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ABSTRACT In the Internet of Things, data sets gathered from sensor nodes are missing a significant
fraction of data, owing to noise, collision, unreliable links, and unexpected damage. This phenomenon is
more serious in some scenarios, which limits the applications of sensor data. It is therefore necessary to
developmethods to reconstruct these lost data with high accuracy. In this paper, a newmulti-attribute missing
data reconstruction method based on adaptive weighted nuclear norm minimization is developed, and a
K -means clustering analysis is embedded into this forecasting process to improve the prediction accuracy.
First, to ensure that sensors in one group have similar patterns of measurement, we use a traditional machine
learning algorithm, called K -means clustering algorithm to separate sensors into different groups. Second,
considering the correlations among multiple attributes of sensor data and its joint low-rank characteristics,
we propose an algorithm based on the matrix rank-minimization method of automatic weighted nuclear norm
minimization, which adaptively assigns different weights to each singular value simultaneously. Moreover,
we use the alternating direction method of multipliers to obtain its optimal solution. Finally, we evaluate
the proposed method by using a real sensor data set from the Intel Berkeley Research Laboratory with two
missing patterns, namely, random missing pattern and consecutive missing pattern. The simulation results
prove that our algorithm performs well even with a small number of samples, and it can propagate through
a structure to fill in large missing regions.

INDEX TERMS Data reconstruction, Internet of Things (IoT), K -means, multi-attribute, tensor completion,
weighted nuclear norm minimization (WNNM).

I. INTRODUCTION
Owing to advancements in information technology, the new
era of the Internet of Things (IoT) is encompassing comput-
ing and communication technologies, spanning every aspect
of our lives, and it has emerged as one of central issues in
our daily lives. The IoT is an intelligent network, it has
been defined as a global network with an infrastructure that
has self-configuring capabilities. Specifically, the sensors are
embedded in various objects and then integrated with the
existing Internet to realize the information exchange between
human society and physical systems. IoT is to fully utilize the
new generation of IT technology in all walks of life, which is
called the third wave of the world information industry after
computers and the Internet [1]–[3].

IoT has employed many technologies and the core tech-
nologies of it mainly include Radio Frequency Identifica-
tion (RFID), sensor technology, wireless network technology,
artificial intelligence and cloud computing [1]. IoT is widely
used in conventional Long Term Evolution (LTE), Wi-Fi,
ZigBee, wireless sensor network (WSN), as well as device-
to-device (D2D) communication [4], transmit antenna selec-
tion (TAS) in cooperative networks [5], the low-power wide
area network from the LoRa Alliance (LoRaWAN), narrow
band IoT (Nb-IoT), Ethernet andmany other communications
technologies. Therefore, IoT is rapidly transforming into a
highly heterogeneous ecosystem that provides inter operabil-
ity among different types of devices and communications
technologies [6]–[8].
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Stylized as IoT, it is the interconnection of everyday
‘‘thing,’’ such as vehicles, buildings, and other Internet-
connected devices embeddedwith software, electronics, actu-
ators, and sensors, enabling them to send and receive data.
Thus, data is themost crucial and significant asset responsible
for the functioning of these smart devices. IoT applications
gather huge volumes of multiple attribute data from the phys-
ical world through all connected sensors and reconstruct envi-
ronmental data in the cyber world [9]. For instance, scientists
have revealed the plant evolution based on wind speed, air
humidity, and air temperature data [10]. Volcanic eruptions
have been predicted based on temperature and shake data of
volcanoes [11].

IoT applications have strict requirements in terms of data
integrity, correctness, and on-time delivery [12]. However,
in many IoT applications, massive data loss is common and
unavoidable. For example, the Intel Berkeley Research lab
dataset [11] is missing roughly 50% of data, the Ocean Sense
project is missing 64% of data [13], and the GreenOrbs
project is missing 35% of data [14]. This can be ascribed
to many reasons. On the one hand, these data have the
characteristics of large scale, high dimensions, and complex
structures. Data loss or damagemay occur during acquisition,
transmission, and storage. On the other hand, sensor nodes
have limited capabilities, so limitations in terms of energy,
storage, communication capabilities, battery depletion, hard-
ware failures, or other environmental and communications
issues may cause lead to the capture of incomplete data.

