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ABSTRACT In massive multiple input multiple output systems, where a large number of antennas are used,
the dependency of the power spectrum on the signal direction allows angle-of-arrival (AoA) estimation
with a very high precision. In this paper, we derive the probability to correctly detect the AoA using the
conventional beamformer. The derivation is presented in an exact manner for uniform linear arrays and
uniform rectangular array geometries. The resulting expressions depend on the noise power, fading variance,
the number of signal snapshots, and the number of antennas. We have numerically evaluated the simulated
and analytical probability of detection and they have shown a perfect agreement for distinct scenarios.

INDEX TERMS Angle of arrival, beamforming, probability of detection, ULA, URA, massive MIMO.

I. INTRODUCTION
The upcoming fifth generation (5G) of mobile network
communication technology is considering the use of Mas-
sive MIMO (large number of antennas) at the base station.
Research in the Massive MIMO subject has investigated
many different areas such as architecture, channel modeling,
power allocation, parallel models (D2D Device to Device
communications), performance analysis, fading behavior,
and channel state information (CSI) [1]–[4]. However, there
are few works [5] where Massive MIMO system is used for
localization of terminals.

There are several techniques for device localization.
Among the most important, we can enumerate the
following:

• Time of Arrival (ToA), which uses the delay prin-
ciple in signal transmission and matched filter for
time/distance estimation [6].

• Angle of Arrival (AoA), which uses the signal delay
between elements of an antenna array and/or the cor-
relation of power and direction of arrival of a group of
signals [7]–[10].

• Received Signal Strength (RSS), which uses the rela-
tionship between distance and power of a signal trans-
mitted in a physical medium [11], [12].

• Hybrid approaches, which employ simultaneous avail-
able data from previously mentioned methods [5], [13].

Usually, all the described approaches, work as inputs for
localization applications where the final output is a position
or a distance. Typical works in these applications investi-
gate the development of new algorithms using procedures
like Least Squares [14], Kalman filters [15] or fingerprint
methods [16]. In the mentioned cases, the performance is
assessed usingmetrics like position/angle RMSE (RootMean
Square Error) versus signal to noise ratio (SNR), number of
antennas, or bandwidth [6].

Massive MIMO takes advantage of a large number of
antennas to decrease the effect of noise and fading [1]. In the
Marzetta’s [4] pioneer paper, it has been shown that the use
of the conventional beamforming technique is optimal as the
number of antennas increases. It turns out that this basic
technique for AoA estimation is the same used for combining
the signals in the Massive MIMO system.

Several works have proposed algorithms and assessment
methods for AoA estimation [7]–[10], [14], [15], however,
to the best of our knowledge, the probability of detection for
AoA using the conventional beamformer is unavailable in the
literature.

There are other AoA estimation techniques such as
Capon [17], MUSIC (Multiple Signal Classification) [18],
ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Technique) [19], and RiMAX [20], that present
better performance than the basic method investigated here.
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FIGURE 1. Physical model of an ULA system with M antennas.

However, the connection to Massive MIMO technique plays
a key role that has motivated the derivation of the proposed
metric. In fact, we have also tried to derive the samemetric for
MUSIC and Capon techniques, however, these calculations
are quite involved and would require new developments in
invertible non-central complex Wishart matrices, supersym-
metry (use of anticommuting variables) and complex eigen-
vectors PDF (Probability Density Function) [7], [21]. In this
way, we can say that our derived expressions can be used as a
lower bound or an approximation to estimate the probability
of detection for other techniques.

In this work, we derive the probability of detection for AoA
using conventional beamforming in fading and noise scenar-
ios for ULA and URA geometries. Our derived expressions
are presented as a function of the number of signal snapshots,
the magnitude of fading variance, the magnitude of noise
variance, and the number of antennas.

The paper is organized as follows: Section II presents the
system model. Section III formulates the problem for proba-
bility of detection. Section IV illustrates the derivation of the
probability of detection for ULA and URA cases. Section V
exhibits numerical results (analytical and simulated) for the
probability of detection. Finally, some conclusions are drawn
in the Conclusions section.

