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ABSTRACT In this paper, an improved Zhang neural network (IZNN) is proposed by using a kind of novel
nonlinear activation function to solve the complex-valued systems of linear equation. Compared with the
previous ZNN models, the convergence rate of the IZNN model has been accelerated. To do so, a kind of
novel nonlinear activation function is first proposed to establish the novel recurrent neural network. Then,
the corresponding maximum convergent time is given according to the randomly generated initial error
vector, and the theoretical proof is described in detail in this paper. Finally, the experiment results illustrate
that the new recurrent neural network using the proposed activation function has higher convergence rate
than the previous neural networks using the linear activation function or the tunable activation function.

INDEX TERMS Recurrent neural network, convergence rate, finite time, complex-valued systems of linear
equation, novel nonlinear activation function.

I. INTRODUCTION
In recent years, the complex-valued systems of linear
equation (CVSLE) problem has been used into many
areas [1]–[5]. In mathematics, we can write the CVSLE prob-
lem as the following formula:

SW (t) = G ∈ Cn, (1)

where S ∈ Cn×n and G ∈ Cn represent the coeffi-
cient matrix and vector in complex-valued domain respec-
tively, and W (t) ∈ Cn represents an unknown vector in
complex-valued domain. According to the complex formula,
the vectors of equation (1) can be rewritten as S = Sre+ jSim,
G = Gre + jGim, and W (t) = Wre(t) + jWim(t), where
j =
√
−1 represents an imaginary unit. So, we can further

describe the equation (1) as follows:

[Sre + jSim][Wre(t)+ jWim(t)] = Gre + jGim ∈ Cn, (2)

where Sre ∈ Rn×n, Sim ∈ Rn×n, Wre ∈ Rn, Wim ∈ Rn, Gre ∈

Rn, andGim ∈ Rn. Based on the complex formula’s principle,
the two sides’ real (or imaginary) part of the equation must

be equal. Then we can rewrite the equation (2) as{
SreWre(t)− SimWim(t) = Gre ∈ Rn,

SimWre(t)+ SreWim(t) = Gim ∈ Rn.
(3)

Now the equation (3) can be described in the following
compact matrix form:[

Sre −Sim
Sim Sre

] [
Wre(t)
Wim(t)

]
=

[
Gre
Gim

]
∈ R2n. (4)

Then the equation (4) can be rewritten as the following form:

DH (t) = Q ∈ R2n, (5)

where

D =
[
Sre −Sim
Sim Sre

]
, H (t) =

[
Wre(t)
Wim(t)

]
, Q =

[
Gre
Gim

]
.

Now the CVSLE can be dealt with in real domain, and we can
use the technique for dealing with the real-valued system of
linear equation problem to deal with the CVSLE [6]–[10].

Now the recurrent neural networks have become a research
hotspot [11]–[15]. As a kind of recurrent neural network,
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Zhang neural network (ZNN) aroused widespread concern
in recent years [16]–[19]. Compared with the neural network
called gradient neural network (GNN) by using the Frobe-
nius norm as its performance indicator, the ZNN using the
lagging error can exponentially converge to zero instead of
converging to zero after long time [20]–[22]. It is noted that
the original ZNN model using the linear activation function
can’t converge to zero within finite time [23]. So, to improve
the convergence rate, some nonlinear activation functions
are designed for ZNN model. For example, Li et al. [24]
and Xiao and Liao [25] proposed a sign-bi-power activation
function (SBPAF) to modify the performance of ZNNmodel.
Based on the SBPAF, Miao et al. [26] proposed a new non-
linear activation function called tunable activation function
to further accelerate the convergence rate. The tunable acti-
vation function is formulated as follows:

9(v) = sign(v)(a1|v|r + a2|v| + a3|v|1/r ), (6)

where 0 < r < 1, a1 > 0, a2 > 0, a3 > 0 and

sign(v) =


1, if v > 0
0, if v = 0
−1, if v < 0.

In [26], the research shows that the nonlinear activation func-
tion for ZNN can accelerate the convergent rate and converge
to zero within finite time.

