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ABSTRACT This paper investigates event-triggered exponential synchronization of master-slave chaotic
Lur’e systems (CLSs). First, in order to save communication resources, a novel event-based transmission
strategy is developed using continuous-time measurements while a positive minimum inter-event time can
be ensured. Second, an adaptive law is adopted to adjust dynamically the event-triggered threshold parameter.
Compared with some existing static event-triggered mechanisms, the proposed event-triggered mechanism
can provide a better tradeoff between communication resource saving and desired synchronization perfor-
mance. Third, a switched Lyapunov–Krasovskii functional (LKF) is introduced, which is continuous at the
switching instants but not necessarily positive definite at sampling intervals. This LKF is employed to derive a
less conservative synchronization criterion for CLSs, based onwhich, the synchronization controller gain and
the event-triggered parameters can be co-designed in terms of linear matrix inequalities. Finally, numerical
simulations of Chua’s circuit and neural network are provided to illustrate the efficiency of the proposed
method.

INDEX TERMS Master-slave CLSs, event-triggered communication strategy, exponential synchronization,
LMIs approach.

I. INTRODUCTION
Synchronization of chaotic systems has been attracting great
attention in the past decades [1]–[3]. This is due to its poten-
tial applications in information science, image processing
and secure communication. In [4], the idea of chaotic syn-
chronization was first reported. Since then, researchers have
proposed a number of effective control methods to achieve
synchronization of chaotic systems, such as nonlinear con-
trol [5], intermittent control [6], and adaptive sliding mode
control [7]. In fact, some actual nonlinear systems can be
modeled as a Lur’e system, such as Chua’s circuit [8] and neu-
ral networks [9]. Therefore, the master-slave synchronization
problem of CLSs has been an important research topic, and
numerous results on this problem have been published. For
example, in [10], a time-varying-delay feedback controller
was designed for master-slave synchronization of CLSs,
and sufficient delay-dependent synchronization criteria were

formulated in form of LMIs. In [11], by introducing a novel
piecewise differentiable LKF, the master-slave synchroniza-
tion problem was investigated for CLSs. Recently, in [12],
a sampled-based control scheme was presented to address the
exponential synchronization problem for master-slave CLSs.

Note that the control tasks for CLSs in the aforemen-
tioned references are executed in a periodic way. This may
lead to unnecessary utilization of the communication band-
width when there is very little fluctuation of the sampled
data. In many real engineering applications, communication
resources are limited [13]. Therefore, it is more preferable to
design an appropriate control strategy to keep the desirable
system performance while saving communication resources
as much as possible. In [14], an event-triggered schedul-
ing strategy was proposed. Under this scheduling strategy,
whether the control task needs to be executed depends
on a preselected event condition. A novel sampled-based
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event-triggered control strategy was developed in [15], where
a minimum time between two adjacent events is ensured to
be not less than a sampling period [16], [17]. Compared
with the traditional control schemes, the event-triggered
control scheme typically require less network bandwidth.
Motivated by this observation, the master-slave synchroniza-
tion problem for CLSs using event-triggered control scheme
has been studied in [18]–[22]. In [19]–[21], some sampled-
based event-triggered control schemes were developed to
study the master-slave synchronization problem for CLSs.
Recently, a hybrid event-triggered scheme was proposed
in [22] for master-slave synchronization of CLSs with time-
varying communication delays. These works improve our
understanding on how to design appropriate event-triggered
control strategy to ensure master-slave synchronization of
CLSs.

However, for the static output-feedback continuous event-
triggered control strategy, infinite events may occur within
a finite time interval (Zeno phenomenon). Sampled-based
event-triggered control strategy avoids this phenomenon but
it can not utilize continuous-time measurement information.
Hence, it is meaningful to introduce a novel event-based con-
trol scheme that exploits the advantages of the continuous-
time measurements and ensures a positive minimum
inter-event time. This is the motivation of this work.

In this paper, the exponential synchronization problem for
master-slave CLSs with an event-triggered control scheme is
investigated. Compared with the existing literature, the pro-
posed scheme has the following features:

1) A novel event-triggered control scheme is proposed to
save the limited communication resources. Different
from the existing control schemes in [18]–[22], the pro-
posedmethod exploits the advantage of the continuous-
time measurements and ensures a positive minimum
inter-event time.

2) The event-triggered threshold parameter can be dynam-
ically adjusted according to an adaptive law. Compared
with the event-triggered mechanism with a constant
threshold parameter, it can provide more flexibility in
scheduling data transmission.

3) A switched LKF is employed, which is continuous
at the switching instants but not necessarily positive
definite inside the sampling intervals. Based on this
LKF, a less conservative synchronization criterion for
CLSs can be obtained.

