computation cost to computing the centroids. We utilize
Lloyd’s algorithm for clustering, where the distance between
center and GFx is w(GFx)‖c− GFx‖ = Nx‖c− LSx/Nx‖.
In order to reduce the total computational cost of cluster-

ing, we include a re-clustering policy in our algorithm so
as to determine whether if we may append a newly created
GFs to pre-existing clusters while maintaining the quality
of clusters at a certain degree. For example, let us consider
Fig. 3. Suppose that three clusters of the first window were
C1 = {GF1,GF4}, C2 = {GF3}, and C3 = {GF2,GF5}.
If the newly appended tuples, x10, x11, and x12 at time t2, are
close enough to the centers of the previous three clusters,
then it is more efficient to assign each tuple to one of the
closest clusters among the previous C1,C2,C3. The resulting
clusters of the second window will be C1 = {x4, x6, x8, x11},
C2 = {x7, x9, x10, x12}, and C3 = {x5}.

Our algorithm exploitsGFs for clustering. Upon the arrival
of the new tuples, their nearest GFs instead of the centers
of the clusters are searched for. The new tuples are assigned

VOLUME 6, 2018 63769

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

to the nearest GFs and those GFs are updated with the
tuples. Because of the incrementality and additivity of GF ,
the update can be done in a constant time.

An issue faced by a re-clustering policy is how to mea-
sure a possible degradation of cluster quality that we would
encounter if we did not re-cluster. In other words, clustering
should be performed on the whole GFs if the quality is
expected to drop below a certain level. We employ the proba-
bility distributions of clusters in order to measure the quality.
A detailed algorithm for clustering with the LSH-based core-
set is similar to that in [2]. The previous algorithm also seeks
for a possibility to append newly created GFs to pre-existing
clusters to avoid repeated clustering. Unlike the previous
algorithm, the algorithm in this paper exploits a reduced
coreset which is created by Algorithm 3. We assumed that
the input data distribution follows the Gaussian distribution in
our previous work. However, since this assumption does not
always apply to every dataset, we propose a new probability
distribution for measuring the clustering quality.

We use Kullback-Leibler divergence [49] to measure the
quality degeneration of the original and modified clusters.

DKL(p(x)||q(x)) =
∑
x

p(x) log
p(x)
q(x)

.

The KL-divergence of the probability distributions p(x) and
q(x) is a measure of the information gain achieved in the case
that p(x) is used instead of q(x).
To compute the KL-divergence, we model the quality

degradation by the location of the cluster center, which
changes by the appended data. If the appended data fits the
cluster well, the cluster center will not change significantly.
If the appended data is very different from the data that
already exists in the cluster, a new cluster center computed
by including the appended data will also move substantially
from its original location.

Usually, the quality of the clusters is measured by the
sum of squared distance, which is presented in Definition 1.
However, it is not suitable as a quality measure because the
optimal centers are unknown, and the range of values varies
depending on the data. Instead, we define the probability
mass function for the probability distribution of a cluster
as the ratio of the squared distance from the center to a
tuple. The base concept is introduced in k-means++ [38],
and we modify it for the re-clustering policy. Specifically,
the function for x in cluster P is defined as

p(x) =
‖x − cx‖2∑
y∈P‖y− cx‖

2 .

Then, the probability distribution for the changed cluster
q(x) is computed using the distance from the new center.
Based on the definition, the error of the modified clusters
is obtained by averaging the KL-divergence of each cluster.
Note that we maintain only theGFs, so the weighted distance
using GF is used.

Error bound ε is required for clustering in order to adjust
how much the algorithm tolerates the error. The value is

determined experimentally. Lower values allow for more fre-
quent clustering. While performing clustering, it is easy to
generate and maintain the cluster statistics. GF maintains the
distances from the original cluster centers and the distances
from themodified cluster centers.When a cluster is modified,
the statistics are updated inO(km) time, where k is the number
of clusters, and m is the number of GFs.