Loss of sensing data hinders various IoT applications and
makes it more difficult to process sensor data. Moreover,
if the missing data values cannot be filled in accurately,
the existing analysis tools cannot be applied; if the missing
data are deleted directly, a large amount of raw data would be
lost, which would reduce the accuracy and reliability of the
analysis results and lead to the wastage of a massive amount
of energy. According to a report by IBM, tons of data are
produced every day throughout the world. Currently, it is
about 2.5 quintillion bytes per day.With IoT, this number will
increase considerably. For example, in 2009, there were about
0.9 billion smart objects, and their number is projected to
reach 26 billion by 2020. The more widespread the use of this
technology, the greater will be the volume of data produced.
Recovering missing sensor data effectively to better analyze
them for IoT applications is a major challenge. Therefore,
it is urgent and important to design effective methods for
reconstructing missing values in big sensor data.

Many studies have contributed techniques to predict miss-
ing sensor data. Most such techniques are based on temporal
methods, spatial methods, or spatio-temporal methods. How-
ever, in a few special scenarios, high data loss rates may veil
temporal and spatial correlations. Therefore, it is necessary to
find new ways to address this problem. We are aware that a
sensing node is usually integrated with a multi-function sen-
sor, and these nodes usually gather multiple attributes simul-
taneously, for example, the data collected by sensor nodes
in [15] contains four attributes: temperature, humidity, light,

and voltage. Thus, we can assume that there are a few con-
nections between these attributes objectively. For instance,
when light illumination is increased, the ambient temperature
will increase simultaneously, and air humidity will decrease.
An empirical study [16] revealed that temperature, dewpoint
temperature, and relative humidity are linearly correlated.
That is, the correlations among the attributes can be used as a
supplement of the internal correlations to increase estimation
accuracy.

In this paper, a new approach to reconstructing missing
values in IoT data is proposed. This method implements
a K -means clustering algorithm to separate sensors into dif-
ferent groups. The main goal of clustering is to increase the
similarity within the same group and the difference between
different clusters. Thereafter, we use the potential relation-
ships among multiple data attributes to propose an algorithm
based on the matrix rank-minimization method, which is an
approach to low rank matrix approximation [17], to recon-
struct the multi-attribute sensor data within each cluster.
To improve data reconstruction performance, we enhance
our algorithm by normalizing the data and using weighted
nuclear normminimization (WNNM) [18]. Our contributions
are summarized as follows:

1) We use the K -means clustering algorithm to divide the
sensor nodes into different clusters, so as to ensure
that sensors within one group have similar patterns of
measurement.

2) To the best of our knowledge, this is the first work
to apply adaptive weighted nuclear norm minimization
algorithm in tensor-based method to sensor data recon-
struction problem.

3) We combine the multi-attribute correlation of sensor
data and the low-rank minimization technique to pro-
pose a tensor-based algorithm, named DR-AWNNM,
for reconstruction missing values.

The remainder of this paper is organized as follows.
In Section II, we present related work. Section III describes
problem formulation. The performance of the proposed
method is evaluated in Section IV. Section V provides our
concluding remarks and an outline for future work.

II. RELATED WORK
A. EXISTING APPROACHES AND THEIR LIMITATIONS
In the modern IoT paradigm, data integrity is the most impor-
tant aspect that influences the overall performance of any
system. The IoT is used for many critical applications, such
as telemetry in hazardous environments, control of industrial
processes, e-Health, smart transportation systems, national
security, etc. Recently, IoT was used also for the network
monitoring to manage the performance of 5G heterogeneous
networks under variable conditions The problem of missing
sensor data in WSN has been known for a long time [6].
WSN, which is one of the key technologies of IoT, has been
researched extensively on the back of rapid development of
wireless communication technology, microelectronics tech-
nology, and embedded computing technology [9].
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FIGURE 1. Network structure of WSN.