4) A co-design method for determining the synchroniza-
tion controller gain and the event-triggered parameters
is given.

The outline of this paper is organized as follows.
In Section II, we state the control objective and the adaptive
event-triggered communication mechanism for master-slave
CLSs. The main results are presented in Section III. Simu-
lation examples are given in Section IV to show the effec-
tiveness of the proposed results, and Section V concludes the
paper.

II. PRELIMINARIES
Consider the following master-slave CLSs:

M :
{
ṁ(t) = Am(t)+Wf (Lm(t))
v(t) = Cm(t)

(1)

S :
{
ṡ(t) = As(t)+Wf (Ls(t))+ u(t)
w(t) = Cs(t)

(2)

which consists of the master-system M and slave-system S.
When u(t) = 0, M and S are identical CLSs with system
states m(t), s(t) ∈ Rn, outputs of subsystems v(t),w(t) ∈ Rl ,
respectively. u(t) ∈ Rn is the slave-system control input.
A ∈ Rn×n, C ∈ Rl×n, L ∈ Rnh×n and W ∈ Rn×nh are
known constant matrices. f (·) : Rnh → Rn×nh belonging
to the sector [0, ρi] is assumed to be a diagonal nonlinearity,
i = 1, 2, · · · , nh. The system states m(t) and s(t) are unmea-
sured. One can only use output measurements v(t) and w(t)
to construct control input u(t).

We define r(t) = m(t)− s(t) as the synchronization error.
Then, the following error system can be obtained:{

ṙ(t) = Ar(t)+Wg(Lr(t), s(t))− u(t)
y(t) = Cr(t)

(3)

where g(Lr(t), s(t)) = f (L(r(t)+ s(t)))− f (Ls(t)). Since fi(·)
belongs to the sector [0, ρi], one can obtain

0 ≤
gi(lTi r, s)

lTi r
=
fi(lTi (r + s))− fi(l

T
i s)

lTi r
≤ ρi,

∀r, s, lTi r 6= 0, i = 1, 2, · · · , nh, (4)

where lTi is the ith row vector of L. From (4), we can get

gi(lTi r, s)(gi(l
T
i r, s)− ρil

T
i r) ≤ 0, i = 1, 2, · · · , nh. (5)

Obviously, for any matrix3 = diag{λ1, λ2, · · · , λnh} ≥ 0
(diag {· · · } stands for a diagonal or block-diagonal matrix),
the following inequality holds:

−

nh∑
i=1

λigi(lTi r, s)(gi(l
T
i r, s)− ρil

T
i r) ≥ 0, (6)

which implies that

rT (t)LTρ3g(Lr(t), s(t))

−g(Lr(t), s(t))T3g(Lr(t), s(t)) ≥ 0, (7)

where ρ = diag{ρ1, ρ2, · · · , ρnh}.
The overall goal is to design a novel event-based con-

trol scheme to reduce the amount of sent measurements
while guaranteeing the synchronization of the master-slave
CLSs. For this purpose, we introduce an adaptive event-
triggered transmission strategy, whose framework is illus-
trated in Fig. 1. It is assumed that the output measurement y(t)
is available for the synchronization purpose only at discrete
time instant sk (k ∈ N),

0 = s0 < s1 < · · · , lim
k→+∞

sk = +∞. (8)
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FIGURE 1. An adaptive event-triggered transmission strategy.

From Fig. 1, we can see that the sensor is used to contin-
uously measure the output signal y(t). Whether the current
measurement data should be transmitted to the storer rely
on the event generator. In the framework of our proposed
event-based control scheme, after the measurement data y(sk )
has been sent, the event generator waits for h seconds, then
the event generator begins to continuously check the event-
triggered condition. Once the event-triggered condition is
satisfied, the output measurement y(sk+1) is transmitted to the
storer. Then, the controller and event generator update their
input by using the received data from the storer. Moreover,
the event-triggered threshold parameter σ (t) is adaptively
adjusted according to the current measurement data y(t) and
past measurement data y(sk ). The considered event-triggered
condition is formulated as

sk+1 = min{ t ≥ sk + h |H(t) ≥ 0 } (9)

H(t) = εT (t)9ε(t)− σ (t)yT (t)�y(t) (10)

σ̇ (t) = −µσ 2(t)εT (t)9ε(t) (11)

where ε(t) = y(sk ) − y(t). µ > 0 is a prescribed constant.
σ (t) is the dynamic trigger parameter and σ (0) = σ0 > 0,
9 ≥ 0 and � ≥ 0 are two weighting matrices.
Remark 1: Different from the previous works [18]–[22],

the novel event-triggered mechanism (9)-(11) can exploit
the advantage of the continuous-time measurements while
avoiding Zeno phenomenon. Moreover, compared with the
state-dependent event-triggering conditions in [21] and [22],
the output-based event-triggered mechanism (9)-(11) is more
practical.
Remark 2: Note that the threshold parameter of the trig-

gering condition (9) can be dynamically adjusted in accor-
dance with the adaptive law (11). When the parameter σ (t)
closely approaches to zero, the event-triggered mechanism
(9) reduces to the sampled-data control scheme in [12].
Hence, the proposed event-triggered mechanismmay provide
flexibility in scheduling data transmission than static event-
triggered mechanism and sampled-data control scheme.