VII. EXPERIMENT
A. EXPERIMENTAL SETUP
We evaluated the efficiency and scalability of our clustering
algorithm using synthetic and real-world datasets.
GFCS(Group Features based Clustering with Sliding win-

dows) is a basic approach which was presented in [2]. GFCS
also maintains panes for the window and creates GFs based
on a predefined threshold. GFCS exploits the simplified
LSH in order to find the nearest GF , but there is no reduc-
tion step in GFCS. CSCS(CoreSet based Clustering with
Sliding windows) is the improved algorithm based on LSH
presented in this paper. We compared our algorithms with
recent data stream clustering algorithms, SWClustering [4],
StreamKM++ [6], ClusTree [16], and G2CS [28], each of
which is explained in Section II. We also measured the per-
formance of a basic k-means clustering on raw tuples, which
is implemented by Lloyd‘s algorithm [5].

All algorithms were implemented by Java. StreamKM++
and ClusTree were implemented based on the MOA
framework [50]. We implemented GFCS, CSCS, SWClus-
tering, G2CS and Lloyd‘s algorithm from scratch in Java.
For proper comparison, G2CS is implemented except for the
lattice generation. We executed all experiments with 64-Bit
OpenJDK1.8.0_91 on Intel i7-3820 3.60GHzCPU and 32GB
main memory using Linux 4.4.0-43 kernel. The maximum
Java heap size (-Xmx option) is set to 8GB.

TABLE 2. Real-world datasets.

TABLE 3. Synthetic datasets.

Table 2 and Table 3 show real-world and synthetic
datasets for the experiments. For synthetic data, we gener-
ate data which follow the Gaussian distribution and have

63770 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

30 clusters with dimensions of 40, 80, 160, and 200,
respectively. For example, synlk30d40 contains data with
40 dimensions. Kddcup99 contains network data streams to
detect network intrusion. Kddcup99 contains logs of TCP
connection of the network at MIT Lincoln Labs for 2 weeks.
This dataset is used to evaluate the clustering algorithms
in [3]. Covtype contains cartographic data from the Roosevelt
National Forest of northern Colorado. Tower consists of
RGB values of an image file. Census1990 contains personal
records sampled from the 1990 U.S. census data. Covtype
and census1990 are used in StreamKM++. The datasets
of kddup99,1 covtype,2 and census19993 come from the
UCI Machine Learning Repository [51]. Tower dataset4 is
from [52]

In order to evaluate the efficiency and scalability, we mea-
sure the total processing time and processing time for each
slidingwindow. In order to evaluate the quality of the clusters,
wemeasure the sum of squared distance (SSQ) of the clusters,
which is the k-means cost. SSQ is defined as

∑
‖si − ci‖2,

which means the sum of squared distance between each
tuple and their nearest cluster center. The lower SSQ value
indicates a better quality of clusters. In the sliding windows,
the algorithm produces multiple results as the windowmoves.
Therefore, the quality is evaluated by averaging the SSQ
of the results. Note that there are other quality measures
such as purity, normalized mutual information, or rand index.
However, they can be precisely measured when each tuple
is class-labeled. Furthermore we use the k-means as a base-
line algorithm to compare the performance of different algo-
rithms, and SSQ itself as a single quality measure works
fine. Other works such as SWClustering have also taken this
approach in their experiments.

B. EXPERIMENTAL RESULTS
For CSCS, we set the number of hash functions l = 15,
and the coreset size m = 10000, error bound ε = 0.2,
if not mentioned explicitly. For GFCS, we set threshold θ as
θkddcup99 = 60, θcensus1990 = 9, θcovtype = 75, and θtower = 5.
For the parameters of the competitive algorithms, a coreset

size of StreamKM++ was set to 200k , and and the maximal
height of the tree of ClusTree is set to 10. For SWClustering,
the values of threshold θ is equal to GFCS, and ε = 0.05
which limits the number of expired records.

The clustering quality and speed are in a trade-off with the
values. We tested several parameters and error bounds, and
selected the values that generated the best clustering quality.
The parameters of the competitive algorithms are based on
values showing good quality for the same datasets by the
authors. Since the other algorithms, except for SWClustering,
do not support sliding operation, we repeatedly ran clustering
algorithms on tuples that are within the range of the window.

