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ABSTRACT The electroencephalogram (EEG) is a widely used tool for the non-invasive monitoring of
the brain. However, it is very susceptible to motion artifacts, and current EEG studies are restricted to
experiments where participants are stationary or perform only constrained movements, such as treadmill
walking. This paper proposes a new multi-modal sensing approach for analyzing EEG collected during
naturalistic free movement tasks. Co-recorded wearable eye-fixation and gyroscope data are used to identify
times of interest for analysis and times of motion, and the EEG is then only analyzed during the short time
periods when the eyes are fixated on wanted stimuli and there is a natural pause in the motion of the subject.
We demonstrate the technique in a real-world task where subjects move round a clothes shop. This shows that
in all cases, more than 65% of the time localized EEG could be analyzed, despite the free movement nature of
the task. Furthermore, it can be used to demonstrate the effects of color priming in clothes shopping.We show
an increase in left frontal EEG activity when participants view products matching the color background of
the shop environment.

INDEX TERMS EEG, motion artifact, color priming, clothes shopping.

I. INTRODUCTION
Electroencephalography (EEG) is the monitoring of a sub-
ject’s brainwaves by placing small electrodes on the scalp,
and is of key use for non-invasive brain interfacing [1]. A key
advantage of the EEG over other neuroimaging techniques
is that it is in principle a portable technology, with the elec-
trodes and instrumentation box being small and lightweight
using modern microelectronics. As such it gives significant
potential for out-of-the-lab use and studying the brain in
motion, in naturalistic environments. To this end ambulatory
EEG units have been available for many years [2]. However,
historically the EEG has been limited to situations where
subjects are not moving, as movements introduce substantial
artifacts into the collected EEG traces and obscure the wanted
brain-related information [1]. The motivation of this article is
to provide a new method for performing EEG studies where
subjects are moving, using multi-modal sensing combining

EEG, eye tracking, and gyroscopes to differentiate between
EEG epochs which are of interest for analysis, and EEG
epochs which are contaminated by motion.

In recent years there has been a significant amount of
research interest towards creatingwearable EEG units, which
allow real-world neuroimaging while subjects are mov-
ing around [3], [4]. Many of these efforts have focused on
improving the EEG hardware by: removing the long record-
ing wires between the electrodes and the instrumentation
box which pick-up large amounts of interference [5]; giving
higher input impedances to allow gel-free recordings [6];
incorporating real-time impedance monitoring [7], [8]; and
enabling active electrodes for quicker and easier set up [9].
This has been combined with improvements in software algo-
rithms for the removal of motion artifacts, particularly using
Independent Component Analysis (ICA) techniques [10].
As a result several studies have now demonstrated the
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ability to extract EEG parameters during modest amounts
of movement. For example, [11] and [12] have demon-
strated the recording of evoked potentials, below the free
running EEG noise floor, while subjects walk on a treadmill.
The study of EEG dynamics during cycling has also been
demonstrated [13], [14].

To date such studies have generally been performed on
treadmills and exercise bikes. These are very good for
semi-controlled movements and repetitive movements, and
demonstrate substantial potential for use in rehabilitation
applications [12], but do not capture all of the dynamics
of unconstrained free movement. For example, walking on
a treadmill is only in a straight-line, generally at speeds
slower than real-world walking, and does not account for
more naturalistic movements which will include many stop-
starts, movements in different directions, impulsive move-
ments, movements at different speeds, and similar. Studying
the EEG during free movement of the subject is significantly
more challenging. Further, in wearable EEG there is a strong
emphasis on a reduction in the number of electrodes used to
give units which are inconspicuous, and quick and easy to
set up, particularly by non-specialist users. This acts against
the use of ICA and similar blind signal separation approaches
which favor high electrode counts as one source component is
identified per input EEG channel. Many in-lab computational
neuroscience studies use 64 or more channels as standard.
While there can be some debate on the precise number of
channels that are acceptable for wearability, there is a clear
need to allow motion-robust EEG experiments which do not
rely on having high numbers of electrodes present.

In this paper we investigate EEG dynamics during a fully
free movement task, demonstrating that it is possible to
extract information from the EEG while using low chan-
nel count EEG units without relying on ICA and similar
approaches. Our new approach is based on multi-modal sens-
ing, combining a wearable EEG unit with a wearable eye
tracker to allow highly time localized analysis of the wearable
EEG data. We make use of co-located motion measurements,
and in particular the gyroscopes present in both wearable
units, to allow highly accurate synchronization of the two
devices. This overcomes the issue of synchronizing two sep-
arate wearable units which have no physical connection,
no input ports for aux/sync/trigger signals, different rates of
clock drift, and no Lab Streaming Layer [15] or similar set
up. Using the highly synchronized EEG and eye tracking
data we then analyze the EEG only during the short time
periods when the eyes are fixated on a wanted target stimuli.
Thus, although the subject is free to move in general, there
are still many times when no motion is present or when no
motion interferencemanifests in the EEG traces, and it is only
motion artifact contaminated EEG which occurs within the
short duration eye fixations which need to be excluded from
analysis.