Now, an event-based synchronization controller is given as

u(t) = Ky(sk ) = KCr(sk ), t ∈ [sk , sk+1). (12)

Then, the system (3) can be presented as a switched system

ṙ(t) = Ar(t)+Wg(Lr(t), s(t))− KCr(sk )

= (A− KC)r(t)+ χ (t)KC
∫ t

t−τ (t)
ṙ(θ )dθ

− (1− χ (t))Kε(t)+Wg(Lr(t), s(t)) (13)

where

τ (t) = t − sk ≤ h, t ∈ [sk , sk + h),

χ (t) =

{
1, t ∈ [sk , sk + h),
0, t ∈ [sk + h, sk+1).

Definition 1: If there exist two constant α > 0 and β > 0
such that

‖r(t)‖ ≤ βe−αt‖r0‖, ∀t ≥ 0, (14)

then, we call that the master-slave CLSs are exponentially
synchronous, and α is the convergence rate of the synchro-
nization error r(t).
Next, some useful lemmas are introduced as follows.
Lemma 1: [24] Consider a differentiable signal r :

[a, b] → Rn. For a vector ξ ∈ Rm, symmetric matrices
U (∈ Rn×n) > 0, and any matrices N1,N2 ∈ Rn×m, we have:

−

∫ b

a
ṙT (θ )Uṙ(θ )dθ

≤ (b− a)ξT [NT
1 U
−1N1 +

(b− a)2

3
NT
2 U
−1N2]ξ

+ 2ξT [NT
1 (r(b)− r(a))− 2NT

2

∫ b

a
r(θ )dθ ]

+ 2(b− a)ξTNT
2 [r(b)+ r(a)]. (15)

Lemma 2: For the error system (13). We can get the fol-
lowing relationship

‖r(t)‖2 ≤ ν‖r(sk )‖2, t ∈ [sk , sk + h), (16)

where

ν = 4(1+ h2‖KC‖2)e4h
2(‖A‖2+‖W‖2‖ρL‖2).

Proof: For any t ∈ [sk , sk + h), it is easily found from
(13) that

‖r(t)‖ ≤ ‖r(sk )‖ + ‖
∫ t

sk
Ar(θ )dθ‖

+‖

∫ t

sk
KCr(sk )dθ‖ + ‖

∫ t

sk
Wg(Lr(θ ), s(θ ))dθ‖. (17)

On the other hand, it can be found from (4) that

‖g(Lr(θ ), s(θ ))‖2 ≤ ‖ρL‖2‖r(θ )‖2. (18)

Then, from (17), (18) and applying the Cauchy-Schwarz
inequality, one can obtain

‖r(t)‖2 ≤ 4‖r(sk )‖2 + 4‖
∫ t

sk
Ar(θ )dθ‖2

+ 4‖
∫ t

sk
KCr(sk )dθ‖2
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+ 4‖
∫ t

sk
Wg(Lr(θ ), s(θ ))dθ‖2

≤ 4‖r(sk )‖2 + 4h
∫ t

sk
‖Ar(θ )‖2dθ

+ 4h
∫ t

sk
‖KCr(sk )‖2dθ

+ 4h
∫ t

sk
‖Wg(Lr(θ ), s(θ ))‖2dθ

≤ 4h(‖A‖2 + ‖W‖2‖ρL‖2)
∫ t

sk
‖r(θ )‖2dθ

+ 4(1+ h2‖KC‖2)‖r(sk )‖2. (19)

By using the Gronwall-Bellman Lemma to (19), we have

‖r(t)‖2 ≤ ν‖r(sk )‖2, t ∈ [sk , sk + h). (20)

This completes the proof.
Lemma 3: For given an initial condition σ0 > 0, then

0 < σ (t) ≤ σ0, t ∈ [0,∞), (21)

and

εT (t)9ε(t) ≤ σ0yT (t)�y(t), t ∈ [sk + h, sk+1). (22)