A WSN consists of many sensor nodes distributed in a
specific area, each of which has certain computing, storage,
and communication capabilities. Figure 1 shows the network
structure of a WSN: These devices capture similar data and
transmit it to the sink node. Sink node is considered as a
store and forward devicewhich retrieves information from the
IoT devices, performs data acquisition and finally transmits it
to a central entity called cloud under a cloud robotics frame-
work. Many studies in the literature have focused on miss-
ing data reconstruction in WSN, and most such techniques
are based on temporal methods, spatial methods, or spatio-
temporal methods.

Temporal methods leverage the temporal correlations
among readings recorded by the same sensor node [19], that
is to say, the corresponding sensory data collected by the
sensing node within the monitoring range usually change
slowly within a short time interval, and the sensing data of
the same sensory node are often the same or similar before
and after the time interval. Salient methods include observed
data mean [20], last seen [21], and linear interpolation. How-
ever, for long temporal gaps in observations for a given
sensor or when the WSN changes sharply and irregularly,
the temporal methods cannot perform well, and their effec-
tiveness decreases rapidly as the number of consecutively
missing readings increases.

Spatial methods leverage spatial correlations among the
sensor data of spatially similar sensor nodes at the same
monitoring time; usually, the closer the sensory nodes
to each other spatially, the more relevant are the data.
The most classical interpolation method is the K -nearest-
neighbor method [22], which utilizes the values of the nearest
K neighbors to estimate the missing one. The K -nearest
neighbor estimation method [23] is applied to describe the
spatial correlation among the sensor data of different sen-
sor nodes by using the linear regression model, and it uses
the data information of each neighboring node to estimate
the missing data. The window association rule mining [24]
and freshness association rule mining [25] estimate miss-
ing data based on association rules among spatially cor-
related neighbors. However, such models are suitable only
for limited types of signals and environments, which typ-
ically require precise three-dimensional distances between
sensors.

Compressive Sensing(CS) is a powerful and generic tech-
nique for estimating data, it can utilize a small fraction
of data to reconstruct the entire dataset. Reference [26]
developed a Compressive Sensing based Data Prediction
(CS-DP) model to predict data at the gateways by learning
the data pattern received from IoT devices, [27] developed an
extended sparse adaptive matching tracking algorithm based
on aforementioned Greedy algorithm (CAMP) to reconstruct
data in WSN. However, CS cannot be directly applied for
environment reconstruction because of its special inherent
structures. Meanwhile, the missing data must follow the
Gaussian or pure random distribution.

All above methods aiming to estimate missing values are
based on a single attribute. However, many physical attributes
in nature are strongly correlated, such as humidity and
temperature. In [28], a method was proposed to analyze inter-
attribute correlations based on the perceived data in real envi-
ronments. The authors selected the temperature and humidity
attribute data of GreenOrbs [14], and after smoothing, they
found a significant negative correlation between the changes
in temperature and humidity according to the scatter plot.
However, actual perception data may be positively corre-
lated or non-linearly related, depending on nature-specific
attributes. In [29], the characteristics of real sensor data were
studied, and a multi-attribute-assistant compressive-sensing-
based algorithm was developed to approximate missing data.
The simulation results show this algorithm performed well,
except in cases where the data were highly complex.

Recently, the intrinsic low-rank property of high dimen-
sional data has been considered. In [30], the tensor comple-
tion theory was used to recover missing data from the sink
node of a large-scale WSN; the authors proposed a high-
accuracy low-rank tensor completion algorithm (HaLRTC)
to solve the tensor completion problem without considering
noise. Shao et al. [31] propose a tensor-based method called
ADMAR to reconstruct multi-attribute sensor data. However,
this method cannot perform well when the data missing rate
is more than 60% with consecutive missing patterns.

B. MATRIX COMPLEMENT BASED ON NUCLEAR
NORM RELAXATION
Wu et al. [32] analyzed a temperature dataset collated using
sensor data and verified that most of the information in the
dataset can be described with few principal components,
indicating that sensor data have a low-rank characteristic.
Therefore, the missing data reconstruction problem can be
transformed into matrix rank minimization problem. We first
introduce the basic theory of matrix complement based on
nuclear norm relaxation.