1http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
2https://archive.ics.uci.edu/ml/datasets/covertype
3https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
4http://homepages.uni-paderborn.de/frahling/instances/Tower.txt

Fig. 7 shows the clustering quality of the algorithms for dif-
ferent values of k with real-world datasets. We set RANGE =
100,000 and SLIDE = 10,000. The basic k-means in the
experiment shows the best quality because it performs clus-
tering directly on the input tuples, and not on any summa-
rization of the tuples. Overall, we observe that our algorithm
CSCS loses some accuracy, but is comparable to other algo-
rithms such as StreamKM++ and ClusTree. For the kdd-
cup99 dataset, CSCS shows the best quality except k-means,
but G2CS outperforms our previous algorithm GFCS as well
as other competitors. For census1990 and tower datasets,
StreamKM++ shows the good quality. This seems that the
algorithm works well for finding the good initial centers of
k-means. However, finding the good initial centers is a very
time-consuming task. Fig. 8 shows that StreamKM++ takes
the longest time in census1990 dataset.

In terms of the processing time, our algorithm shows the
best performance. It also scales up the best as the window size
increases. In Fig. 8, we measure the average processing time
of each algorithm for the different window sizes, where the
size value is given by RANGE. We set k = 30, and SLIDE =
10,000. We tested only datasets with sufficient quantities
and large dimensions, which are kddcup99 and census1990.
We also used synthetic datasets to test larger dimensions.

As the window size increases, the processing times of the
other algorithms increase as well. For both datasets and all
window sizes, CSCS shows the fastest average processing
time. On average, it runs on the kddcup99 dataset 2501%,
507%, 1576%, 860%, 1208% faster than SWClustering,
ClusTree, StreamKM++, G2CS, and k-means, respectively
(Fig. 8a). The improvement obviously increases with the size
of the window. It also exhibits the similar improvement on the
average processing time on the census1990 dataset (Fig. 8b).
On average, it runs 920%, 641%, 2840%, 1343%, 1487%
faster than SWClustering, ClusTree, StreamKM++, G2CS,
and k-means, respectively.
GFCS, our previous work, follows the next performance in

all cases. Both algorithms scale up well as the window sizes
increase, in that the processing time they require for bigger
size window does not increase as much as the others do. In the
meanwhile, ClusTree is the third fastest algorithm, while its
processing time increases more rapidly than CSCS or GFCS
as the window size increases.

Fig. 9 shows the processing times at each timestamp when
the window slides. We set k = 30, RANGE = 100,000,
SLIDE = 10,000, and the number of tuples = 200,000.
Our algorithms of CSCS and GFCS are both stable and fast.
On average, CSCS runs on the kddcup99 dataset 2208%,
540%, 1700%, 619%, and 1187% faster than SWCluster-
ing, ClusTree, StreamKM++, G2CS, and k-means, respec-
tively. CSCS also runs on average 152% faster than GFCS.
ClusTree shows the third best performance, and SWClus-
tering shows the lowest performance (Fig. 9a and 9c).
Since k-means is a randomized algorithm, the process-
ing time fluctuates with the data distribution. However,
k-means shows the proper performance, meaning that the

VOLUME 6, 2018 63771

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

FIGURE 7. Clustering quality comparison with real-world datasets. (a) kddcup99. (b) census1990. (c) covtype. (d) tower.

FIGURE 8. Processing time of a window with specific size. (a) kddcup99. (b) census1990.

cost of constructing additional synopses of the streaming
algorithms is quite high. Fig. 9b and 9d shows only the
results of GFCS and CSCS. Their processing times can vary
depending on the characteristics of the dataset. For example,
CSCS outperforms GFCS on a dense dataset census1990

consistently and much more than it does on a less dense
dataset kddcup99.

In order to investigate the impact of the coreset size and
the number of hash functions, we conducted experiments
on synthetic datasets. Fig. 10 and 11 show the clustering

63772 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

FIGURE 9. Processing time at each timestamp. (a) kddcup99. (b) kddcup99 (CSCS & GFCS). (c) census1990. (d) census1990 (CSCS & GFCS).

FIGURE 10. Clustering quality by coreset size.

quality and execution time as the coreset size changes.
We set RANGE = 100,000 and SLIDE = 10,000, and mea-
sured the performance for the datasets by changing the size
from 1000 to 40000. Therefore, k-means clustering was per-
formed with a coreset of sizes from 1/100 to 40/100 of the
original tuples. The average SSQ is converted to a logarithmic

scale so as to present multiple results together in one figure,
and the results of kddcup99 are divided by 100 for the same
reason.