Proof: It is easily found from (11) that σ̇ (t) ≤ 0, which
implies that σ (t) is monotone decreasing. Thus, for any σ0 >
0, we have σ (t) ≤ σ0 holds all the time. In the following,
proofs by contradiction. Assume that there exist one time
instant t1 satisfies σ (t1) = 0 and σ (t1) > 0 for ∀t ∈ (0, t1).
Under this assumption, for ∀t ∈ (0, t1), (11) can be rewritten
as

−
σ̇ (t)
σ 2(t)

= µεT (t)9ε(t). (23)

From (23), one can see that

σ (t) =
1

1
σ0
+

∫ t
0 µε

T (θ )9ε(θ )dθ
. (24)

Let t → t1, according to the continuity property of σ (t),
we can obtain

σ (t)→ σ (t1) =
1

1
σ0
+

∫ t1
0 µε

T (θ )9ε(θ )dθ
> 0, (25)

which is contrary to the assumption that σ (t1) = 0. So the
assumption does not hold, which implies that σ (t) > 0 holds
all the time.

According to the property of event-triggered communica-
tion scheme (9), the following condition holds

εT (t)9ε(t)− σ (t)yT (t)�y(t) ≤ 0,

t ∈ [sk + h, sk+1). (26)

Since σ (t) is monotone decreasing, one can obtain

εT (t)9ε(t) ≤ σ0yT (t)�y(t), t ∈ [sk + h, sk+1). (27)

This completes the proof.

Problem: In this paper, the main objective is to design
event-triggered mechanism (9)-(11) and static output-
feedback controller (12) for the CLSs (1) and (2), such that
the master-systemsM and slave-systems S are exponentially
synchronous.

III. MAIN RESULTS
Before presenting the main results, for brevity, we have the
following notations:

$ (t) =
∫ t

sk
r(θ )dθ,

η(t) = [rT (t), rT (sk ),$ T (t)]T ,

ξ1(t) = [rT (t), rT (sk ), ṙT (t), gT (Lr, s),$ T (t)]T ,

ξ2(t) = [rT (t), ṙT (t), gT (Lr, s), εT (t)]T ,

ei = [0n×(i−1)n, In, 0n×(5−i)n], i = 1, · · · , 5,

ēi = [0n×(i−1)n, In, 0n×(3−i)n, 0n×l], i = 1, · · · , 3,

ē4 = [0l×3n, Il],

and sym(N ) denotes N+NT for any matrix N ; The symbol
‘‘ ∗ " represents the symmetric term; Sn is the set of n × n
symmetric matrices.

For the master-slave CLSs (1) and (2), we give the follow-
ing theorem.
Theorem 1: Given scalars α > 0, h > 0, σ0 > 0, ε and

γ , suppose that there exist positive definite matrices P ∈ Sn,
U ∈ Sn, 9 ∈ Sl , � ∈ Sl and any matrices Q ∈ Sn, Xi ∈
Rn×n, (i = 1, 2, 3, 4), X5 ∈ Sn, Nj ∈ Rn×5n, (j = 1, 2),
G ∈ Rn×n, T ∈ Rn×m and diagonal positive definite matrix
3 ∈ Sn such that

41 = 81 + h83 +84 < 0 (28)

42 =

81 + h82 +84 hNT
1 h2NT

2
∗ −he−2αhU 0
∗ ∗ −3he−2αhU


< 0 (29)

43 = 85 +86 < 0 (30)

where

81 = sym(eT1 Pe3 + N
T
1 54 − 2NT

2 e5)−5
T
1 X51

+ 2αeT1 Pe1,

82 = sym(NT
2 53)− eT2Qe2,

83 = sym(5T
1 X52)+ eT3Ue3 + e

T
2Qe2 + 2α5T

1 X51,

84 = sym(5T
5G56 −5

T
5 TCe2 + e

T
1 L

Tρ3e4)

− 2eT43e4,

85 = sym(ēT1 Pē2)+ 2αēT1 Pē1,

86 = sym(5T
7G58 −5

T
7 TCē1 −5

T
7 T ē4

+ ēT1 L
Tρ3ē3)+ σ0ēT1C

T�Cē1 − ēT49 ē4
− 2ēT33ē3,

51 = [eT1 , e
T
2 , e

T
5 ]
T , 52 = [eT3 , 0, e

T
1 ]
T ,

53 = e1 + e2, 54 = e1 − e2,

55 = εe1 + e3 + γ e2,
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56 = −e3 + Ae1 +We4,

57 = εē1 + ē2,

58 = −ē2 + Aē1 +Wē3.