Given an incomplete low-rank matrix E ∈ Rm×n, the goal
is to recover all elements based on a few observed elements of
the matrix, which can be described by the following radiation
rank minimization problem:

min
X

rank(X), s.t. Xij = Eij, (i, j) ∈ �. (1)
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where � ⊂ {1, 2, · · · , n} × {1, 2, · · · ,m} is the set of
sampled entries ofE, and rank(X) is the rank of matrixX. The
constraints of the optimization problem can be expressed as
P�(X) = P�(E), as well, where P�(·) is defined as follows:

[P�(Xij)] =

{
Xij, if(i, j) ∈ �,
0, otherwise.

(2)

The rank function of the matrix is discontinuous and non-
convex, and the optimization problem has been evidenced
to be NP-hard [17], therefore, it cannot be solved easily in
practice. At present, the method mainly converts the convex
relaxation process of the problem into the problem of solving
Nuclear Norm Minimization (NNM). Thus problem (1) is
transformed into the following:

min
X
‖X‖∗ , s.t. P�(X) = P�(E). (3)

where ‖X‖∗ = 6iσi(X) denotes the nuclear norm of X,
and σi(X) denotes the ith largest singular value. In prac-
tice, the noises in sensory data may lead to over-fitting,
so the equality constraints cannot be satisfied strictly. Thus,
problem (3) is often placed in the objective function:

min
X
‖X‖∗ +

1
2λ

∥∥P�(X)− P�(X)
∥∥2
F , (4)

In practice, noises in sensory datamay lead to over-fitting if
strict satisfaction is required. Therefore, we use the parameter
λ (0 < λ < 1) controls to the fit to constraint P�(X ) =

P�(T ). ‖X‖2F :=
√
6i,j

∣∣xij∣∣2 is the Frobenius norm of X .
Cai et al. [33] proposed a singular value threshold algorithm
for solving NNM problems:

Dτ (X) = argmin
X

λ

2

∥∥X− E
∥∥2
F + τ ‖X‖∗ , (5)

whereDτ (X) is the ‘‘shrinkage,’’ operator ofX, and τ (τ > 0)
is a constant. If rank(X) = r , its singular value is decomposed
into X = U6τVT , where 6 = diag({σi} , 1 ≤ i ≤ r)
is a vector, consisting of σi(X) with descending order, and
U and V are orthogonal matrices. Thus, the matrix shrinkage
operator Dτ (X) is defined as follows:

Dτ (X) = Udiag({max(0, σi − τ )})VT . (6)

III. PROBLEM FORMULATION
A. GROUPING SENSOR NODES WITH K-MEANS
CLUSTERING ALGORITHM
Normally, in a monitored region, many sensor nodes are
deployed. In [16], it was proved that data sensed from these
nodes have spatial correlations. For example, Fig. 2 shows
the temperature observed by three sensor nodes from the
Intel Berkeley Research Laboratory dataset over two days.
On the one hand, the data sensed by nearby nodes, namely,
nodes 32 and 33, have similar curves. Thus, when some
of the sensed data of a sensor node are missing, we can
estimate them by using the data of the neighboring nodes.
On the other hand, the data curve of node 2 is completely
different from those of nodes 32 and 33 because node 2 is

FIGURE 2. Temperature collected by three sensor nodes.

far from nodes 32 and 33. This example shows that not
every node in a given is useful for recovering the missing
values of a certain node. Therefore, to better use the degree
of similarity among measured values of neighboring sensors,
we first divide the sensors into different groups to minimize
measurement changes within each group.

In this work, we use the K-means clustering algorithm
to group sensors. K-means clustering algorithm is a classic
unsupervised clustering algorithm that provides good group-
ing of rectangular and circular regions [34]. This algorithm
divides a set of points into K clusters so that points in each
cluster tend to be close to each other. We list the main steps
of K-means clustering algorithm in the following:
Step 1: Use X ∗ = {x1, x2, . . . , xN } to represent the set of

coordinates of N sensor nodes in the monitoring area, and
randomly select K objects as the initial clustering center,
denoted as C = {c1, c2, . . . , cK }, where each object rep-
resents a clustering center. Next, place the cluster centers
of K clusters uniformly within the target field of sensors.
Step 2: Associate each sensor with the nearest cluster

center by using the criterion of distance:

xci = arg min
k=1,...,K

‖xi − ck‖2, (7)

where ci stands for the clustering center of sensor node i.
We gather the sensor nodes associatedwith clustering center k
into set Ck . We call set Ck as a cluster.
Step 3: For each cluster Ck , calculate the average coordi-

nates as follows:

c′k =

∑
i∈Ck xi
|Ck |

, (8)

where |Ck | denotes the cardinality of set Ck .
Step 4: Update the coordinates of cluster centers:

C′ =
{
c′1, c

′

2, . . . , c
′
K
}
. (9)

Step 5: Determine the differences between the new cluster
center and the previous cluster center:

4ck =
∥∥c′k − ck∥∥2. (10)
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FIGURE 3. Iterations of K-means clustering algorithm (K = 9, (a)-Step 1, (b)-step 2 and 3, (c)-step 4 and 5).

Step 6: Iterate steps 2, 3, 4 and 5 until set Ck no longer
changes or the difference between adjacent iterations is
smaller than the given threshold:∑

k

4ck < η. (11)

where η is a small positive number, here we set
η = 1e−4 [35].
Figure 3 shows the procedure the five-step procedure of

one iteration. The red solid points represent the cluster cen-
ters, and the stars represent the sensor nodes; the different
colors of sensor points indicate different clusters.

B. DATA RECONSTRUCTION WITH ADAPTIVE WEIGHTED
NUCLEAR NORM (DR-AWNNM)
Suppose thatN nodes are deployed in a monitoring area, each
of which is equipped with K∗ sensors to monitor different
at-tributes simultaneously. The monitoring period consists
of Q time slots. The sensor data gathered in one node can
be organized in the following format [29], where sensor
ID stands for sensor identity number, time stamp represents
sampling time, and the attributes include temperature and
humidity.

TABLE 1. The data format.

Let T be a tensor of the sensor data withM attributes col-
lected by N nodes withinQ time slots, that is, T ∈ RN×M×Q;
the tensor is a generalization of the matrix concept. We use
tn,m,q to represent the entry of T . Owing to data loss in IoT,
T is usually an incomplete tensor. The intact information of
T is a set of entries tn,m,q, for (n,m, q) ∈ �, where � is
the set of sampled entries of T . We use P�(·) to indicate the
sampling operator, which is defined as follows:

[P�(T )]n,m,q =

{
tn,m,q, if (n,m, q) ∈ �,
0, otherwise.

(12)

The multi-attribute sensor data reconstruction problem is
defined as follows:

Given a subset of T , denoted as P�(T ), the ultimate goal
is to find an optimal solution T̂ that minimizes the error
between T and T̂ :

min ‖T − T̂ ‖F
s.t. P�(T̂ ) = P�(T ), (13)
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where ‖X‖F :=
√
ïĳĹ(6i1,i2,...,in

∣∣xi1,i2,...,in ∣∣2)ïĳĽ is defined
as the Frobenius norm of tensor X .
Many studies [19], [32], have mentioned that the sensor

data tensor is low-rank, so the missing values in T can
be recovered using the matrix complement based on nuclear
norm relaxation:

min ‖X‖∗
s.t. P�(X ) = P�(T ), (14)

where ‖X‖∗ is the nuclear norm of X , which is defined

as ‖X‖∗ :=
N∑
i=1
αi
∥∥X(i)

∥∥
∗
, where αi is the weight cor-

responding to the unfolding of the i-th mode. Here, let
α1 = α2 = α3 (N = 3), which means each X(i) is
assigned equal importance. However, traditional NNM has
certain limitations, for example, all singular values are treated
equally and shrunk with the same threshold [18]. In doing so,
prior knowledge on singular values of a practical data matrix
is ignored. More specifically, larger singular values of an
input data matrix quantify the information of its underlying
principal directions. In other words, inner the same unfold-
ing X(i), considering the information included in different
singular value is different [33]. Obviously, the traditional
NNM model, as well as its corresponding soft-thresholding
solvers, are not adequately flexible to handle such
issues.