II. SYSTEM MODEL
Fig. 1 shows a typical ULA system where the signal received
by the i-th antenna element is given as

ri(t) = s(t)hi(t)ej(i−1)µ(θ ) + ni(t), (1)

where s(t) is the transmitted signal, µ(θ ) = 2π
λ
1 sin(θ )

is the spatial frequency, hi(t) models the fading, λ is the
wavelength, 1 is the distance between elements, ni(t) is the
additive Gaussian noise, and θ is the AoA of the direct line

of sight component. The signal received by all the elements
of the array can be written in a 1×M vector form as

r(t) = ã(θ ) ◦ h(t)s(t)+ n(t), (2)

where the symbol ◦ stands for the Hadamard product, and the
steering vector ã is given as

ã(θ ) =
a(θ )
√
M
=

1
√
M

[
1ejµ(θ ) . . . ej(M−1)µ(θ ))

]
, (3)

the fading vector h(t) is a complex Gaussian random process
with unitary mean (µf = 1) for the real and imaginary part,
and covariance matrix σ 2

f IM , where IM stands for a M ×M
identity matrix. Namely, the channel for signal s(t) is set as
Rician fading with a dominant LoS component, i.e. µf . The
noise n(t) is a complex noise random process with zero mean
and covariance matrix σ 2

n I.
The sample covariance matrix can be used to calculate

the degree of correlation between a group of signals. The
higher the value of the matrix elements, the higher the degree
of correlation between the signals. Signals arising from the
same origin are highly correlated and therefore the sample
covariance matrix R can be used to estimate the angle of
arrival, as vastly reported in many references [7], [22]–[24].

Assuming a specific time tk , we define rk = r(t = tk ), and
therefore the covariance matrix can be written as

R =
1
K

K−1∑
k=0

rHk rk , (4)

where (·)H stands for the conjugate transpose or Hermitian
operator. The variable K is the number of snapshots taken
from the signal.

The conventional beamformer method estimates the spa-
tial power spectrum for every possible AoA frequency
as [7, eq. 3.43]

HULA(ψ, θ) =
ã(ψ)R̃aH (ψ)
ã(ψ )̃aH (ψ)

, (5)

where ã(ψ) is the steering vector for all possible angles,
as defined in (3). The angle ψ will be discretized into Q pos-
sible values, in other words there are Q steering frequencies.
When the condition ψ = θ occurs, (5) reaches its maximum,
which is the key assumption to estimate θ (the AoA of the
direct line of sight component). It is important to note that
the original AoA θ will be covered by the closest value of
the Q possible steering angles. However as the number of Q
increases (which is the case for Massive MIMO), the error
associated with this discretization will be negligible.

For all the snapshots, the numerator of (4) can be written
as

ã(θ )rHk rk ã
H (θ ) = qkqk = |qk |2. (6)

where qk = rk ãH (θ ).
Note that (6) presents the term qk = rk ãH (θ ), that is

exactly the spatial implementation of the Maximal Ratio
Combining (MRC) principle [4], in which ãH (θ ) is the spa-
tial channel vector that optimizes the signal to noise ratio.
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TheMRC technique has been devised as the optimal combin-
ing technique since it maximizes the signal to noise ratio at
the combiner output, however, in theMassiveMIMO context,
this technique has been used since the effect of the noise and
fast fading vanish as the number of antennas is very large [1].

Other useful interpretation for (5) is the matched filter
principle: a received signal is correlated with its template
signal. The filter response is maximum when both signals
are similar (i.e. correlated). In this particular case (5) could
be seen as a spatial matching filter that gives a maximum
response when the impinging signals (characterized on R)
match with the steering vector of the angle of origin ã(θ ).

A. URA CONFIGURATION MODEL
A similar model can be defined for the URA case. However,
the URA array steering vector construction is different due
to its two-dimensional characteristics as better explained in
Appendix B. For this case, the spatial power spectrum is given
as

HURA(ψ, ξ ) =
ã(ψ, ξ )R̃aH (ψ, ξ )
ã(ψ, ξ )̃aH (ψ, ξ )

, (7)

where ã(ψ, ξ ) is given in (53) and (54). See Appendix B.

III. PROBLEM FORMULATION
The purpose of this work is to find the probability of detection
for the conventional beamforming method for the ULA and
URA geometries. Recalling equation (5), it is evident that
the spatial spectrum depends on the steering angle and the
real AoA, in other words, the original received signal r is
transformed to the spatial frequency domain where the steer-
ing angles are the associated spatial frequencies. This fact is
illustrated in Fig. 2.

FIGURE 2. Spatial power spectrum of conventional beamforming with
θ = 20◦, Q = 181(1ψ = 1.0◦), K = 2, M = 50E, σn = 1, σf = 1 for the ULA
case.

Fig. 2 describes the relationship between power and angle,
where the maximum occurs at ψ = θ = 20◦ which is the
AoA of the direct line of sight component.

We define the probability of detection PD as

PD = Prob
[
ψ̂ = θ

]
. (8)

This circumstance occurs when the power of the associated
frequency of ψ = θ is greater than the power of the rest of
steering angles frequencies ψ . In other words

PD = Prob
[
HULAθ,θ > {HULA(ψ1,θ ) . . .HULA(ψQ−1,θ )}

]
, (9)

where Q is the number of possible spatial steering
frequencies.