Then, under the event-triggermechanism (9), the error system
(3) is exponentially stable. Furthermore, the desired con-
troller gain matrix can be obtained by

K = G−1T . (31)
Proof : Under the event-triggered mechanism (9), we con-
struct different LKF for the switched system (13). For (13)
with χ (t) = 0 we consider

V (t) = VP(r) = rT (t)Pr(t), P > 0. (32)

For (13) with χ (t) = 1 we apply the functional form

V (t) = VP(r)+ VX (t, rt )+ VQ(t, rt )+ VU (t, ṙt ), (33)

where rt (ϑ) = r(t + ϑ) for ϑ ∈ [−h, 0],
VX (t, rt ) = (h− τ (t))ηT (t)Xη(t),

VQ(t, rt ) = τ (t)(h− τ (t))rT (sk )Qr(sk ),

VU (t, ṙt ) = (h− τ (t))
∫ t
sk
e2α(θ−t)ṙT (θ )Uṙ(θ )dθ ,

and

X =

X1 + XT1 −X1 + X2 X3
∗ −X2 − XT2 X4
∗ ∗ X5

, U > 0.

Note that the values of V (t) coincide at the switching instants
sk and sk + h.
Case I:We firstly consider the case χ (t) = 1. Taking the

derivative of V (t) along the trajectories of system (13) gives

V̇P(r) = 2ξT1 (t)e
T
1 Pe3ξ1(t) (34)

V̇X (t, rt ) = ξT1 (t)[−5
T
1 X51 + 2(h− τ (t))×5T

1 X52]ξ1(t)

(35)

V̇Q(t, rt ) = ξT1 (t)[(h− τ (t))e
T
2Qe2 − τ (t)e

T
2Qe2]ξ1(t) (36)

Moreover, we find

d
dt
VU (t, ṙt )+ 2αVU (t, ṙt )

= (h− τ (t))ṙT (t)Uṙ(t)

−

∫ t

sk
e2α(θ−t)ṙT (θ )Uṙ(θ )dθ

≤ (h− τ (t))ṙT (t)Uṙ(t)

− e−2αh
∫ t

sk
ṙT (θ )Uṙ(θ )dθ (37)

Using Lemma 1, for any matrices N1,N2, one can obtain

−e−2αh
∫ t

sk
ṙT (θ )Uṙ(θ )dθ

≤ ξT1 (t)[τ (t)(N
T
1 e

2αhU−1N1 +
τ (t)2

3
NT
2 e

2αh

×U−1N2 + 2NT
2 53)+ 2(NT

1 54 − 2NT
2 e5)]ξ1(t)

≤ ξT1 (t)[τ (t)(N
T
1 e

2αhU−1N1 +
h2

3
NT
2 e

2αhU−1N2

+ 2NT
2 53)+ 2(NT

1 54 − 2NT
2 e5)]ξ1(t) (38)

Then, we have

V̇ (t)+ 2αV (t)

≤ ξT1 (t)(2e
T
1 Pe3 −5

T
1 X51 + 2αeT1 Pe1

+ (h− τ (t))(25T
1 X52 + eT3Ue3 + 2α5T

1 X51

+ eT2Qe2)+ τ (t)(N
T
1 e

2αhU−1N1

+
h2

3
NT
2 e

2αhU−1N2 + 2NT
2 53 − eT2Qe2)

+ 2(NT
1 54 − 2NT

2 55))ξ1(t)

≤ ξT1 (t)(81 + τ (t)8̂2 + (h− τ (t))83)ξ1(t) (39)

where 8̂2 = 82 + NT
1 e

2αhU−1N1 +
h2
3 N

T
2 e

2αhU−1N2.
It follows from (13) that for any appropriately dimensioned

matrix G, and scalars ε and γ , we have

0 = 2[εrT (t)G+ ṙT (t)G+ γ rT (sk )G][−ṙ(t)

+Ar(t)+Wg(Lr(t), s(t))− KCr(sk )]

= 2ξT1 (t)(5
T
5G56 −5

T
5GKCe2)ξ1(t). (40)

It is noted that, based on (7), for any matrix 3 =

diag{λ1, λ2, · · · , λn} > 0 the following inequality holds:

0 ≤ 2[rT (t)LTρ3g(Lr, s)− g(Lr, s)T3g(Lr, s)]

= 2ξT1 (t)(e
T
1 L

Tρ3e4 − eT43e4)ξ1(t). (41)

Then, from (39)-(41) and letting T = GK , we obtain that

V̇ (t)+ 2αV (t) ≤ ξT1 (t)(
h− τ (t)

h
41 +

τ (t)
h
4̂2)ξ1(t) (42)

where 4̂2 = 81 + h8̂2 +84.
Case II:We consider the case χ (t) = 0. From Lemma 3,

we have

0 ≤ σ0rT (t)CT�Cr(t)− εT (t)9ε(t)