Our results and new methodology provide two new contri-
butions. Firstly, with simultaneous motion and EEG record-
ings we are able to quantify the motion contamination of

EEG during free movement. By considering EEG epochs
lasting for only 100 ms during fixations on wanted targets we
find that no more than 35% of the during-fixation EEG data
has to be discarded due to motion contamination. Moreover
we quantify how much movement is required to generate
a motion artifact in the EEG, showing that movements in
nodding and rolling motions have statistically significantly
lower motion thresholds for artifact induction. Secondly,
we validate the approach by investigating EEG responses
during a free movement shopping task as a representative
example of an everyday activity. We show that changes in
engagement measured via EEG frontal asymmetry measures
can be detected, and that these differ depending on whether
the user is primed with different colors within the shopping
environment. Priming is a phenomenon in which exposure
to one idea can subconsciously provoke related ideas [16]
and we use different color garments and environments to
investigate whether the color of the environment influences
(or primes) the participants’ responses to the garments avail-
able within the environment.

Section II introduces our experimental methodology, giv-
ing details on the multi-modal sensing used to allow the
EEG frequency content to be analyzed to within a resolution
of 100 ms, overcoming issues with the alignment of multiple
sensor data, hardware clock drift, and very short duration
analysis epochs. Results are presented in Section III where
we quantify the amount of motion which induces a motion
artifact in the EEG trace, and the amount of time the EEG is
corrupted by motion during our free movement task. These
results are then discussed in Section IV where we investigate
the effect of color priming during free movement shopping
and show an increase in left frontal EEG activity when par-
ticipants view products matching the color background of the
shop environment.

II. METHODS
A. MULTI-MODAL SENSING
Our proposal for low channel count EEG analysis during
naturalistic movements is to perform a highly time localized
analysis: by only considering the short sections of EEGwhere
the participant is looking at a wanted target in the environ-
ment, data from other time points is not needed. Thus it is not
significant if motion is present at these other times. By using
simultaneous mobile eye tracking, Areas Of Interest (AOIs)
can be identified in the environment, and analysis of the EEG
only performed when the eyes are fixated on one of the AOIs.

The key technical challenge with this approach is that it
requires simultaneous mobile EEG and mobile eye tracking
with very accurate synchronization between the twowearable
equipment items as fixations on AOIs are typically very short
in duration (235±62 ms in our experiment). Mobile EEG and
mobile eye trackers are now readily available, however, being
battery powered there is no direct connection or synchroniza-
tion between the two, and the two recordings are indepen-
dent of one another. No ports for TTL triggers, or protocol
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FIGURE 1. The mobile eye tracker and mobile EEG time stamps drift apart over time, with the rate of drift varying with environmental conditions. This
is corrected by Dynamic Time Warping (DTW) applied to the gyroscope signals to closely synchronize these in time. The time warping parameters
calculated using the gyroscopes are then applied to the EEG and fixation data to align these in time, given the dynamically changing drift rate
measured from the gyroscopes. (a) Gyroscope motion signals from both units start in synchronization and then drift apart. (b) The DTW procedure
places all signals on a common time base and allows time points to be mapped between different time bases. (c) Sampling drift is corrected by DTW.
(d) Fixation times as measured by the eye tracker are projected on to the EEG time base using the gyroscope calculated DTW parameters. This corrects
their position and synchronizes the data from the two different measurement units to allow a highly time localized analysis of the EEG data.

for synchronization are provided as they typically are with
non-mobile devices. Protocols such as NTP (Network Time
Protocol) can be used at the computers which receive the
wireless bio-signal traces, but NTP signalization is typically
only to the 10’s of milliseconds [17]. This is suitable for
gross equipment synchronization, ensuring devices do not
drift apart over time, but not for the very tight synchronization
required in our experiment.

Further, and most importantly, both units will suffer from
differing amounts of clock drift, meaning that although both
should sample the incoming signals at a fixed and constant
rate, the actual rate varies over time with the battery voltage,
temperature and similar [18]. This drift is not fixed, and will
vary during the course of a recording preventing synchro-
nization of the raw data by a bulk shift alone. Lab Streaming
Layer [15] is a popular method for overcoming these issues
for lab based equipment, but it is intended for synchronization
over a local network of computers with NTP available, not
highly portable wireless units with no access to an NTP server

from the wireless device itself. Moreover, it requires drivers,
with neither of our highly wearable devices being supported
at the time of performing this work.

To overcome these issues we propose a highly accurate,
data driven, post-hoc signal alignment by employing the
co-located gyroscope sensors on both devices. (The EEG
unit has a two axis gyroscope, and the eye tracking unit
has a three axis gyroscope, see Section II-C.) Both being
mounted on the head of the subject, the different gyroscopes
to a close approximation record the same motion trace. This
means the drift in the sampling rate between the devices can
be measured from the gyroscopes, and this measured drift
used to correct and accurately align the co-recorded EEG and
eye tracking data. An example of this procedure is shown
in Fig. 1.