It is important to emphasize, that in the strict sense, ψ will
never be equal to θ since they are real variables. The probabil-
ity of detection is a metric that is valid for a discrete problem
and that is the reason for the discretization of ψ .

All further analysis will be performed using the random
variableHULA. For the URA case, similar results are obtained
since the geometry of URA does not affect the final behavior
of our derivations. See Appendix B.

IV. PROBABILITY OF DETECTION
In order to get an expression for the Probability of Detection,
we formulate two detection hypotheses
• H0: HULA(ψ,θ ) has its maximum value at any angle fre-
quency different from the real AoA, that is ψ 6= θ .

• H1: HULA(ψ,θ ) has its maximum value at the real AoA,
that is ψ = θ .

As it is shown in Appendix A, the random variable HULA
defined in (5) turns out to be the sum of two squared Gaussian
random variables. Each one of these variables corresponds to
sum ofM Gaussian random variables. For the hypothesisH0,
that is, for ψ 6= θ the mean of each Gaussian variate will be
given by π1/

√
M , and π2/

√
M , where π1 and π2 are given

in (39) and (40), respectively. As the number of antennas M
goes to infinity, π1/

√
M and π2/

√
M tend to zero. Under this

condition,HULA will be distributed according to a centralChi-
squared distribution as

HULA(ψ,θ ) =
Mσ 2

n + σ
2
f

2KM
�(ψ,θ ), (10)

�(ψ,θ ) ∼ χ
2 (2K ). (11)

where χ2 (κ) is theChi-squared distribution [25] with param-
eter κ > 0. The PDF can be obtained and derived from (46)
(Appendix A) as

fHULA (x|H0) =

(
KM

Mσ 2
n + σ

2
f

)K
xK−1e

−
xKM

Mσ2n+σ
2
f

0(K )
, (12)

where 0(.) is the Gamma function [25], [26].
Under the hypothesisH1, that isψ = θ , π1 = M , and π2 =
−M , therefore π1/

√
M and π2/

√
M tend to

√
M and−

√
M ,

respectively. Under this condition, the random variable HULA
will be distributed according to a non-central Chi-squared as

HULA(ψ = θ ) = PULA =
Mσ 2

n + σ
2
f

2KM
�(θ,θ ), (13)
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where

�(θ,θ ) ∼ χ
2
nc

(
2K ,

4KM

Mσ 2
n + σ

2
f

)
. (14)

The respective PDF is given in (47), as

fHULA (x|H1) = fPULA (x) =
KM

Mσ 2
n + σ

2
f

e
−

KM (x+2)
Mσ2n+σ

2
f

·

(x
2

)K−1
2
IK−1

(
2KM

Mσ 2
n + σ

2
f

√
2x

)
, (15)

where Ic (d) is the modified Bessel function of the first kind
with parameters c ≥ 0 and d ≥ 0 [25], [26].

The probability of a random variable X be less than other
random variable Y , is defined as [25], [26]

Prob[X < Y ] =
∫
∞

−∞

[∫ y

−∞

fx(x)dx
]
fy(y)dy (16)

In our particular case, we want to know the probability of a
set of Q − 1 i.i.d. random variables Xi be less than a unique
random variable Y , that is

Prob[{X1, . . . ,XQ−1} < Y ]

=

∫
∞

−∞

[∫ y

−∞

fx(x)dx
]Q−1

fy(y)dy (17)

The Q − 1 probability density functions fx(x) are related
to the hypothesis H0 (fHULA (x|H0)) whereas the probability
density function fy(y) is associated with the hypothesis H1
(fHULA (x|H1)). Therefore, our probability of detection can be
computed as

PD = Prob[{HULA(ψ1,θ ) , . . . ,HULA(ψQ−1,θ )} < PULA], (18)

or equivalently,

PD =
∫
∞

0

∫ y

0

(
KM

Mσ 2
n + σ

2
f

)K
xK−1e

−
xKM

Mσ2n+σ
2
f

0(K )
dx


Q−1

·
KM

Mσ 2
n + σ

2
f

e
−

KM (y+2)
Mσ2n+σ

2
f

( y
2

)K−1
2

· IK−1

(
2KM

Mσ 2
n + σ

2
f

√
2y

)
dy (19)

The integral inside the brackets can be solved as

∫ y

0

(
KM

Mσ 2
n + σ

2
f

)K
xK−1e

−
xKM

Mσ2n+σ
2
f

0(K )
dx

= 1−
γ

(
K , KMy

Mσ 2n+σ
2
f

)
0(K )