To improve the flexibility of NNM, weak shrinkage
strength should be enforced on the large singular value,
while a large weight should be assigned to the small singular
value. Based on this idea, we use the weighted nuclear norm
minimization (WNNM) algorithm, and define the weighted
nuclear norm of X as follows:∥∥X(i)

∥∥
w,∗ =

3∑
j=1

wiσi(X(i)), (15)

where w = [w1,w2, . . . ,wn]T and wi ≥ 0, which is a
non-negative weight assigned to σi(X ). The weight vector
enhances the representation capability of the original nuclear
norm.

Therefore, the proposed model is revised as follows:

min
3∑
i=1

∥∥X(i)
∥∥
w,∗

s.t. P�(X ) = P�(T ), (16)

For convenience, we define a sampling tensor H,
where

hi,j,...,n =

{
1, if(i, j, . . . , n) ∈ �
0, otherwise,

(17)

Clearly, H is a binary tensor that indicates whether any data
in T are missing.

Now, we can define the multi-attribute sensor-data recon-
struction problem. Let H denote a binary sampling tensor,

and T denote the incomplete tensor of multi-attribute sen-
sor data. Then, the missing values in Eq.(16) can be estimated
effectively by solving the following convex optimization
problem,

minimize
X

3∑
i=1

∥∥Xi,(i)
∥∥
w,∗ +

1
2λ

∥∥H · 3∑
i=1

Xi −H · T
∥∥2
F .

(18)

where (·) denotes element-wise production of the tensor,
and λ is an adjustable parameter introduced to prevent
over-fitting.

C. ALTERNATE DIRECTION MULTIPLIER METHOD
FOR DR-AWNNM
The alternate direction multiplier method (ADMM) algo-
rithm [36], a convex optimization algorithm, is widely used
to solve convex optimization problems by breaking them into
smaller pieces, each of which can then be handled easily. It is
an extension of the augmented Lagrange multiplier method
algorithm . Therefore, in the present study, we attempted
to use the ADMM algorithm to solve the formulated
problem.

To apply the ADMM method to problem (18), we need to
transform it into the ADMM form. Thus, we first perform
variable splitting. We introduce N new tensor-valued vari-
ables, M1,M2, . . . ,MN . Let Xi = Mi (i ∈ 1, 2, . . . ,N );
by using these new variables Mi, Eq. (18) can be rewritten
as follows:

minimize
Xi,Mi

3∑
i=1

∥∥Xi,(i)
∥∥
w,∗ +

1
2λ

∥∥H · 3∑
i=1

Mi −H · T
∥∥2
F

s.t. Xi =Mi, i = 1, 2, . . . ,N (19)

The augmented Lagrangian of (19) becomes

L(Xi,Mi,Yi) = 〈Yi,Xi −Mi〉 +
ρ

2
‖Xi −Mi‖

2
F

+
1
2λ

∥∥H · 3∑
i=1

Mi −H · T
∥∥2
F

+

3∑
i=1

∥∥Xi,(i)
∥∥
w,∗, (20)

For convenience, by combining the linear and quadratic
terms in the augmented Lagrangian and scaling the dual
variable, Eq.(20) can be simplified as follows

L(Xi,Mi,Yi) =
3∑
i=1

∥∥Xi,(i)
∥∥
w,∗ +

ρ

2
‖Xi −Mi + Ui‖2F

+
1
2λ

∥∥H · 3∑
i=1

Mi −H · T
∥∥2
F + const,

(21)

where const represents a constant term, U is the scaled dual
variable [36], and Ui = ρ−1Yi. Now, we can obtain the

61424 VOLUME 6, 2018



X. Yu et al.: Multi-Attribute Missing DR-AWNNM in IoT

iterations of ADMM as follows.