In terms of the clustering quality, CSCS shows good
performance with a coreset of 1/10 size, and the
performance with a coreset of 1/100 size was not

VOLUME 6, 2018 63773

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

FIGURE 11. Processing time by coreset size.

FIGURE 12. Clustering quality by the number of hash functions.

FIGURE 13. Processing time by the number of hash functions.

significantly lowered. The results of the synthetic datasets
also show a similar pattern. The reason for the observed
good performance in the mid-size coreset is the effect of
removing the outliers. In a large-sized coreset, the number of
noiseGFs increases because the reduction process occurs less
frequently.

In terms of time, a large size coreset takes more time to
process. For synthetic datasets, CSCS is the fastest in a small
dimension and small coreset. The processing time increases
as the values of the parameters increase. In particular, for
high-dimensional data, the size of the coreset does not affect
the processing time.

63774 VOLUME 6, 2018

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

Lastly, we also investigated the effect of the number of
hash functions on the performance. We changed the number
of hash functions from five to 25 and measured the quality
and processing time of the algorithm. The results are shown
in Fig. 12 and 13. For real-world datasets, the clustering
quality is improved as the number of hash functions increases,
but the improvement seems less effective as the number
grows more than 15. For synthetic datasets, the quality is
best at 10 hash functions. It also shows that a very small
number of hash functions such as five is not suitable for
high-dimensional data. At the same time, the processing
time increases consistently as the number of hash functions
increases, due to their being more calculations of hash values
and distances.

According to the results, the factors which affect the pro-
cessing time are the dimension of the data and the number
of hash functions. On the other hand, we find that increas-
ing the size of coreset does not affect the processing time.
This is because the time complexity of the construction and
the reduction of coreset is linear to the input size. Based
on experimental results, we conclude that our algorithm
shows good performance in terms of the quality and pro-
cessing time. In particular, our algorithm is very effective for
high-dimensional data.

VIII. CONCLUSION
In this paper, we developed an efficient algorithm for data
stream clustering over sliding windows. In the grouping step,
we presented an aggregation technique for the slidingwindow
model, which divides the window into disjoint chunks and
generates the overall coreset bymerging partial coresets. LSH
is utilized for efficient coreset construction. In the clustering
step, the algorithm performs clustering on group features in
the coreset. The re-clustering policy of modifying clusters
was proposed in order to avoid unnecessary clustering. Our
approach has an advantage over recent algorithms in that it
performs clustering on entire data streams because it provides
the functionality of tracking changes in the data streams by
generating snapshots of the clusters using less computational
power.

Our algorithm focuses on the k-means problem, but
k-means involves several problems. Specifically, a fixed num-
ber of clusters should be specified before clustering, and it is
difficult to generate clusters for arbitrary shapes. In order to
overcome these problems, various clustering algorithms were
developed, including density-based clustering and message
passing based clustering. However, few studies have exam-
ined data streams with sliding windows. In future research
efforts, we will extend our technique to other clustering
algorithms.

ACKNOWLEDGMENT
A preliminary version of this paper was presented at the
22nd DASFAAConference, Suzhou, China, in 2017 [2]. This
paper is based on the first author’s dissertation [1] at Seoul
National University. This paper is a fully-rewritten extended

version that features LSH-based coreset construction, math-
ematical formalization and theoretical analysis of the algo-
rithm, as well as extensive experiments with new datasets.

REFERENCES
[1] J. Youn, ‘‘A scalable clustering algorithm for high-dimensional data

streams over sliding windows,’’ Ph.D. dissertation, Dept. Comput. Sci.,
Seoul Nat. Univ., Seoul, South Korea, 2017.

[2] J. Youn, J. Choi, J. Shim, and S.-G. Lee, ‘‘Partition-based clustering with
sliding windows for data streams,’’ in Proc. 22nd Int. Conf. Database Syst.
Adv. Appl. Cham, Switzerland: Springer, 2017, pp. 289–303.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, ‘‘A framework for clustering
evolving data streams,’’ in Proc. 29th Int. Conf. Very Large Data Bases,
2003, pp. 81–92.