, (20)

where γ (·, ·) is the incomplete Gamma function, and 0(·) is
the gamma function. Using (20) and the binomial identity

(x + a)Q−1 =
∑Q−1

i=0

(Q−1
i

)
x iaQ−1−i, (19) can be written as

PD =
∫
∞

0

Q−1∑
i=0

(
Q− 1
i

)
(−1)Q+i−1

·

γ
(
K , KMy

Mσ 2n+σ
2
f

)
0(K )


Q−1−i

KM

Mσ 2
n + σ

2
f

e
−

KM (y+2)
Mσ2n+σ

2
f

·

( y
2

) K−1
2
IK−1

(
2KM

Mσ 2
n + σ

2
f

√
2y

)
dy (21)

Equation (21) has not a closed form expression, but it is
numerically integrable. In the next section, this analytical
expression will be compared to computer simulations.

V. NUMERICAL RESULTS
A. EQUIVALENT RANDOM VARIABLE
Fig. 3, and Fig. 4 show the analytical PDF and CDF, respec-
tively, given in (46) and (47), and the equivalent simulated
PDF andCDF for three different steering angles. As expected,
both plots match perfectly, once that our analytical results are
exact.

FIGURE 3. Normalized histogram for 104 realizations of (5) and analytical
PDF given in (43), with K = 5, M = 4, σf = 1 and σn = 1 (SNR = 0 dB) for
ψ1 = 15◦, ψ2 = θ = 30◦ ψ3 = 70◦ in ULA case.

B. PROBABILITY OF DETECTION
We now focus on the probability of detection for Massive
MIMO context, where a huge number of antennas are used
for a particular application.

Fig. 5 shows that the probability of detection PD is barely
affected by the parameter M . Note the perfect agreement
between simulation and the analytical result for values of M
(M ≥ 50), i.e., the Massive MIMO range.
Fig. 6 shows the probability of detection as a function of

the number of snapshots. As it can be observed, the greater
the number of snapshots K , the greater the probability of
detection PD. This behavior is expected since an increase in
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FIGURE 4. Associated CDF for 104 realizations of (5) and analytical CDF
given in (44), with K = 5, M = 4, σf = 1 and σn = 1 (SNR = 0 dB) for
ψ1 = 15◦, ψ2 = θ = 30◦ ψ3 = 70◦ in ULA case.

FIGURE 5. Probability of Detection with, K = 2, Q = 121 (1ψ = 1.5◦),
σn = 1, σf = 1 for ULA case.

the number of snapshots can be considered equivalent to an
increase in the signal to noise ratio. Note that the analytical
and simulated curves are in close agreement.

Fig. 7 shows the probability of detection as a function of
the power noise σ 2

n . Note that the absence of noise leads to a
unitary probability of detection. Again, this figure validates
our analytical results since there is no difference between the
simulated and analytical curves.

C. RESOLUTION
The angle resolution is the angle step between the pos-
sible steering angles chosen to describe the AoA spatial
spectrum. According to the beamforming principles, there
is a maximum angular resolution that can be achieved for
proper signal array processing [27]. This maximum is the
denominated 3 dB beamwidth as

13dB = 1ψ =
2
M
, (22)

FIGURE 6. Probability of Detection with, M = 100, Q = 121 (1ψ = 1.5◦),
σn = 1, σf = 1 for ULA case.

FIGURE 7. Probability of Detection with, K = 2, M = 100, Q = 121
(1ψ = 1.5◦), σf = 1 for ULA case.

This approximation is set for isotropic antennas, large number
of antennas, and antenna spacing equals to d = λ

2 , as stated
in section II. The maximum number, Q, of possible angles
should obey the following inequality

Q =
S
1ψ

, (23)

where S is the span of the steering angles. In our case the
range is set as {−π2 to π

2 } in order to avoid angle ambiguity.
Therefore

Q =
π
2 −

(
−
π
2

)
1ψ

=
π

1ψ
, (24)

so finally, replacing (22) into (24), we get the condition

Q <
π

2
M . (25)

In the simulation scenario, we have established M = 100,
therefore Q < 157.07. The results shown in subsection V-B
have considered this restriction.
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FIGURE 8. Probability of Detection with, K = 2, M = 100, σn = 1, σf = 1
for ULA case.

Fig. 8 shows the probability of detection versus the number
of possible angles Q. Note that the probability of detection
decreases as the number of possible angles Q increases. But
it is also interesting to observe that there is a floor in the
probability of detection suggesting the existence of a lower
limit.