X k+1
i = argmin

Xi

(
∥∥Xi,(i)

∥∥
w,∗ +

ρ

2

∥∥∥Xi + Uk
i −Mk

i

∥∥∥2
F
),

Mk+1
i = argmin

Mi

(
1
2λ

∥∥H · N∑
i=1

Mi −H · T
∥∥2
F

+
ρ

2

∥∥∥Mi − X k+1
i − Uk

i

∥∥∥2
F
),

Uk+1
i = Uk

i + X k+1
i −Mk+1

i . (22)

1) UPDATE X
Before the update step for X , we need to introduce the
following definition and theorem.
Definition 1: Given a matrix Y, the WNNM problem [18]

aims to find a matrix X, which is as close to Y as possible
under certain data fidelity functions, and theWNNMproblem
is described as follows:

min
X
‖Y− X‖2F + ‖X‖w,∗ (23)

here, we let

wi =
C

σi(X(i))+ ξ
, (24)

where ξ is a small constant, and C is a compromising con-
stant, both constants were set empirically in our experiment.
Theorem 1: ∀Y ∈ <m×n, denote by Y = U6VT the SVD

of it, where 6 =
(
diag(σ1(Y), σ2(Y), . . . , σn(Y))

0,

)
and

σi(Y) denotes the i-th singular value of Y. If ε and C satisfy
the inequality ε <

(√
(C), C

σi(Y )

)
, and the weights satisfy

w1 ≥ · · · ≥ wn ≥ 0 simultaneously, the WNNM problem in
Eq.(23) has the closed-form solution: X∗ = U6̃VT , where

6̃ =

(
diag(σ1(X∗), σ2(X∗), . . . , σn(X∗))

0,

)
,

and

σi(X∗) =

0 if c2 < 0
c1 +
√
c2

2
if c2 ≥ 0

(25)

where
c1 = σ1(Y)− ε, c2 = (σ1(Y)+ ε)2 − 4C .

Therefore, the variable Xi can be solved independently by
using the matrix shrinkage operator introduced above. Hence,
the update of Xi can be given as follows:

X k+1
i = foldi(D1/ρ(Mk

i − Uk
i )(i)). (26)

where the ‘‘unfold’’ operation along the i-th mode on a tensor
X is defined as unfoldi(X ) := X(i) ∈ RKi×(K1...Ki−1Ki+1...Kn).
The opposite operation ‘‘fold’’ is defined as foldi(X(i)) := X .
It is clear that ‖X‖F =

∥∥X(i)∥∥2 is for any 1 ≤ i ≤ n.
2) UPDATE M
Relative to the update of X , the iteration ofM is more com-
plicated. In the following part, we use the method introduced
in [31] to solve this problem.

According to the method in [31], the update ofM is equal
to the iteration of M̄ :

M̄k+1
= argmin

M̄i

(
1
2λ

∥∥H · NM̄−H · T
∥∥2
F

+
ρ

2

∥∥∥Z̄ − X̄ k+1
− Ūk

∥∥∥2
F
), (27)

where

M̄ =
1
N

N∑
i=1

Mi,

X̄ k+1
=

1
N

N∑
i=1

X k+1
i ,

Ūk
=

1
N

N∑
i=1

Uk
i . (28)

and then we get the M̄-update solution :

M̄k+1
=M+ · /M−, (29)

where

M− = (1/λ)(H+ ρI),
M+ = ρ(X̄ k+1

+ Ūk
+ (1/(Nλ))H · T ). (30)

3) THE DR-AWNNM ALGORITHM
After discussing the appearing subproblem, we present the
complete DR-AWNNM algorithm for multi-attribute sensor-
data reconstruction, as in Alg.1.

DR-AWNNM algorithm can be mainly divided into four
steps: Step 1:The updating of parameterX k+1

i ; Step 2:Calcu-
lating X̄ k+1, Ūk and M̄ to update M̄k+1; Step 3:UsingX k+1

i
and M̄k+1 to update Uk+1

i ; Step 4: Iterate steps 1, 2 and 3
until the difference between adjacent iterations is smaller than
the given threshold ρ.

The algorithm uses the sampling binary index
tensor H, incomplete sensor data tensor T , and the param-
eters λ,ρ,cλ,λ∗ as inputs. It minimizes Eq.(18) iteratively
by decreasing A toward convergence. λ∗ is set as the lower
bound of λ.