For each data record the two gyroscopes were first bulk
aligned by shifting them by a time delay corresponding
to the maximum cross correlation time, giving two signals
which are nearly in synchrony, but drift apart over time
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as the sampling rate varied (Fig. 1(a)). This varying rate
was corrected by applying Dynamic Time Warping (DTW)
to the two gyroscope traces (Fig. 1(b)), implemented using
the Matlab dtw function described in [19]. DTW gives
indices for applying a zero-order-hold to stretch the two
signals so that the gyroscope signal points align in time
(Fig. 1(b)). For example, if the EEG gyroscope samples were
originally at times [0 0.078125 0.015625 0.0234375 . . .]
(with sampling frequency 128 Hz) these might become
[0 0.078125 0.015625 0.015625 0.015625 0.0234375 . . .]
where the 0.015625 sample is repeated three times in order
to align with the EEG time base with eye tracking time base.

The indices calculated for the EEG unit gyroscope were
then used to re-sample (stretch) all of the signals collected
by the EEG unit: the EEG, EEG gyroscope data, the time
base as reported by the EEG recorder, and the frequency band
powers (calculated using the raw EEG input as described in
Section II-B). Similarly the indices calculated for the eye
tracking gyroscope were used to re-sample all of the signals
collected by the eye tracking unit: times at which the eye
looked at each AOI, eye tracker gyroscope data, and the time
base as reported by the eye tracking unit. The result is that
all of the raw collected signals, and the EEG band powers
calculated from the raw EEG signal, now share a common
stretched DTW time base ((Fig. 1(c))). From this, fixation
times in the eye tracking time base can be mapped to times
in the EEG time base, accurately aligning the timing so that
the correct period of EEG is analyzed during each fixation
(Fig. 1(d)).

B. EEG FREQUENCY BAND EXTRACTION
The next challenge to overcome is the analysis of very short
EEG epochs, down to 100 ms as the EEG present during a
fixation on an AOI. Typically the Fast Fourier Transform is
used for EEG analysis, and the EEG epoch duration set as ten
times the time period of the lowest frequency to resolve. For
8 Hz alpha activity this would be 1.25 s, which would mean
our highly time localized analysis would not be possible.

Instead, to give greater control over the time-frequency
localization performed, we extracted the energy in the EEG
trace at each time point using a first order Butterworth fil-
ter with cut-offs at the wanted EEG frequency band edges.
This is implemented with the filtfilt command in
Matlab to give zero group delay so there is no temporal
shifting of the frequency information due to the filtering
process. The time-frequency localization provided in the
alpha 8–12 Hz band is shown in Fig. 2 where frequen-
cies are constrained to be within the passband of the filter
(8–12 Hz), while the time support is the duration of the
impulse response, with a full-width half-maximum of 78 ms,
showing that frequency information can be localized in time
to within the 100 ms fixation duration we consider. This
comes at the cost of the non-flat passband seen in Fig. 2(a)
for the extraction of frequency information. We have traded
reduced frequency-localization in order to obtain better
time-localization.

To avoid distorting the power spectrum during dynamic
time warping this procedure is applied to the raw EEG data
as recorded, prior to applying the DTW procedure from
Section II-A, with the DTW also applied to the output of
our Butterworth filters. The DTWprocedure then only affects
where the fixation time epoch to consider starts and ends in
terms of the samples to select and sum.

Using the filter output the instantaneous EEG energy is
then found in dB as

edB = 10 log10
(
Filter output2

)
(1)

to give a sample-by-sample estimate which can be summed
over any desired time span to find the total energy present in
that span. Fig. 2(c) shows how this alpha band energy extrac-
tion (in EEG channel F3) compares to a Fast Fourier Trans-
form approach with 1.25 s Hamming windows, and 50%
overlap between windows. The Fourier Transform envelops
our instantaneous band power extraction.

C. WEARABLE EYE TRACKING AND WEARABLE EEG
To perform our natural movement experiment participants
were set up with both a wearable eye tracking and a wearable
EEG unit. Eye movements were recorded using the wearable
Tobii Pro Glasses 2, with calibration performed before enter-
ing the experiment area. This eye tracker was fully portable,
mounted into the frame of a pair of glasses, and contained
one forward facing scene camera, four eye facing cameras,
a three axis gyroscope and a three axis accelerometer. The
glasses weigh only 45 g and have a sampling rate of 50 Hz.

EEG was performed using the Emotiv Epoc+ as a repre-
sentative EEG amplifier used for mobile and out-of-the-lab
experiments [20]. Fourteen channels (AF3, F3, F7, FC5, T7,
P7, O1, O2, P8, T8, FC6, F8, F4 and AF4, referenced to
P3 and P4) were recorded at 128 Hz. The EEG unit included a
two axis gyroscope in the instrumentation box at the back of
the head. All electrodes were connected to the scalp using
the Emotiv standard saline soaked sponges, with the elec-
trode connection quality checked at the start and end of the
experiment. All data was filtered between 0.16 and 30 Hz
using first order zero phase delay Butterworth filters, with
an additional 50 Hz noise filter to remove mains interference,
prior to analysis in Matlab.