VI. CONCLUSIONS
We derived the exact analytical probability of detection
for conventional beamforming on ULA and URA geome-
tries considering fading and noise scenarios in a massive
MIMO context. The resulting equation is related to a scaled
non-central Chi-squared random variable and its associated
PDF and CDF. Our simulated and analytical curves matched
perfectly, corroborating the analytical derivations. The num-
ber of snapshots, K , and the number of antennas, M , have a
great impact on the probability of detection and therefore in
the estimation angle. It has been observed that these parame-
ters can mitigate the effects of fading and noise. Particularly,
in conventional beamforming, a large number of antennas
improved the probability of detection which is the case for the
Massive MIMO technique. The parameter K has an influence
on the variance of the associated random variable HULA,
but it does not affect its mean. The probability of Detection
for URA geometry presented similar behavior as the ULA
geometry, except that the parameter M must be substituted
by the parameter MxMy in all equations. The advantage of
the URA geometry over the ULA geometry is the possibility
of 3D AoA estimation (elevation and azimuth angles).

APPENDIX A//EQUIVALENT RANDOM VARIABLE
FOR ULA
Note that (5), evaluated for a fixed angle, is a random variable
(here simplified as HULA(ψ, θ) = HULA and ã(ψ) = ãψ =

aψ
√
M
, defined as

HULA =
ãψ R̃aHψ
ãψ ãHψ

=
aψRaHψ
aψaHψ

=
aψRaHψ
M

, (26)

We start from rk (2)

rk = ãθ ◦ hks(t)+ nk , (27)

where rki is the i-th element of rk , and aθi is the i-th element
of ãθ . Since the sum of complex Gaussian random variables
is also Gaussian distributed, the real and imaginary part of rki
are distributed as

<(rki)

∼N

cos
(
i 2π1
λ

sin(θ )
)
−sin

(
i 2π1
λ

sin(θ )
)

√
M

,
Mσ 2

n +σ
2
f

2M

,
(28)

=(rki)

∼N

cos
(
i 2π1
λ

sin(θ )
)
+sin

(
i 2π1
λ

sin(θ )
)

√
M

,
Mσ 2

n +σ
2
f

2M

,
(29)

where the notation N
(
µ, σ 2

)
stands for a normal distribution

with mean µ and variance σ 2.
Inserting (4) into (26), we get

HULA =
1
KM

K−1∑
k=0

aψrHk rka
H
ψ . (30)

Now, we can define the variable qk as

qk = aψrHk = <(qk )+ j=(qk ). (31)

Therefore

aψrHk rka
H
ψ = <(qk )

2
+ =(qk )2, (32)

which can be expanded as

aψrHk rka
H
ψ =

(
M−1∑
i=0

cos
(
i
2π1
λ

sin(ψ)
)
<(rki)

+ sin
(
i
2π1
λ

sin(ψ)
)
=(rki)

)2

+

(
M−1∑
i=0

− cos
(
i
2π1
λ

sin(ψ)
)
=(rki)

+ sin
(
i
2π1
λ

sin(ψ)
)
<(rki)

)2

. (33)

Note that all the terms inside the summation are Gaussian
distributed since rki is Gaussian and aψi is a constant. Also,
the real and imaginary part of rki are independent. Now
defining the new Gaussian variables as

uki = cos (i(2π1/λ) sin(ψ))<(rki) (34)
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δki = sin (i(2π1/λ) sin(ψ))=(rki), (35)

ηki = sin (i(2π1/λ) sin(ψ))<(rki) (36)

ζki = cos (i(2π1/λ) sin(ψ))=(rki) (37)

then we can write (33) as

aψrHk rka
H
ψ =

(
M−1∑
i=0

uki + δki

)2

+

(
M−1∑
i=0

ηki − ζki

)2

. (38)

The terms inside the sum are also Gaussian distributed, thus

M−1∑
i=0

uki + δki ∼ N

(
1
√
M
· π1,

Mσ 2
n + σ

2
f

2

)
, (39)

M−1∑
i=0

ηki − ζki ∼ N

(
1
√
M
· π2,

Mσ 2
n + σ

2
f

2

)
, (40)

where (after trigonometrical reduction)

π1 =

M−1∑
i=0

cos
(
i
2π1
λ
4

)
+ sin

(
i
2π1
λ
4

)
(41)

π2 =

M−1∑
i=0

sin
(
i
2π1
λ
4

)
− cos

(
i
2π1
λ
4

)
(42)

4 = sin(ψ)− sin(θ ) (43)