The above study shows that the appropriate nonlinear acti-
vation functions can accelerate the convergent rate. To further
accelerate the convergent rate, we propose an improved non-
linear activation function for ZNNmodel based on the tunable
activation function. So an improved ZNN model using the
improved nonlinear activation function is proposed to solve
the CVSLE in this paper.

The remainder of this paper is divided into the following
three parts. An improved ZNN (IZNN) model using a new
nonlinear activation function to deal with the CVSLE is
proposed, and the corresponding theoretical proof is given
in section II. The corresponding simulation results are given
to show the superiority of this new nonlinear activation
function in section III. Section IV gives the corresponding
conclusions.

II. FINITE TIME CONVERGENT IZNN
From the above analysis, we can calculate the CVSLE prob-
lem in real domain. For the original ZNN model, we can
describe the error function Y (t) as

Y (t) = DH (t)− Q ∈ R2n. (7)

Then we have Ẏ (t) = −β9(Y (t)), which denotes the design
formula of ZNN. Based on this, we have

DḢ (t) = −β9(DH (t)− Q), (8)

where 9(·) is the activation function array, and β > 0
represents an adjusted coefficient for the convergence rate.

Suppose the 9(·) use a linear activation function, the equa-
tion (8) can be written as

DḢ (t) = −β(DH (t)− Q), (9)

which is called the ZNNL model. If the tunable activation
function is used, we have

Ẏ (t) = −βsign(Y (t))(a1|Y (t)|r + a2|Y (t)| + a3|Y (t)|1/r ),

(10)

which is called the ZNNT model. Now we propose a novel
nonlinear activation function, which is defined as

9(v) = sign(v)(a1|v|p + a2|v|1/p − a3|v|), (11)

where a1 > a3 > 0, a2 > a3 > 0, and p > 1. Then we have

Ẏ (t) = −βsign(Y (t))(a1|Y (t)|p + a2|Y (t)|1/p − a3|Y (t)|).

(12)

We can rewrite the formula (12) as

DḢ (t) = −βsign(DH (t)− Q)(a1|DH (t)− Q|p

+ a2|DH (t)− Q|1/p − a3|DH (t)− Q|), (13)

which is called the IZNNmodel for solving the CVSLE. Now
to verify the IZNNmodel’s finite-time convergence property,
the corresponding theorems are presented as follows.
Theorem 1: Regardless of what the value of the initial

residual error is, the residual error Y (t) of equation(12) will
get to zero within t(x0) satisfies:

t(x0)

=


ln a1−a3|YM (0)|1−p

a1−a3

βa3(p− 1)
+
−p ln[1− a3

a2
]

βa3(p− 1)
, if |YM (0)| ≥ 1

−p ln[1− a3
a2
|YM (0)|(p−1)/p]

βa3(p− 1)
, if |YM (0)| < 1

where |YM (0)| represents the maximum element of the initial
residual error function vector |Y (t)|.

Proof:According to (12), the vector Y (t)’s each element
has the identical dynamic, then the equation (12) can be
written as

Ẏi(t) = −βsign(Yi(t))(a1|Yi(t)|p + a2|Yi(t)|1/p

− a3|Yi(t)|). (14)

where Yi(t) represents the vector Y (t)’s ith element. From
equation (14) and under the conditions of a1 > a3 > 0 and
a2 > a3 > 0, we have

(a1|Yi(t)|p + a2|Yi(t)|1/p) ≥ 2
√
a1|Yi(t)|p ∗ a2|Yi(t)|1/p

= 2
√
a1 ∗ a2|Yi(t)|(p+1/p)

≥ 2
√
a1 ∗ a2|Yi(t)|2

> 2
√
a3 ∗ a3|Yi(t)|2

= 2a3|Yi(t)|.
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FIGURE 1. Output trajectories of neural states X (t) synthesized by ZNNL model (9) in example 1. (a) Element of real part of H(t). (b) Element of
imaginary part of H(t).