The eye tracking glasses were put on first to allow them
to be positioned without affecting or accidentally moving
the EEG electrodes. The average location of both eyes was
used as the tracked signal and this raw eye tracking location
data was median filtered, with a 3 sample window. Eye
fixations, defined as a stable position of the eye for a min-
imum of 60 ms [21], were calculated using the Tobii I-VT
algorithm [22]–[24]. This eliminated saccade movements,
and adjacent fixations which were less than 75 ms and 0.5◦

apart were merged into a single final fixation, with these
values taken as the Tobii I-VT algorithm defaults [23]. Only
fixations greater than 100 ms in duration were then consid-
ered for analysis. These fixation timesweremanuallymapped
on to 31 AOIs in the retail environment (Section II-D).
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FIGURE 2. The time-frequency localization used to extract alpha band activity during fixations as short at 100 ms uses a filter rather than
Fourier approach to obtain better time-localization at the cost of frequency-localization. (a) Frequency-localization is concentrated within the
non-flat pass-band. (b) Time-localization is concentrated within the full width half maximum of the impulse response. (c) Comparison of
energy estimated from the bandpass filter with a 78 ms full width half maximum time support and a Fast Fourier Transform (FFT) method
using 1.25 s windows of data. This Fourier transform time support is selected to allow 10 cycles of the lowest frequency of interest (8 Hz)
alpha to be present in each calculation window.

Twenty-three AOIs were on dresses (one on each different
dress), two on the mannequins used for priming, two on the
pictures used for priming, and four not used in this study. This
allowed the fixation times when the participants were looking
at primed color and non-primed color dresses to be extracted.
The EEG was then analyzed only during these fixation times.

As both units contained gyroscopes, we were able to use
this data to accurately align the traces (Section II-A), and for
the first time quantify motion contamination of free move-
ment EEG traces. The presence of motion was identified
from the 3-axis eye tracker gyroscope by applying a threshold
from 0–360 degrees per second (dps) to produce a yes/no
flag indicating whether the absolute gyroscope signal was
above the threshold for each point in time. The presence of
a corresponding motion artifact in the EEG was identified

automatically to avoid manual interpretation biases by
applying the EEGlab continuous artifact rejection function
rejcont to all channels of the EEG. rejcont identifies
artifacts from the EEG spectrum between 20 and 40 Hz,
in 0.5 s epochs, marking sections where the content is above a
set energy threshold as being artifactual with a yes/no artifact
present flag [10]. In this work the detection threshold for the
EEG was swept from 5 dB to 10 dB to vary the sensitivity
with which EEG artifacts were detected.

Combinedwith the 360 different thresholds for detection of
motion from the gyroscope data, this gives a 360×5 array of
motion identification flags for each time point in the collected
data series. The percentage of time when the two yes/no
flags agree for each combination of detection thresholds
was worked out for each subject, and then averaged to give
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FIGURE 3. The EEG electrode 10–20 positioning system with the motion
axes directions superimposed.

an overall motion sensitivity result. The directions of the
gyroscope motion axes are shown in Fig. 3, with the x axis
corresponding to a nodding movement, y axis corresponding
to a shaking the head movement, and z axis to a rolling the
head from side-to-side movement.

D. NATURALISTIC MOVEMENT TASK
AND COLOR PRIMING
To validate and use our newmulti-modal sensing approachwe
aimed to extract information from the EEG during a naturalis-
tic movement task, which may contain a range of movements
and stationary periods. We selected a shopping environment
as an exemplar of a real-world task where subjects will be
moving and interacting with the environment, but not nec-
essary moving constantly as they would if on a treadmill.
Previous studies have examined EEG and non-wearable eye-
tracking analysis of consumer responses in dress shopping
in lab-based environments [25], [26], but not while moving
about a physical shop.

For this experiment we created a physical retail store to
allow participants to move about in a naturalistic way, while
giving the experimenter control over the stock displayed, and
colors presented. The retail environment consisted of two
walls of dresses, with a number of mannequins, pictures,
and accessories as shop decoration under neutral white light-
ing. This environment was populated with nine blue dresses,
six red dresses and three pink dresses, together with five
additional dresses in a neutral color. Further, we used three
variants of the shop with different color primes present in
the shop background. It is well known that consumer pur-
chase decisions are based on more than just the tangible
object, they are based on the total product, of which the retail
environment is an important feature. In some circumstances
the atmosphere of the retail environment can be more influ-
ential on the purchase decision than the product itself [27].

Priming is a phenomenon in which exposure to one idea can
subconsciously provoke related ideas [16].