= ξT2 (t)(σ0ē
T
1C

T�Cē1 − ēT49 ē4)ξ2(t). (43)

On the other hand, similar to (40) and (41), and letting T =
GK , one can obtain

0 = 2[εrT (t)G+ ṙT (t)G][−ṙ(t)+ Ar(t)

+Wg(Lr(t), s(t))− KCr(t)− Kε(t)]

= 2ξT2 (t)(5
T
7G58 −5

T
7 TCē1 −5

T
7 T ē4)ξ2(t). (44)

0 ≤ 2[rT (t)LTρ3g(Lr, s)− g(Lr, s)T3g(Lr, s)]

≤ 2ξT2 (t)(ē
T
1 L

Tρ3ē3 − ēT33ē3)ξ2(t). (45)

Then, adding (43)-(45) to V̇P + 2αVP, we obtain that

V̇P + 2αVP
≤ ξT2 (t)(2ē

T
1 Pē2 + 2αēT1 Pē1 + σ0ē

T
1C

T�Cē1
− ēT49 ē4 + 25T

7G58 − 25T
7 TCē1 − 25T

7 T ē4
+ 2ēT1 L

Tρ3ē3 − 2ēT33ē3)ξ2(t)

≤ ξT2 (t)43ξ2(t) (46)

Based on the above two cases, if (28)-(30) are satisfied,
we obtain that

V̇ (t)+ 2αV (t) ≤ 0, t ∈ [sk , sk+1) (47)
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Thus, it follows that

V (sk ) ≤ e−2α(sk−sk−1)V (sk−1)

≤ · · · ≤ e−2α(sk−s0)V (s0) (48)

By using Lemma 2 and (48), for t ∈ [sk , sk + h), we have

‖r(t)‖2 ≤ ν‖r(sk )‖2

≤
ν

λmin(P)
V (sk )

≤
νe2αh

λmin(P)
e−2αtV (0) (49)

On the other hand, from (32), (47) and (48), one can
conclude that for t ∈ [sk + h, sk+1)

‖r(t)‖2 ≤
1

λmin(P)
V (t)

≤
1

λmin(P)
e−2α(t−sk )V (sk )

≤
1

λmin(P)
e−2αtV (0) (50)

From (49) and (50), we can conclude that for t ∈ [sk , sk+1)

‖r(t)‖2 ≤
max{νe2αh, 1}
λmin(P)

e−2αtV (0) (51)

Moreover, it is easy to see

V (0) = rT (0)Pr(0) ≤ λmax(P)‖r(0)‖2 (52)

Using (51) and (52), we can get

‖r(t)‖2 ≤
λmax(P) · max{νe2αh, 1}

λmin(P)
e−2αt‖r(0)‖2 (53)

Thus, according to Definition 1, the error system (3) is expo-
nentially stable, i.e., the master-slave systems M and S are
exponentially synchronous. This completes the proof.
Remark 3: We should point out that the proposed LKF

is continuous in time, and it may be not positive definite at
sampling intervals. Different from the LKF introduced in [8],
[12], and [18], two new functions VX (t, rt ) and VQ(t, rt ) are
introduced in this paper, which makes it possible to deduce
less conservative synchronization criterion.
Remark 4: Theorem 1 provides an effective method to

design the desired controller under the event-triggered trans-
mission strategy (9). In fact, given scalars α, h, σ0, ε and γ ,
one can obtain the desired controller gain K and the event-
triggered parameters (9,�) by solving LMIs (28)-(30).
Next, we consider the sampled-based event-triggered con-

trol strategy by choosing

sk+1 = min{sk + ih, i ∈ N|σy(sk + ih)T�
×y(sk + ih) ≤ (y(sk + ih)− y(sk ))T9

×(y(sk + ih)− y(sk )) } (54)

Correspondingly, the synchronization error system can be
rewritten as

ṙ(t) = Ar(t)+Wg(Lr(t), s(t))− KCr(sk ) (55)

Consider the following LKF

V (t) = VP(r)+ VX (t, rt )+ VQ(t, rt )+ VU (t, ṙt ), (56)

where VP(r), VX (t, rt ), VQ(t, rt ) and VU (t, ṙt ) are given in
(33). For brevity, we have the following definition:

ς (t) = y(sk )− y(sk + ih),

ξ3(t) = [ξT1 (t), ς
T (t)]T ,

êi = [0n×(i−1)n, In, 0n×(5−i)n, 0n×l], i = 1, · · · , 5,

ê6 = [0l×5n, Il].