Then, we have a1|Yi(t)|p + a2|Yi(t)|1/p − a3|Yi(t)| > 0.
If Yi(t) > 0, we have

Ẏi(t) = −β(a1|Yi(t)|p + a2|Yi(t)|1/p − a3|Yi(t)|). (15)

Obviously, the equation (15) ismonotone decreasing, andwill
finally converge to zero. If Yi(t) < 0, we have

Ẏi(t) = β(a1|Yi(t)|p + a2|Yi(t)|1/p − a3|Yi(t)|). (16)

Obviously, the equation (15) is monotonically increasing, and
will finally converge to zero too. So we can conclude that
whatever the value of Yi(t) is, the equation (14) will converge
to zero.

Now suppose Yi(t) > 0, and Yi(0) ≥ 1, then according to
the equation (15), we have

Ẏi(t) ≤ −βa1(Yi(t))p + βa3Yi(t). (17)

From the equation (17), we can find −βa1(Yi(t))p +
βa3Yi(t) < 0, and the equation (17) is convergent. Now mul-
tiplying (17) by e−βa3t , then we can rewrite the equation (17)
as

e−βa3t Ẏi(t)− βa3Yi(t)e−βa3t ≤ −βa1(Yi(t))pe−βa3t .

(18)

Then we have

d(Yi(t)e−βa3t )
(Yi(t)e−βa3t )p

≤ −βa1e−βa3(1−p)tdt. (19)

Now integrating the inequality from 0 to t , the Yi(t) can be
written as

Yi(t) ≤ eβa3t [Yi(0)1−p −
a1
a3
+
a1
a3
e−βa3(p−1)t ]1/(p−1). (20)

Let

t1i =
ln a1−a3Yi(0)1−p

a1−a3

βa3(p− 1)
. (21)

Then we can find that if ti ≥ t1i, Yi(t) ≤ 1. Suppose YM (0)
represents the initial error vector Y (0)’s largest element, then

we have t1 = max(t1i), and t1 =
ln a1−a3YM (0)1−p

a1−a3
βa3(p−1)

. Then we
can conclude that if ti ≥ t1,Yi(t) ≤ 1.
When 0 < Yi(t) < 1, according to the equation (15),

we have

Ẏi(t) ≤ −βa2(Yi(t))1/p + βa3Yi(t). (22)

From the equation (22), we can find when 0 <Yi(t) < 1,
a2 > a3, and p > 1, we will have (Yi(t))1/p > Yi(t),
and −a2(Yi(t))1/p + a3Yi(t) < 0. So the equation (22) is
convergent. Now multiplying (22) by e−βa3t , then we can
rewrite the equation (22) as

e−βa3t Ẏi(t)− βa3Yi(t)e−βa3t ≤ −βa2(Yi(t))1/pe−βa3t ,

(23)

and

d(Yi(t)e−βa3t )
(Yi(t)e−βa3t )1/p

≤ −βa2e
−βa3(1− 1

p )tdt. (24)

Then, we have

d(Yi(t)e−βa3t )(p−1)/p ≤
a2
a3
de−βa3(1−

1
p )t . (25)

Now integrating the inequality from 0 to t , the Yi(t) can be
written as

Yi(t) ≤ eβa3t [Yi(0)(p−1)/p −
a2
a3
+
a2
a3
e−βa3(

p−1
p )t ]p/(p−1).

(26)

Let

t2i =
−p ln[1− a3

a2
Yi(0)(p−1)/p]

βa3(p− 1)
. (27)
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FIGURE 2. Output trajectories of neural states H(t) synthesized by ZNNT model (10) in example 1. (a) Element of real part of H(t). (b) Element of
imaginary part of H(t).

FIGURE 3. Output trajectories of neural states H(t) synthesized by IZNN model(13) in example 1. (a) Element of real part of H(t). (b) Element of
imaginary part of H(t).