[4] A. Zhou, F. Cao, W. Qian, and C. Jin, ‘‘Tracking clusters in evolving
data streams over sliding windows,’’ Knowl. Inf. Syst., vol. 15, no. 2,
pp. 181–214, 2008.

[5] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[6] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen,
and C. Sohler, ‘‘Streamkm++: A clustering algorithm for data streams,’’
J. Exp. Algorithmics, vol. 17, Jul. 2012, Art no. 2.4.

[7] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan, ‘‘Maintain-
ing variance and k-medians over data stream windows,’’ in Proc. 22nd
ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., 2003,
pp. 234–243.

[8] S. Har-Peled and S. Mazumdar, ‘‘On coresets for k-means and k-median
clustering,’’ in Proc. 36th Annu. ACM Symp. Theory Comput., 2004,
pp. 291–300.

[9] Y. Chen and L. Tu, ‘‘Density-based clustering for real-time stream data,’’
in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2007, pp. 133–142.

[10] F. Cao, M. Ester, W. Qian, and A. Zhou, ‘‘Density-based clustering over an
evolving data stream with noise,’’ in Proc. SIAM Conf. Data Mining, 2006,
pp. 328–339.

[11] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, ‘‘Density-based
clustering of data streams at multiple resolutions,’’ ACM Trans. Knowl.
Discovery Data, vol. 3, no. 3, 2009, Art. no. 14.

[12] X. Zhang, C. Furtlehner, C. Germain-Renaud, andM. Sebag, ‘‘Data stream
clustering with affinity propagation,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 7, pp. 1644–1656, Jul. 2014.

[13] L. Sun and C. Guo, ‘‘Incremental affinity propagation clustering based
on message passing,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 11,
pp. 2731–2744, Nov. 2014.

[14] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ ACM SIGMOD Rec., vol. 25,
pp. 103–114, Jun. 1996.

[15] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,
‘‘Clustering data streams: Theory and practice,’’ IEEE Trans. Knowl. Data
Eng., vol. 15, no. 3, pp. 515–528, Jun. 2003.

[16] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, ‘‘The ClusTree: Indexing
micro-clusters for anytime streammining,’’Knowl. Inf. Syst., vol. 29, no. 2,
pp. 249–272, 2011.

[17] J. Gray et al., ‘‘Data cube: A relational aggregation operator generaliz-
ing group-by, cross-tab, and sub-totals,’’ Data Mining Knowl. Discovery,
vol. 1, no. 1, pp. 29–53, 1997.

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, ‘‘Locality-sensitive
hashing scheme based on p-stable distributions,’’ inProc. 20th Annu. Symp.
Comput. Geometry, 2004, pp. 253–262.

[19] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama, ‘‘Data stream clustering: A survey,’’ ACM Comput. Surv.,
vol. 46, no. 1, p. 13, 2013.

[20] X. H. Dang, V. Lee, W. K. Ng, A. Ciptadi, and K. L. Ong, An EM-Based
Algorithm for Clustering Data Streams SlidingWindows. Berlin, Germany:
Springer, 2009, pp. 230–235.

[21] V. Braverman, H. Lang, K. Levin, and M. Monemizadeh, ‘‘Clustering
problems on sliding windows,’’ in Proc. 27th Annu. ACM-SIAM Symp.
Discrete Algorithms, 2016, pp. 1374–1390.

[22] P. S. Bradley, U. Fayyad, and C. Reina, ‘‘Scaling clustering algorithms to
large databases,’’ in Proc. 4th Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: AAAI Press, 1998, pp. 9–15.

VOLUME 6, 2018 63775

J. Youn et al.: Efficient Data Stream Clustering With Sliding Windows Based on LSH

[23] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, ‘‘Clustering data
streams,’’ in Proc. 41st Annu. Symp. Found. Comput. Sci., Nov. 2000,
pp. 359–366.

[24] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,
‘‘Streaming-data algorithms for high-quality clustering,’’ in Proc. 18th Int.
Conf. Data Eng., Mar. 2002, pp. 685–694.

[25] J. Gama, P. P. Rodrigues, and L. Lopes, ‘‘Clustering distributed sensor data
streams using local processing and reduced communication,’’ Intell. Data
Anal., vol. 15, no. 1, pp. 3–28, 2011.