Since the sum of independent non-central square Gaussians
with σ 2

= 1 is a non-central Chi-squared distributed random
variable, we finally get that (30) (after unitary variance nor-
malization) can be written as

HULA =
Mσ 2

n + σ
2
f

2KM
�(ψ,θ ), (44)

where

�(ψ,θ ) ∼ χ
2
nc

2K ,
2K

(
π2
1 + π

2
2

)
M
(
Mσ 2

n + σ
2
f

)
, (45)

and χ2
nc (κ, λ) is the non-centralChi-squared distribution [25]

with parameters κ > 0 and λ > 0. This result shows that the
spatial power spectrum given in (5) has an equivalent random
variable, which depends on the spatial frequency related to
the angles ψ and θ .
The derived PDF for HULA is given as

fHULA (x)

=
KM

Mσ 2
n + σ

2
f

e
−
K(M2x+π21+π

2
2)

M (Mσ2n+σ
2
f )

·

(
M2x(

π2
1 + π

2
2

))K−1
2

IK−1

(
2K

Mσ 2
n + σ

2
f

√(
π2
1 + π

2
2

)
x

)
,

(46)

FIGURE 9. URA characteristics. (a) Layout deployment. (b) Angle
incidence.

where Ic (d) is the modified Bessel function of the first kind
with parameters c ≥ 0 and d ≥ 0. The corresponding CDF
can be found as

FHULA (x) = 1− QK

√√√√ 2K
(
π2
1 + π

2
2

)
M
(
Mσ 2

n + σ
2
f

) ,√ 2KM

Mσ 2
n + σ

2
f

x

,
(47)

where Qe(a, b) is the Marcum-Q function with parameters
a ≥ 0, b ≥ 0 and e ≥ 0.
The mean and the variance of the random variable HULA

can be computed respectively as (by the non-central Chi-
squared distribution properties [25], [26])

E[HULA] =
M
(
Mσ 2

n + σ
2
f

)
+ π2

1 + π
2
2

M2 , (48)

var[HULA] =
(Mσ 2

n +σ
2
f )
[
M
(
Mσ 2

n +σ
2
f

)
+2

(
π2
1+π

2
2

)]
KM3 .

(49)

APPENDIX B//EQUIVALENT RANDOM VARIABLE
FOR URA
URA configuration uses an extra angle dimension where the
array is located at the xy plane, with the first element placed at
the origin (see Fig. 9). In this way, the elevation and azimuth
steering vectors of the impinging signal in the array are given
as

au(ψ, ξ ) =
[
1 eju . . . ej(Mx−1)u

]
, (50)

av(ψ, ξ ) =
[
1ejv . . . ej(My−1)v

]
, (51)

where u = −(2π/λ)1 sin(ψ) sin(ξ ), and v = −(2π/λ)
1 sin(ψ) cos(ξ ). These vectors are multiplied to get a matrix
A(ψ, ξ ) as

A(ψ, ξ ) = aHv (ψ, ξ )au(ψ, ξ ). (52)

Then matrix A(ψ, ξ ) is transformed into a 1 ×MxMy vector
using the vec (·) operation

a(ψ, ξ ) = vec [A(ψ, ξ )]. (53)
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ã(ψ, ξ ) =
a(ψ, ξ )√
MxMy

. (54)

Note that, from (27), rk has the same dimension as ã(ψ, ξ ),
therefore the new dimension of rk will be 1×MxMy. Conse-
quently, (7) becomes

HURA(ψ, ξ ) =
ãψ,ξ R̃aHψ,ξ
ãψ,ξ ãHψ,ξ

=
aψ,ξRaHψ,ξ
aψ,ξaHψ,ξ

=
aψ,ξRaHψ,ξ
MxMy

(55)

Where the dimension of matrixRwill be given asMxMy×

MxMy. Furthermore, ãθ,φ = ã(ψ = θ, ξ = φ) is used
in (26) and (27). The following steps will henceforth the same
as in the ULA case, just replacing the parameterM byMxMy
and a(θi) by a(ψ,ξi). Finally, equations (41) and (42) can be
written as

π1 =

MxMy−1∑
i=0

<(a(ψ,ξ )i )
(
<(a(θ,φ)i )− =(a(θ,φ)i )

)
+=(a(ψ,ξ )i )

(
<(a(θ,φ)i )+ =(a(θ,φ)i )

)
, (56)

π2 =

MxMy−1∑
i=0

=(a(ψ,ξ )i )
(
<(a(θ,φ)i )− =(a(θ,φ)i )

)
−<(a(ψ,ξ )i )

(
<(a(θ,φ)i )+ =(a(θ,φ)i )

)
. (57)

ACKNOWLEDGMENT
The authors thank all the people that helped in the devel-
opment of this work: Michel Yacoub, Paulo Cardieri,
Richard Demo, Santosh Kumar, Natalia Bernardes,
Camilo Osorio, Loren Forero, Alessandro de Oliveira,
Melissa Munoz, Yalena Narvaez, and Ruby Bravo.