Then, we can get the following corollary.
Corollary 1: Given scalars α > 0, h > 0, σ > 0, ε and

γ , suppose that there exist positive definite matrices P ∈ Sn,
U ∈ Sn, 9 ∈ Sl , � ∈ Sl and any matrices Q ∈ Sn, Xi ∈
Rn×n, (i = 1, 2, 3, 4), X5 ∈ Sn, Nj ∈ Rn×5n, (j = 1, 2),
G ∈ Rn×n, T ∈ Rn×m and diagonal positive definite matrix
3 ∈ Sn such that

44 = 87 + h89 +810 < 0 (57)

45 =

87 + h88 +810 hNT
1 h2NT

2
∗ −he−2αhU 0
∗ ∗ −3he−2αhU


< 0 (58)

where

87 = sym(êT1 Pê3 + N
T
1 512 − 2NT

2 ê5)−5
T
9 X59

+ 2αêT1 Pê1,

88 = sym(NT
2 511)− êT2Qê2,

89 = sym(5T
9 X510)+ êT3Uê3 + ê

T
2Qê2

+ 2α5T
9 X59,

810 = sym(5T
13G514 −5

T
13TCê2 + ê

T
1 L

Tρ3ê4)

+ σ êT1C
T�Cê1 − êT69 ê6 − 2êT43ê4,

59 = [êT1 , ê
T
2 , ê

T
5 ]
T , 510 = [êT3 , 0, ê

T
1 ]
T ,

511 = ê1 + ê2, 512 = ê1 − ê2,

513 = εê1 + ê3 + γ ê2, 514 = −ê3 + Aê1 +Wê4.

Then the synchronization error system (3) under the event-
trigger mechanism (54) is exponentially stable. Further-
more, the desired output-based event-triggered controller
gain matrix can be obtained by (31).

Proof:The proof process is similar to the theorem 1, thus
it is omitted.
Remark 5: Compared with literature [18]–[22], a new

LKF (56) is constructed, which makes full use of the char-
acteristic information of actual sampling pattern. Thus the
proposed control scheme is less conservative. The proposed
method can be extended to synchronization of discrete-time
chaotic systems using some recent results in [25] and [26].
Remark 6: For the same h, σ ,� and9, the amount of sent

measurements under sampled-based event-triggered control
strategy (54) is less than under event-triggered mechanism
(9). However, the event-triggeredmechanism (9)may provide
a better tradeoff between saving computation resources and
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FIGURE 2. Chua’s circuit.

FIGURE 3. Master system M.

achieving better synchronization performance compared with
sampled-based event-triggered control strategy (54).

IV. NUMERICAL EXAMPLES
Next, we provide two simulation examples to demonstrate the
effectiveness of the proposed synchronization method:
Example 1: Consider the following Chua’s circuit system:

ż1(t) = a(z2(t)− c1z1(t)+ h(z1(t)))
ż2(t) = z1(t)− z2(t)+ z3(t)
ż3(t) = −bz2(t)

where h(z1(t)) = 1
2 (c1 − c0)(|z1(t) + 1| − |z1(t) − 1|), and

choose a = 9, b = 14.28, c0 = −1/7, c1 = 2/7. Fig. 2 is the
standard Chua’s circuit.

We can represent the Chua’s circuit system in the chaotic
Lur’e form with

A =

−ac1 a 0
1 −1 1
0 −b 0

 , L =

 1 0 0
0 1 0
0 0 1

,
W =

 a(c1 − c0) 0 0
0 0 0
0 0 0

,
and f1(z1(t)) = 1

2 (c1− c0)(|z1(t)+1|− |z1(t)−1|) belonging
to sector [0, 1], f2(z2(t)) = f3(z3(t)) = 0. Choosing the initial
conditions of the master-system M and the slave-system S
as m(0) = [0.2 0.3 0.2]T and s(0) = [−0.3 − 0.1 0.4]T ,
respectively. Figs. 3 shows the master Chua’s circuit system
states m(t).
For σ = 0, the proposed event-based communication

mechanism (54) reduces to the sampled-data communication

TABLE 1. Calculated maximum h for given α.

TABLE 2. Comparison of DTTs with different (a,b) for t = 5s.

FIGURE 4. Adaptive threshold parameter σ (t).

mechanism. Therefore, Corollary 1 can be used to obtain the
maximum sampling period h. To show the reduced conser-
vatism of the proposed method, we choose C = [1 0 0],
ε = 2 and γ = 0. Applying Corollary 1, one can obtain
the different maximum sampling period h for different α,
as shown in Table I. One can see that Corollary 1 can provide
larger maximum sampling period h compared with [12]. On
the other hand, we can choose a smaller sampling period h to
make the master-slave CLSs reach the synchronization faster.