[26] M. Ackerman and S. Dasgupta, ‘‘Incremental clustering: The case for extra
clusters,’’ in Proc. Adv. Neural Inf. Process. Syst. Red Hook, NY, USA:
Curran Associates, 2014, pp. 307–315.

[27] R. Langone, M. V. Barel, and J. A. K. Suykens, ‘‘Efficient evolutionary
spectral clustering,’’ Pattern Recognit. Lett., vol. 84, pp. 78–84, Dec. 2016.

[28] S. Badiozamany, K. Orsborn, and T. Risch, ‘‘Framework for real-time clus-
tering over sliding windows,’’ in Proc. 28th Int. Conf. Sci. Stat. Database
Manage., 2016, Art. no. 19.

[29] S. T. Mai, I. Assent, and A. Le, ‘‘Anytime OPTICS: An efficient approach
for hierarchical density-based clustering,’’ in Proc. Int. Conf. Database
Syst. Adv. Appl., 2016, pp. 164–179.

[30] L. Tu and Y. Chen, ‘‘Stream data clustering based on grid density and
attraction,’’ ACM Trans. Knowl. Discovery Data, vol. 3, no. 3, 2009,
Art. no. 12.

[31] C. Isaksson, M. H. Dunham, and M. Hahsler, ‘‘SOStream: Self organizing
density-based clustering over data stream,’’ in Proc. Int. Workshop Mach.
Learn. Data Mining Pattern Recognit., 2012, pp. 264–278.

[32] V. Bhatnagar, S. Kaur, R. Saxena, and D. Khanna, ‘‘DASC: Data aware
algorithm for scalable clustering,’’ Knowl. Inf. Syst., vol. 50, no. 3,
pp. 851–881, 2017.

[33] M. Hahsler and M. Bolaños, ‘‘Clustering data streams based on shared
density between micro-clusters,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 6, pp. 1449–1461, Jun. 2016.

[34] S. Ding, J. Zhang, H. Jia, and J. Qian, ‘‘An adaptive density data stream
clustering algorithm,’’ Cognit. Comput., vol. 8, no. 1, pp. 30–38, 2016.

[35] R. Hyde, P. Angelov, and A. R. MacKenzie, ‘‘Fully online cluster-
ing of evolving data streams into arbitrarily shaped clusters,’’ Inf. Sci.,
vols. 382–383, pp. 96–114, Mar. 2017.

[36] L. Zheng, H. Huo, Y. Guo, and T. Fang, ‘‘Supervised adaptive incre-
mental clustering for data stream of chunks,’’ Neurocomputing, vol. 219,
pp. 502–517, Jan. 2017.

[37] C. Yang, L. Bruzzone, R. Guan, L. Lu, and Y. Liang, ‘‘Incremental and
decremental affinity propagation for semisupervised clustering in mul-
tispectral images,’’ IEEE Trans. Geosci. Remote Sens., vol. 51, no. 3,
pp. 1666–1679, Mar. 2013.

[38] D. Arthur and S. Vassilvitskii, ‘‘K-means++: The advantages of careful
seeding,’’ in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms.
Philadelphia, PA, USA: SIAM, 2007, pp. 1027–1035.

[39] B. J. Frey and D. Dueck, ‘‘Clustering by passing messages between data
points,’’ Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[40] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining. Portland, Oregon: AAAI Press,
1996, pp. 226–231.

[41] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, ‘‘No pane,
no gain: Efficient evaluation of sliding-window aggregates over data
streams,’’ ACM SIGMOD Rec., vol. 34, no. 1, pp. 39–44, 2005.

[42] A. Arasu, S. Babu, and J. Widom, ‘‘The CQL continuous query language:
Semantic foundations and query execution,’’ VLDB J., vol. 15, no. 2,
pp. 121–142, 2006.

[43] J. MacQueen, ‘‘Some methods for classification and analysis of multivari-
ate observations,’’ inProc. 5th Berkeley Symp.Math. Statist. Probab., 1967,
pp. 281–297.

[44] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, ‘‘NP-hardness of
Euclidean sum-of-squares clustering,’’ Mach. Learn., vol. 75, no. 2,
pp. 245–248, 2009.