REFERENCES
[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive

MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[2] L. Xu, J. Wang, H. Zhang, and T. A. Gulliver, ‘‘Performance analysis
of IAF relaying mobile D2D cooperative networks,’’ J. Franklin Inst.,
vol. 354, no. 2, pp. 902–916, Jan. 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0016003216303908

[3] L. Xu, H. Zhang, J. Wang, and T. A. Gulliver, ‘‘Joint TAS/SC and power
allocation for IAF relaying D2D cooperative networks,’’ Wireless Netw.,
vol. 23, no. 7, pp. 2135–2143, 2017.

[4] T. L. Marzetta, ‘‘Noncooperative cellular wireless with unlimited numbers
of base station antennas,’’ IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[5] N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and
M. Coulon, ‘‘Direct localization for massive MIMO,’’ IEEE Trans. Signal
Process., vol. 65, no. 10, pp. 2475–2487, May 2017.

[6] D. Dardari, C.-C. Chong, andM. Z.Win, ‘‘Threshold-based time-of-arrival
estimators in UWB dense multipath channels,’’ IEEE Trans. Commun.,
vol. 56, no. 8, pp. 1366–1378, Aug. 2008.

[7] Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-Of-Arrival
Estimation (Artech House Remote Sensing Library), 1st ed. Norwood,
MA, USA: Artech House, 2010.

[8] M.-J. Wang, J.-L. Cai, F.-S. Tseng, and C.-Y. Hsu, ‘‘A low-complexity
2-D angle of arrival estimation in massive MIMO systems,’’ in Proc. Int.
Comput. Symp. (ICS), Dec. 2016, pp. 710–713.

[9] M. Li, Y. Lu, and B. He, ‘‘Array signal processing for maximum likelihood
direction-of-arrival estimation,’’ J. Elect. Electron. Syst., vol. 3, no. 1,
p. 117, 2014.

[10] Y. Fan, J. B. Li, H. Li, and C. Tian, ‘‘A stochastic framework of millimeter
wave signal for mobile users: Experiment, modeling and application in
beam tracking,’’ in Proc. 11th Global Symp. Millim. Waves (GSMM),
May 2018, pp. 1–6.

[11] M.B. Zeytinci, V. Sari, F. K.Harmanci, E. Anarim, andM.Akar, ‘‘Location
estimation using RSS measurements with unknown path loss exponents,’’
EURASIP J. Wireless Commun. Netw., vol. 2013, no. 1, p. 178, Jun. 2013,
doi: 10.1186/1687-1499-2013-178.

[12] V. Savic and E. Larsson, ‘‘Fingerprinting-based positioning in distributed
massiveMIMO systems,’’ in Proc. IEEE 82nd Veh. Tech. Conf. (VTC Fall),
Sep. 2015, pp. 1–5.

[13] M. W. Khan, N. Salman, and A. H. Kemp, ‘‘Cooperative positioning using
angle of arrival and time of arrival,’’ in Proc. Sensor Signal Process.
Defence (SSPD), Sep. 2014, pp. 1–5.

[14] A. Beck, P. Stoica, and J. Li, ‘‘Exact and approximate solutions of source
localization problems,’’ IEEE Trans. Signal Process., vol. 56, no. 5,
pp. 1770–1778, May 2008.

[15] L. Zhang, Y. H. Chew, andW.-C. Wong, ‘‘A novel angle-of-arrival assisted
extended Kalman filter tracking algorithm with space-time correlation
based motion parameters estimation,’’ in Proc. 9th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Jul. 2013, pp. 1283–1289.

[16] S.-H. Fang and C.-H. Wang, ‘‘A dynamic hybrid projection approach
for improved Wi-Fi location fingerprinting,’’ IEEE Trans. Veh. Technol.,
vol. 60, no. 3, pp. 1037–1044, Mar. 2011.

[17] J. Capon, ‘‘High-resolution frequency-wavenumber spectrum analysis,’’
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[18] R. O. Schmidt, ‘‘Multiple emitter location and signal parameter estima-
tion,’’ IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986.

[19] R. Roy and T. Kailath, ‘‘Esprit-estimation of signal parameters via
rotational invariance techniques,’’ IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[20] J. Salmi and A. F. Molisch, ‘‘Propagation parameter estimation, modeling
andmeasurements for ultrawidebandMIMO radar,’’ IEEE Trans. Antennas
Propag., vol. 59, no. 11, pp. 4257–4267, Nov. 2011.