Then we can find that if t ≥ t2i, Yi(t) = 0. Suppose t2 =

max(t2i) and t2 =
−p ln[1− a3

a2
YM (0)(p−1)/p]

βa3(p−1)
. Now we can find

when t ≥ t2, Yi(t) = 0 .
Similarly, when Yi(t) < 0, we will have the same conclu-

sion. Now we can rewrite t1and t2 as t1 =
ln a1−a3|YM (0)|1−p

a1−a3
βa3(p−1)

,

and t2 =
−p ln[1− a3

a2
|YM (0)|(p−1)/p]

βa3(p−1)
, respectively, where |YM (0)|

is the residual error matrix |Y (t)|’s maximum element.
This proof is successful. �
Theorem 2: Regardless of what the randomly generated

initial state matrixH (0) is, the model (13)’s state matrixH (t)
will obtain its theoretical result within tu , and

tu =


ln a1−a3|YM (0)|1−p

a1−a3

βa3(p− 1)
+
−p ln[1− a3

a2
]

βa3(p− 1)
, if |YM (0)| ≥ 1

−p ln[1− a3
a2
|YM (0)|(p−1)/p]

βa3(p− 1)
, if |YM (0)| < 1

where |YM (0)| represents the initial residual error function
matrix |Y (t)|’s maximum element.

Proof: Suppose H(AZ )(t) and H(or)(t) mean the solu-
tion and the theoretical solution of the model (13), respec-
tively. Then H̃ (t) means the difference between H(AZ )(t) and
H(or)(t),

H̃ (t) = H(AZ )(t)− H(or)(t) ∈ R2n. (28)

We can rewrite the above equation as

H(AZ )(t) = H̃ (t)+ H(or)(t) ∈ R2n. (29)

Then according to the model (13), the following formula can
be given

D( ˙̃H (t)+ Ḣ(or)(t))

= −βsign(D(H̃ (t)+ H(or)(t))− Q)

× (a1|D(H̃ (t)+ H(or)(t))− Q|p

VOLUME 6, 2018 62957



L. Ding et al.: New RNN Model With a Modified Nonlinear Activation Function Applied to Complex-Valued Linear Equations

FIGURE 4. The evolution process of the corresponding residual errors in example 1.

FIGURE 5. Output trajectories of neural states H(t) synthesized by ZNNL model (9) in example 2. (a) Element of real part of H(t). (b) Element of
imaginary part of H(t).

+ a2|D(H̃ (t)+ H(or)(t))− Q|1/p

− a3|D(H̃ (t)+ H(or)(t))− Q|). (30)

According to the equation (7) and the equation (8), we have
DH(or)(t)− Q = 0 and DḢ(or)(t) = 0, and

D ˙̃H (t) = −βsign(DH̃ (t))(a1|DH̃ (t)|p

+ a2|DH̃ (t)|1/p − a3|DH̃ (t)|). (31)

Because Y (t) = D(H̃ (t)+H(or)(t))−Q, DH(or)(t)−Q = 0,
and Y (t) = DH̃ (t), we can rewrite the above equation as

Ẏ (t) = −βsign(Y (t))(a1|Y (t)|p + a2|Y (t)|1/p − a3|Y (t)|).

The above equation is same as the equation (15). Thus the
proof is successful. �

III. THE COMPUTER SIMULATION
Now, wewill use two digital examples to show the superiority
of IZNN model (13) compared with the ZNNL model and
the ZNNT model. To display the convergent rate of differ-
ent models, the corresponding neural-state solutions’ output
trajectories and the evolution procedure of the corresponding
residual error norm ||Y (t)||2 are given in this paper. Fur-
thermore, to facilitate the comparison, we choose the same
parameters β = 10, r = 1/5 = 1/p, a1 = k1 = 0.5,
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FIGURE 6. Output trajectories of neural states H(t) synthesized by ZNNT model (10) in example 2. (a) Element of real part of H(t). (b) Element of
imaginary part of H(t).

FIGURE 7. Output trajectories of neural states H(t) synthesized by IZNN model(13) in example 2. (a) Element of real part of H(t). (b) Element of
imaginary part of H(t).

a2 = k1 = 0.8, and a3 = k3 = 0.4 for the different models.
In this section, two different examples are given.
Example 1:

S1W1(t) = G1 ∈ Cn,

where S1, as shown at the bottom of the next page, and

G1 =


1.0000

0.6724+ 0.5764j
0.6724− 0.5764j

0

.
According to equation (5) we haveD1, as shown at the bottom
of the next page, and

QT
1 =

[
1.0000 0.6724 0.6724 0 0 0.5764 0.5764 0

]
,

here, T means the transpose of the matrix Q1.