[45] G. Rosman, M. Volkov, D. Feldman, J. W. Fisher, III, and D. Rus, ‘‘Core-
sets for k-segmentation of streaming data,’’ in Proc. Adv. Neural Inf.
Process. Syst., Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, Inc.,
2014, pp. 559–567.

[46] G. Frahling and C. Sohler, ‘‘Coresets in dynamic geometric data streams,’’
in Proc. 37th Annu. ACM Symp. Theory Comput., 2005, pp. 209–217.

[47] S. Har-Peled and A. Kushal, ‘‘Smaller coresets for k-median and k-
means clustering,’’ in Proc. 21st Annu. Symp. Comput. Geometry, 2005,
pp. 126–134.

[48] P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K. Sinop, ‘‘The hard-
ness of approximation of Euclidean k-means,’’ in Proc. 31st Int. Symp.
Comput. Geometry (SoCG), in Leibniz International Proceedings in Infor-
matics, vol. 34. S. Dagstuhl, ed. Dagstuhl, Germany: Leibniz Center for
Informatics, 2015, pp. 754–767.

[49] S. Kullback and R. A. Leibler, ‘‘On information and sufficiency,’’ Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[50] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, ‘‘MOA:Massive online
analysis,’’ J. Mach. Learn. Res., vol. 11, pp. 1601–1604, May 2010.

[51] D. Dheeru and E. K. Taniskidou. (2017). UCI Machine Learning Reposi-
tory. [Online]. Available: http://archive.ics.uci.edu/ml

[52] G. Frahling and C. Sohler, ‘‘A fast k-means implementation using core-
sets,’’ in Proc. 22nd Annu. Symp. Comput. Geometry, 2006, pp. 135–143.

JONGHEM YOUN received the B.S. and Ph.D.
degrees in computer science and engineering
from Seoul National University, South Korea,
in 2008 and 2017, respectively. He is currently an
Analytics Lead with Voost Inc. His research inter-
ests include recommendation systems, natural lan-
guage processing, deep learning, and blockchain
technology.

JUNHO SHIM (M’14–SM’17) received the B.S.
and M.S. degrees from Seoul National University,
South Korea, in 1990 and 1994, respectively, and
the Ph.D. degree in computer science from North-
western University, USA, in 1998. He was with
Computer Associates International. He was an
Assistant Professor with Drexel University, USA.
He is currently a Professor with the Department of
Computer Science, Sookmyung Women’s Univer-
sity, South Korea. He has authored over 60 refer-

eed papers at journals and conferences. His research interests include big
data, database systems, e-commerce technology, and the Web. He is a Senior
Member of the IEEE Computer Society. He served as a Committee Member
for internationally renowned conferences including ICDE2015, MDM2016,
WWW2014, and SIGMOD2016.

SANG-GOO LEE received the B.S. degree in com-
puter science and statistics from Seoul National
University, South Korea, in 1985, and the M.S.
and Ph.D. degrees in computer science from
Northwestern University, Evanston, IL, USA,
in 1987 and 1990, respectively. Since 2014, he has
been an Associate Director of the Big Data
Institute, Seoul National University, where he
is currently a Professor with the Department of
Computer Science and Engineering. His research

interests include database systems, big data technology, natural language
processing, technology-driven learning, and recommendation systems.

63776 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	CLUSTERING WITH LANDMARK WINDOWS
	CLUSTERING WITH DAMPED WINDOWS
	CLUSTERING WITH SLIDING WINDOWS

	PRELIMINARIES AND PROBLEM STATEMENT
	DATA STREAMS
	SLIDING WINDOW
	K-MEANS CLUSTERING
	CORESET
	GROUP FEATURE
	PROBLEM STATEMENT

	CORESET CONSTRUCTION BASED ON NEAREST NEIGHBOR SEARCH
	ALGORITHM FOR CORESET CONSTRUCTION
	THEORETICAL ANALYSIS OF CORESET CONSTRUCTION
	THEORETICAL ANALYSIS OF SLIDING WINDOWS

	CORESET CONSTRUCTION BASED ON LOCALITY-SENSITIVE HASHING
	RE-CLUSTERING POLICY
	EXPERIMENT
	EXPERIMENTAL SETUP
	EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	JONGHEM YOUN
	JUNHO SHIM
	SANG-GOO LEE