[21] R. J. Muirhead, Aspects of Multivariate Statistical Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2005.

[22] G. Xu, R. H. Roy, III, and T. Kailath, ‘‘Detection of number of sources via
exploitation of centro-symmetry property,’’ IEEE Trans. Signal Process.,
vol. 42, no. 1, pp. 102–112, Jan. 1994.

[23] Y. L. C. D. Jong and M. H. A. J. Herben, ‘‘High-resolution angle-of-arrival
measurement of themobile radio channel,’’ IEEE Trans. Antennas Propag.,
vol. 47, no. 11, pp. 1677–1687, Nov. 1999.

[24] M. R. J. A. E. Kwakkernaat, Y. L. C. D. Jong, R. J. C. Bultitude, and
M. H. A. J. Herben, ‘‘High-resolution angle-of-arrival measurements on
physically-nonstationary mobile radio channels,’’ IEEE Trans. Antennas
Propag., vol. 56, no. 8, pp. 2720–2729, Aug. 2008.

[25] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic
Processes (McGraw-Hill Electrical and Electronic Engineering Series).
4th ed. New York, NY, USA: McGraw-Hill, 2002.

[26] S. Kay, Intuitive Probability and RandomProcesses usingMATLAB, 1st ed.
New York, NY, USA: Springer, 2006.

[27] M. Richards, Fundamentals of Radar Signal Processing (Professional
Engineering). New York, NY, USA: McGraw-Hill, 2005.

CLAUDIO ALFONSO BOHÓRQUEZ CAMARGO
was born in Chiquinquirá, Boyacá, Colombia.
He graduated in electronics engineering and in
electrical engineering from the National Univer-
sity of Colombia, Bogotá, Colombia, in 2011 and
2012, respectively. He received the M.Sc. degree
from the State University of Campinas, UNI-
CAMP, Brazil, in 2018. He worked for four years
in the petrochemical industry as an instrumenta-
tion and automation specialist. His research inter-

ests are wireless communications, radar and industrial instrumentation, and
automation.

65116 VOLUME 6, 2018

http://dx.doi.org/10.1186/1687-1499-2013-178


C. A. Bohórquez Camargo et al.: Probability of Detection of the AoA for Massive MIMO Arrays

GUSTAVO FRAIDENRAICH graduated in elec-
trical engineering from the Federal University of
Pernambuco, UFPE, Brazil, in 1997. He received
theM.Sc. and Ph.D. degrees from the State Univer-
sity of Campinas, UNICAMP, Brazil, in 2002 and
2006, respectively. From 2006 to 2008, he was a
Post-Doctoral Fellow at Stanford University (Star
Lab Group), USA. He is currently an Assistant
Professor at UNICAMP. His research interests
include multiple antenna systems, cooperative sys-

tems, radar systems, and wireless communications in general. He was a
recipient of the Fundação de Amparo à Pesquisa do Estado de São Paulo
Young Researcher Scholarship in 2009. He has been associated editor of the
ETT journal for many years.

LUCIANO LEONEL MENDES received the B.Sc.
and M.Sc. degrees in electrical engineering from
Inatel, Brazil, in 2001 and 2003, respectively, and
the Ph.D. degree in electrical engineering from
UNICAMP, Brazil, in 2007. Since 2001, he has
been a Professor at Inatel, where he has acted as
a Technical Manager of the Hard-Ware Develop-
ment Laboratory from 2006 to 2012. He has coor-
dinated the Master Program at Inatel and several
research projects funded by FAPEMIG, FINEP,

and BNDES. He has been a Post-Doctoral Visiting Researcher, spon-
sored by CNPq-Brazil, at Vodafone Chair Mobile Communications Systems,
TU Dresden, since 2013. His main area of research is wireless commu-
nication, and currently, he is involved in multicarrier modulations for 5G
networks and future mobile communication systems.

VOLUME 6, 2018 65117


	INTRODUCTION
	SYSTEM MODEL
	URA CONFIGURATION MODEL

	PROBLEM FORMULATION
	PROBABILITY OF DETECTION
	NUMERICAL RESULTS
	EQUIVALENT RANDOM VARIABLE
	PROBABILITY OF DETECTION
	RESOLUTION

	CONCLUSIONS
	REFERENCES
	Biographies
	CLAUDIO ALFONSO BOHÓRQUEZ CAMARGO
	GUSTAVO FRAIDENRAICH
	LUCIANO LEONEL MENDES