We incorporated color priming as an additional measure
to verify the EEG data as it is particularly important within
the fashion industry, with color trends often forecasted up
to two years ahead of each season, with heavy influence on
the fashion product design process [28]. It has been estab-
lished that color impacts cognitive interpretations as well as
affective evaluations of products [29], subsequently influenc-
ing consumer behavior. Color priming of the retail environ-
ment has been found to increase the consumer likelihood
of choosing a product that matches the color that they have
been primed towards [30]. Reference [30] found increased
recall and preference for products of a particular color, after
repeated exposure to that color while walking around a super-
market.Wewere similarly looking for an increase in approach
emotional response towards dresses (products) of the color
that match the prime effect in the room.

To assess emotional response, the motion free EEG epochs
during fixations on dresses was inputted into the widely used
Davidson’s model of emotion [31]–[35]. Here an increase in
activity in the left hemisphere of the pre-frontal cortex is
indicative of a positive approach emotional response and we
compare the inter-hemisphere frontal asymmetry in the alpha
band as an EEG measure of emotion in the different priming
conditions. This is calculated as the root-mean-squared val-
ues from the bandpass filter outputs (Section II-B):

Asymmetry= 20 log10

 1
T

√∑
T

Filter out right channel2


−20 log10

 1
T

√∑
T

Filter out left channel2


(2)

where T is the duration of the fixation during which the
EEG is taken from. The same measure was calculated from
the EEG baseline period before the start of the experiment
(Section II-E), taken as the median value from each 100 ms
epoch during one minute of stationary time before the start of
the experiment. For each subject this baseline was subtracted
from the during fixation asymmetry measure to normalize
for different levels of emotional valance before starting the
experiment. The expected change in asymmetry is highly
localized on the head, with the most common electrode posi-
tions used for measuring engagement response being F3 and
F4 [35]–[38].

A photograph of the shop with a blue priming, together
with examples of how the priming was changed, is shown
in Fig. 4. To allow priming of the subject the colors of
the mannequins and pictures present were changed to be
either blue, red or pink, matching the dresses present. This is
classified as repetition priming, as repetition priming simply
refers to the increasing amount of exposure to the prime
that the participant receives. Note that we do not analyze
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FIGURE 4. The retail environment used. (a) Two walls of dresses with
mannequins and pictures used for subject priming. (b) Pictures changed
between pink, red and blue priming cases.

differences between the priming colors here, in this work we
only consider whether the participant was looking a prime
colored dress or non-prime colored dress. The dresses were
all ones available in high street retailers, chosen to all be a
single color with no pattern or multi-colored design. There
were various styles of dress, each style was present in mul-
tiple colors. All other colors in the store design remained
neutral, for example the walls were painted white and grey,
the mannequin’s bodies were white, and the plinths that the
mannequins stood on were also white.

E. TASK AND PARTICIPANTS
Before starting the experiment participants had the EEG and
eye tracking equipment set up (Section II-C) in an area where
the shop was not visible to them. Before to entering the shop
they spent 60 s in a neutral colored waiting area, remaining
stationary, to allow a period of baseline motion free data to be
collected. The entrance to the shop was arranged so that when
the participant entered they would first see wall 1 of clothing
(Fig. 4) and participants were instructed to walk into the shop
and stop in front of wall 1 for a duration of their choosing,
before then moving forwards to browse through the clothes as
they would in a standard high street shop. During this phase
they were told they could look at all of the clothes on this first
wall, have a feel of the fabrics, or even hold the items up to see
how they looked against themselves in themirror. Participants
were encouraged to use this phase to have a closer inspection
of the clothes, to help inform their decision of which they
might like to choose. When the participant felt they had had
enough time to browse wall 1, they returned to the center
of the room and stood to look at the clothes again from this
short distance. They then turned to look at wall 2 and repeated
the above procedure. Both walls were primed with the same
color. The motivation for segmenting the experiment was for
introducing a period where the participant was stationary in
the middle of the task to allow the EEG data to be checked for

validity, having a section where no motion artifacts would be
present. The experiments lasted for approximately 6 minutes
each.

Twenty-six participants aged 18–25 took part andwere ran-
domly split into one of the three priming colors. Participants
were not informed that the store environment was different
between different participants, or that the colors of pictures
and mannequins clothes were selected to match or not match
the dresses available. All of the participants were selected to
be female, to fit a target demographic shopper of a millennial
interested in dresses. This is the largest sector in the fashion
industry [39]. All participants were also right handed to avoid
inter-hemispheric differences, and had normal or corrected to
normal vision. All experimental procedureswere approved by
the University of Manchester Research Ethics Committee.

III. RESULTS
A. MOBILE DATA SYNCHRONIZATION
On average the bulk delay between the two portable record-
ing devices, found from the maximum cross-correlation
between the gyroscope traces was 0.6±0.4 s. To cor-
rect for non-constant drift between the two recording
devices dynamic time warping was applied with an average
of 0.21±0.12 s required to align the records. (The precise
amount of correction required was different for each record,
and for different times within each record.) This average
of the non-constant sensor drift rate corresponds to a speed
of deviation between time as recorded by the two units
of 53.6±22.3 milliseconds per minute of recording. This
shows that high time precision analysis of the wearable data
is not possible without dynamic adjustments of the effective
sampling rate, enabled here by the co-located motion sensors.
Applying only a fixed delay, the EEG and eye tracking data
would have drifted apart by >100 ms, our minimum fixation
duration, within two minutes of recording. After this time
using the raw eye tracking time stamps would result in ana-
lyzing an incorrect section of EEG data.