Choosing α = 0.1, h = 0.03, σ0 = 1, µ = 5, C = [1 0 0],
ε = 2, γ = 0 and using Theorem 1, one can obatin the
following controller gain and event-triggered matrix

K = [8.7459 2.0026 − 6.0295]T , (59)

� = 0.2516, 9 = 3.6952. (60)

For the controller gain (59) and event-triggered matrix (60),
the adaptive threshold parameter σ (t) is illustrated in Fig. 4,
and the release instants under the event-triggered mechanism
(9) is illustrated in Fig. 5. Moreover, the data transmission
times (DTTs) based on event-triggeredmechanism (9) is 92 in
the time interval [0, 5s]. Compared with periodic sampling
strategy [11], [12], [30], one can conclude that the event-
trigger mechanism (9) can reduce the average amounts of
sent measurements by almost 44.91%. From Fig. 6, one
can see that the synchronization error finally converges to
zero. Thus, the proposed event-based control scheme can
reduce the amount of sent measurements while preserving
the desired synchronization performance. Compared with the
time-triggered sampling synchronization mechanism in [11],
[12], and [30], the proposed event-triggered control scheme
is more practical.
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FIGURE 5. Release instants under the event-triggered (9).

FIGURE 6. State response of error system (3).

Next, we shall show the effect of A, C , L andW variations
on the response of the proposed adaptive event-triggered con-
trol mechanism. Choosing α = 0.1, h = 0.03, σ0 = 1,µ = 5,
C = [1 0 0], ε = 2, γ = 0 and using Theorem 1, the DTTs
with different (a, b) are given in Table II, which shows that the
DTTs decreases with the decrease of (a, b). Therefore, in the
case of other parameters have been determined, by choosing
smaller (a, b), the proposed adaptive event-triggered control
mechanism can save more communication resources.
Example 2: Consider the master-system M and slave-

system S with the following parameters:

A =

−1 0 0
0 −1 0
0 0 −1

 , L =

 1 0 0
0 1 0
0 0 1

,
W =

 1.2 −1.6 0
1.24 1 0.9
0 2.2 1.5

, C =

 1 0 0
0 1 0
0 0 1

,
which implies that the CLSs reduces to a neural network with
three neurons, and fi(zi(t)) = 1

2 (|zi(t) + 1| − |zi(t) − 1|)
(i = 1, 2, 3) are the neuron activation functions. One can
see that ρ1 = ρ2 = ρ3 = 1. Choosing the initial con-
ditions of the master-system M and the slave-system S as
m(0) = [0.4 0.3 0.8]T and s(0) = [0.2 0.4 0.9]T , respectively.
Figs. 7 shows the trajectory of the master-system M.
Choosing α = 0.1, h = 0.05, σ0 = 0.5, µ = 50 and using

Theorem 1, one can obtain the following controller gain and

FIGURE 7. Master system M.

FIGURE 8. Adaptive threshold parameter σ (t).

FIGURE 9. Release instants under the event-triggered (9).

event-triggered matrix

K =

 2.2461 0.0570 −1.0177
0.3564 2.0777 1.8940
−1.0406 2.1457 3.4098

 (61)

� =

 0.7301 −0.0872 0.1165
−0.0872 0.7661 −0.1715
0.1165 −0.1715 0.6829

 (62)

9 =

 1.7739 0.1290 −0.2928
0.1290 1.6233 0.6026
−0.2928 0.6026 1.9290

 (63)

That is, under event-triggered mechanism (9), there exists a
output-feedback controller (61) such that the slave-system
S can asymptotical synchronize the master-system M. For
the above gain matrix, the adaptive threshold parameter σ (t)
is illustrated in Fig. 8, and the release instants under the
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FIGURE 10. State response of error system (3).

event-triggered mechanism (9) is illustrated in Fig. 9. Over
the time interval [0, 10s], the event-trigger mechanism (9) can
reduce the average amounts of sent measurements by almost
78.6% compared to periodic sampling. From Fig. 10, one can
see that the synchronization error finally converges to zero.

V. CONCLUSION
The synchronization problem has been investigated for
master-slave CLSs. By introducing a novel adaptive event-
triggered control mechanism, the workload of the com-
munication network can be reduced. Different from some
existing event-triggered schemes, the threshold parameter
of the proposed event-triggered mechanism can be dynam-
ically adjusted. Based on the input delay analysis method,
a novel LKF has been employed to derive a less conser-
vative exponentially synchronization criterion for the con-
sidered CLSs. This criterion has then been used to design
suitable controller gains in terms of solutions to a number
of LMIs. We have finally illustrated the effectiveness of
the proposed event-based control scheme through numerical
examples. Our future research will focus on the distributed
event-triggered control for multi-agent systems with uncer-
tain Lur’e-type nonlinear dynamics.
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