Example 2:

S2W2(t) = G2 ∈ Cn,

where S2, as shown at the bottom of the next page, and

G2 =


3.5345+ 4.5345j
2.5432+ 7.4532j
5.5334− 6.7853j
3.2312− 4.7543j

.
Similarly, according to equation (5) we have D2, as shown at
the bottom of the next page, andQT

2 , as shown at the bottom of
the next page, where T means the transpose of the matrix Q2.
From the neural-state solutions’ output trajectories shown

in the Figs. 1-3, and Figs. 5-7, we can find that compared with
the ZNNLmodel and the ZNNTmodel, this IZNNmodel has
the fastest convergence rate for solving the CVSLE problem.
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FIGURE 8. The evolution process of the corresponding residual errors in example 2.

S1 =


−0.4532+ 0.8307j −0.4216− 0.63210j 0.2541− 0.6374j 1
0.4532+ 0.8307j −0.4216+ 0.63210j −0.2541− 0.6374j 1
0.4532− 0.8307j −0.4216− 0.63210j −0.2541+ 0.6374j 1

0− 1.0000j −1.0000 0+ 1.0000j 1

,

D1 =



−0.4532 −0.4216 0.2541 1 −0.8307 0.63210 0.6374 0
0.4532 −0.4216 −0.2541 1 −0.8307 −0.63210 0.6374 0
0.4532 −0.4216 −0.2541 1 0.8307 0.63210 −0.6374 0

0 −1.0000 0 1 1.0000 0 −1.0000 0
0.8307 −0.63210 −0.6374 0 −0.4532 −0.4216 0.2541 1
0.8307 0.63210 −0.6374 0 0.4532 −0.4216 −0.2541 1
−0.8307 −0.63210 0.6374 0 0.4532 −0.4216 −0.2541 1
−1.0000 0 1.0000 0 0 −1.0000 0 1


,

S2 =


−3.3341+ 2.5684j −4.6125− 5.6321j 7.2541− 4.6374j 4.6489+ 7.3533j
4.4532+ 3.8307j −3.4216+ 1.6321j −6.2345− 3.3425j 3.7654− 6.3427j
6.4532− 1.8307j −3.4216− 1.5431j −5.3453+ 2.5634j 1.3452+ 2.8589j
7.2341− 1.5663j −5.6342+ 8.7652j 2.5844+ 1.0000j 3.4667− 5.4677j



D2 =



−3.3341 −4.6125 7.2541 4.6489 −2.5684 5.6321 4.6374 −7.3533
4.4532 −3.4216 −6.2345 3.7654 −3.8307 −1.6321 3.3425 6.3427
6.4532 −3.4216 −5.3453 1.3452 1.8307 1.5431 −2.5634 −2.8589
7.2341 −5.6342 2.5844 3.4667 1.5663 −8.7652 −1.0000 5.4677
2.5684 −5.6321 −4.6374 7.3533 −3.3341 −4.6125 7.2541 4.6489
3.8307 1.6321 −3.3425 −6.3427 4.4532 −3.4216 −6.2345 3.7654
−1.8307 −1.5431 2.5634 2.8589 6.4532 −3.4216 −5.3453 1.3452
−1.5663 8.7652 1.0000 −5.4677 7.2341 −5.6342 2.5844 3.4667


QT
2 =

[
3.5345 2.5432 5.5334 3.2312 4.5345 7.4532 −6.7853 −4.7543

]
,
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Furthermore, from the evolution of the corresponding resid-
ual error norm ||Y (t)||2 displayed in Fig. 4 and Fig. 8, this
IZNN model has the fastest convergence rate than the ZNNL
model and the ZNNT model.

IV. CONCLUSIONS
To accelerate the convergence rate for solving the CVSLE
in complex domain, an improved ZNN model with new
activation function is presented and the corresponding the-
oretical proof is given in detail in this paper. It is the first
time to present this novel nonlinear activation function to
accelerate the convergence rate and even reach the finite-time
convergence. The simulation results display that the IZNN
model presented in this paper has the fastest convergent rate,
as compared with the ZNNL model and the ZNNT model.
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