After applying DTW the correlations between the
eye tracking gyroscope and the EEG gyroscope was
0.992±0.009, that is, extremely high. Despite the eye track-
ing motion sensor being at the front of the head and the EEG
motion sensor being at the back of the head, both record very
similar motion signals. This demonstrates that the units are
not moving in relation to one another, and that the whole head
can be considered as a rigid moving body. It means that the
full three axes of the eye tracking unit gyroscope can be used
to investigate the motion threshold required to introduce a
motion artifact into the EEG, not just the two axes included
with the EEG unit gyroscope.

B. EEG SENSITIVITY TO MOTION
Motion times were identified by both thresholding the gyro-
scope signals and from examining the EEG trace for the pres-
ence of motion artifacts. Fig. 5 shows the percentage of time
that motion detections from the two different signals agree
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FIGURE 5. Agreement between when the gyroscope signals indicate motion is present and when an artifact is present in the EEG trace using
different thresholds for detection. Red line indicates the gyroscope threshold to reach within 10% of the maximum agreement. (a) x axis of
gyroscope used. (b) y axis of gyroscope used. (c) z axis of gyroscope used.

with each other, as different thresholds are used to require
motion to be identified. The general form of the results is the
same for all of the three axes of possible head movement.
When the gyroscope threshold is very low, essentially the
whole trace duration is marked as being motion. This leads
to a low level of agreement with artifacts identified from
the EEG. As the gyroscope threshold is increased, agreement
with the motion artifacts from the EEG also increases, as the
gyroscope gives a more realistic estimate of whether motion
is actually present or not. At high gyroscope thresholds the
agreement plateaus, as both the gyroscope data and EEG anal-
ysis agree when motion is not present. As the EEG threshold
is increased the agreement increases further, as both methods
identify fewer motion artifacts.

To compare the different axes for movement, also drawn
on Fig. 5 is a red line where the agreement between the
gyroscope and EEG motion agreement is 10% below the
value at high gyroscope thresholds. This is used here as
the trade-off in gyroscope threshold needed to not be too
restrictive meaning the artifacts are not identified, and not
too generous in just marking everything as an artifact. This
10% threshold value is an arbitrary choice to select the corner
point in Fig. 5. The statistical results presented below are

robust to any choice of threshold value up to 40%, with 10%
used here to generate illustrative figures.

The average gyroscope threshold for different participants,
for the different movement axes, is shown in Table 1. A one
tail Mann-Whitney U test shows that the thresholds in the
x (nodding) direction are significantly lower (p < 0.01,
r = −0.424) than in the y (head shaking) direction. A second
one tail Mann-Whitney U test shows that the thresholds in the
x direction are themselves significantly higher (p < 0.01, r =
0.753) than the z (head rolling) direction. The inducement
of motion artifacts in the EEG trace is thus most sensitive to
nodding (x) and rolling (z) motions.

Fig. 6 illustrates example waveforms collected during each
of the different types of headmotion, showing the 14 recorded
EEG channels and the Emotiv gyroscope signals in a con-
trolled test where the subject was asked to nod, shake and roll
their head respectively. Here the greater motion contamina-
tion from the rolling motion is seen, particularly as electrode
FC6 becomes disconnected in this example.

C. MOTION CONTAMINATION DURING FIXATIONS
The fixation durations when looking at dresses which
were the same color as the shop prime were 235±62 ms.

62982 VOLUME 6, 2018



A. J. Casson, E. V. Trimble: Enabling Free Movement EEG Tasks by Eye Fixation and Gyroscope Motion Correction

FIGURE 6. Example EEG and gyroscope traces recorded from the Emotiv during different types of head movement.
(a) Nodding motion. (b) Shaking motion. (c) Rolling motion. Note that to be plotted side-by-side the scaling on each graph is
different.

For non-prime dresses this duration was 233±78 ms, with no
statistically significant differences present (t test, p > 0.05,
d = 0.031). To analyze only EEG in these short duration
fixation epochs it is first necessary to identify and remove
fixations that contain motion.

Motion times were identified using the gyroscope data in
the z direction with the thresholds given in Table 1 as the
EEG was most sensitive to movements in this direction. The
percentage of fixation epochs which had motion occurring
in them, and the percentage of the total fixation duration
which was corrupted by motion, are given in Table 2. It can
be seen that even in the worst records no more than 35%
of the fixations had to be discarded due to the presence of
motion, with this corresponding to 21% of the time duration
of the fixations. On average only 16% of the fixations were

discarded. Although the EEG is in general very highly con-
taminated by motion due to the free movement nature of the
task, due to the actual movement in the shopping task in the
highly time localized analysis performed here the majority
of the wanted short duration EEG sections are artifact free
and can be used directly for analysis. If wanted, the 16% of
EEG in discarded fixations could be processed using artifact
removal algorithms to potentially re-include them, but this is
not considered here.

In Table 2 no statistically significant differences are present
between the prime dresses and non-prime dresses (Mann-
Whitney U test, p > 0.05, r = 0.044) suggesting that
the priming did not alter the motion of the subject. The
distribution of artifacts is similar regardless of whether the
participant is looking at a prime colored dress or a non-prime
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TABLE 1. Gyroscope threshold corresponding to when a motion artifact
is seen in the EEG data. All values in degrees per second (dps).

TABLE 2. Percentage of fixation epochs which contain motion, calculated
as both the number of epochs and the amount of total fixation time.

colored dress. As can be seen in Table 2, 16.4% of fixations
on prime colored dresses were removed due to artifacts,
compared to 16.5% of fixations on non-prime colored dresses

being removed. This amounted to 7.8% of the duration of all
of the fixations on the prime dresses being removed, and 7.5%
of the duration of fixations on the non-prime colored dresses.

D. COMPARISON OF COGNITIVE MEASURES
In the baseline period before the start of the experiment,
where no motion was present, the average alpha asymmetry
across all subjects was −0.57±2.9 dB. Once inside the retail
environment, 70.2±12.4% of the motion free fixations on
prime color dresses were longer than 100 ms, and so the
EEG data kept for analysis. For fixations on non-prime color
dresses 68.7±15.1% were longer than 100 ms and so kept
for analysis. In total EEG data from 8313 fixation periods
were used for assessing Davidson’s model of emotion for
primed and non-primed color dresses. The breakdown of
these between the different walls in the experiment room,
and between AOIs on prime and non-prime dresses are given
in Table 3.

TABLE 3. Fixation counts in the different stages of the experiment.

Statistically significant differences in the alpha asymmetry
were present between channels F3 and F4 on different sides
of the head (Mann-Whitney U test, p < 0.05, r = 0.027) for
EEG during the fixations on primed and non-primed dresses.
This suggests an increased response effect from the color
priming in the shopping task. As expected given the localized
nature of alpha asymmetry, no significant differences were
seen in the alpha asymmetry from EEG data in F7 and F8 (as
nearby EEG locations), or P7 or P8 (as non-near locations).

Based on the dress choices of the participants, we see a
clear effect of the color priming on the consumer behavior
present. During the pink and the red prime conditions the pink
dresses were proportionally the most popular, and during the
blue prime condition none of the pink dresses were chosen.
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The pink and the blue dresses were each the most popular
colored dresses during the pink and blue prime conditions
respectively. The relative popularity of each of the different
colored dresses (0 = never chosen, 1 = always chosen)
during the different prime conditions can be seen in Table 4.

TABLE 4. The standardized popularity of the dresses during different
prime conditions in the experiments.

IV. DISCUSSION
Non-wearable EEG measurements and non-wearable eye
trackers have been combined widely previously to extract
more information on human behavior than can be obtained
using the EEG alone. For example [40] argued that a
combined interface of EEG and eye-tracking would be a
robust solution for allowing touch-less computer interaction.
Reference [41] created a combined eye tracking and EEG
interface, allowing eight participants to control a game using
only their eye-movements, with the EEG data used to dif-
ferentiate the participants’ gaze between spontaneous and
intentional movement.

A number of studies have investigated combined
non-wearable EEG and eye tracking in consumer behav-
ior related tasks as considered in the shopping task
here [26], [42], [43]. Reference [43] analyzed consumer
behavior when navigating retail websites by combining pupil
dilation, the number of mouse clicks and EEG responses.
However, neither [42] nor [43] were particularly successful
in classifying consumer behavior using the output of their
combined data. Reference [42] did not perform any com-
bination of their eye tracking and EEG data, instead only
using the eye tracking data to map transitions between choice
sets and the participants’ chosen objects. Reference [43] was
unable to find a pattern that related to the consumers’ choices
using EEG, stating that this was because EEG waveforms are
difficult to interpret.

Studies combining wearable EEG and wearable eye track-
ing, enabling free movement in environments, are much more
limited. Reference [44] identified the potential of combing
EEG, EOG and eye tracking recording units into a single
device, with eye-movement recording intended to identify the
object that the wearer wants to control, and the EEG/EOG to
prompt commands in a Brain-Computer Interface. Unfortu-
nately, due to technical shortcomings, they found that the sys-
tem was not yet suitable for use. Reference [45] recognized
the same technical limitations, and custom built a mobile eye
tracker to combine with a wearable EEG unit. They tested
their hybrid system by asking participants to complete select

and press button tasks using their eye-movements, although
with no subsequent analysis of the collected EEG data.

Recently several works have investigated the extraction
of fixation Event Related Potentials (fERP) from EEG
data co-registered with eye tracking data. For example, [46]
looked at EEG during fixations while subjects viewed pic-
tures of natural scenes, while [47] looked at fERPs while sta-
tionary with the aim of moving towards ecologically validity.
However sufficiently accurate synchronization of EEG and
eye tracking signals for fERP extraction is an ongoing topic
of research for stationary subjects [48]. It is not yet enabled
by our methodology which makes use of highly-localized
time-frequency information to measure the band powers, spe-
cially the alpha band, and use them in power based analysis
algorithms. We do not extract any fixation Event Related
Potentials (fERP) which require much longer analysis epochs
to be present. For example, [49] presented a methodology for
co-registering EEG and eye tracking data for fERP extrac-
tion (in stationary subjects) where the first processing step
was to remove all epochs less than 300 ms in duration.
Reference [50] used a 900 ms epoch, from 100 ms before
the fixation to 800 ms afterwards. Reference [47] only con-
sidered fixations greater than 500 ms in duration. Our epoch
durations for analysis were approximately 250ms on average.

In this work we have combined wearable EEG and wear-
able eye tracking to allow unrestricted movement of the sub-
ject for band-power based analyses, and a used a combination
of eye tracking, EEG, and motion sensing to allow a highly
time localized EEG analysis from only during the motion
free eye fixation times. A key advantage of our methodology
is that the eye tracker includes a full three axis gyroscope,
as opposed to the two axis gyroscope in the EEG unit. This
allows us, for the first time, to investigate which directions
of movement are the most sensitive for inducing motion
artifacts into the EEG trace. Reference [51] investigated the
relationship between gyroscope measures of the motion and
artifact manifestations in the EEG, but only using a two axis
EEG gyroscope. Our results now suggest that the invocation
of EEG artifacts was most sensitive to movements in the z,
head rolling, direction. Both our work and [51] make use of
the Emotiv Epoc EEG system as one which is widely used for
mobile EEG recordings. This has flexible plastic arms rather
than a cap to hold the electrodes in place, whichmay affect the
precise artifact morphologies if similar studies are repeated
using different EEG units.

Nevertheless to our knowledge this is the first demon-
stration of EEG band power analysis to be performed in
a free movement task by using multi-modal sensing for
motion robustness as opposed to artifact removal algorithms.
We found that only an average of 16% of the eye fixations
on dresses occurred during motion times, leaving sufficient
motion free EEG epochs to analyze for alpha power changes.
The percentage of fixations contaminated by motion will of
course be very dependent on the task performed, and we
deliberately selected a shopping task to induce a range of
natural movements including walking and standing still to

VOLUME 6, 2018 62985



A. J. Casson, E. V. Trimble: Enabling Free Movement EEG Tasks by Eye Fixation and Gyroscope Motion Correction

look at products. In other tasks the amount of motion con-
tamination could be higher, but we see shopping as represen-
tative natural movement task to investigate. In addition, our
methodology does not preclude the use of artifact removal
algorithms, which can be applied in addition to the eye fixa-
tion time localization, particularly if high channel count EEG
units are employed.

Within our natural movement shopping task our results
have shown an increased frontal asymmetry when comparing
primed color and non-primed color dresses in a retail envi-
ronment. Reference [52] used EEG to compare participant
responses to clothing apparel products of various levels of
attractiveness, viewing them on a computer screen in a lab
based experiment. Using Davidson’s model of emotion, [52]
identified significantly different responses between partici-
pants looking at attractive and unattractive apparel garments
and noted there is a lack of consumer neuroscience research
focused on clothing. Consumer behavior is often influenced
by the individual’s environment, and priming is routinely
used in practice to influence consumer behavior [53], [54].
Due to the subconscious nature of priming, participants are
often unable to accurately recall their influences [55]. This
highly motivates the use of EEG and other bio-metric mea-
sures to observe consumer responses effectively, and our
multi-modal sensing approach can help allow this in a range
of natural movement situations where it has not previously
been possible.

V. CONCLUSIONS
Hardware for wearable EEG recording has recently become
available, but still suffers from the presence of motion arti-
facts when subjects move in an unconstrainedway. This paper
has presented a new method for using multi-modal motion
sensing to combine the information from a wearable EEG
unit with that from a wearable eye tracker to allow only
the EEG during fixations on a wanted area of interest to be
analyzed. This has provided two contributions. Firstly, during
free motion movements by a subject, our synchronization
approach allows a highly time localized analysis such that
although the EEG contains many motion artifacts in general
in all cases more than 65% of the wanted EEG during motion
was artifact free and could be analyzed. It also shows that,
for our Emotiv EEG unit, head movements in nodding and
rolling motions have statistically significantly lower thresh-
olds for motion artifact induction than the head shaking
direction. Secondly, we have used our new methodology in
an EEG priming task, altering the color of the mannequin’s
garments and the environment as subjects move around a
simulated shop. This has demonstrated differences in EEG
frontal asymmetry can be measured between when subjects
are looking at prime and non-prime colored dresses, and gives
a new tool for the analysis of consumer behavior.
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