Figure 4 shows the flowchart of the proposed missing data
reconstruction algorithm. Our algorithm is divided into two
main steps: first, to fully use the spatial correlations among
the data, we use the k-means clustering algorithm to group
sensor nodes for obtaining the best classification. Second,
the complete dataset T is processed using two patterns to
represent missing data, namely, random missing pattern and
consecutive missing pattern. Finally, the DR-AWNNM algo-
rithm is used in each cluster according to the clustering result,
and then the ADMM algorithm is used to iterate parameters
until the global optimal solution is output by the algorithm.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed
algorithm and compare it with exiting algorithms for missing
data estimation in sensor data reconstruction.
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TABLE 2. Data samples obtained in the Intel Berkeley Research Laboratory.

Algorithm 1 DR-AWNNM Algorithm for Multi-Attribute
Sensor-Data Reconstruction
1: Input: T ,H, ε, C , λ, ρ, cλ, λ∗;
2: Initialize k = 0, M̄0

= U0
= X 0

i = 0, i = 1, 2, . . . ,N ;
3: for k = 0, 1, . . . do
4: for i = 1 : N do
5: // Lines 6 solve X k+1

i = argmin
Xi

L(Xi,Mk
i ,U

k
i )

6: X k+1
i = foldi(D1/ρ(Mk

i − Uk
i )(i)).

7: end for
8: //Line 9-12 solveMk+1

i = argmin
Mi

L(X k+1
i ,Mi,Uk

i )

9: Calculate X̄ k+1
=

1
N

N∑
i=1

X k+1
i ;

10: Ūk
=

1
N

N∑
i=1

Uk
i ;

11: M̄ = 1
N

N∑
i=1

Mi;

12: M− = (1/λ)(H+ ρI);
13: M+ = ρ(X̄ k+1

+ Ūk
+ (1/(Nλ))H ·T );

14: M̄k+1
=M+ · /M−;

15: for i = 1 : N do
16: Uk+1

i = Uk
i + X k+1

i −Mk+1.
17: end for
18: λk+1 = max (cλλk , λ∗);
19: end for

20: Output:
N∑
i=1

X k+1
i .

A. EXPLANATION OF THE DATASET USED FOR
SIMULATION
1) INTEL BERKELEY DATASET
For our experimental simulation, we used data collected
from the Intel Berkeley Research Laboratory between Febru-
ary 28 and April 5, 2004 [37]. The laboratory has different
rooms, and in each room, Mica2Dot sensors collect times
tamped topology information, along with humidity, temper-
ature, light, and voltage values once every 31 s. Data were
collected using the TinyDB in-network query processing sys-
tem implemented on the TinyOS platform. The data collected
from all sensors were merged into one big dataset containing
2.3 million readings (∼150 MB). Samples from this dataset
are given in Table 2.

FIGURE 4. A flowchart of the proposed missing data reconstruction
algorithm.

2) MISSING DATA
To verify the validity of the algorithm accurately and objec-
tively, we adopted two data processing patterns, namely, ran-
dommissing pattern and consecutivemissing pattern.Wefirst
obtained complete raw sensor data and then produced artifi-
cial missing data based on the two patterns.

• RandomMissing Pattern (RMP): This pattern repeatedly
chooses a random time and random sensor to be missing
and hence the data is missing.

• Consecutive Missing Pattern (CMP): This pattern
reflects that a few nodes miss all data after a certain
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FIGURE 5. Sensor locations and clustering in the Intel Berkeley Research
Laboratory.

sampling time point owing to damage or running out of
energy. Therefore, we randomly selected 10% of nodes
as objective nodes that suffer from consecutive data
missing and then let each objective node lose the last
x% of all its data.

3) PARAMETER SETTINGS
We employed error formulation to measure the differences
between the predicated values and the actual values. Perfor-
mance was measured in terms of RSE, a metric for measuring
reconstruction error, and we defined it as follows:

RES =
‖X − T ‖2F
‖T ‖2F

, (31)

The sampling ratio ε refers to the observation ratio of sensor
data, which is defined in [31]

ε =

∑
(i,j)∈� 1∑

(i,j)∈(�
⋃
�̄) 1

. (32)

In our experiment, we set some parameters empiri-
cally [31], specifically, λ = 1, c = 1

4 , λ
∗
= 1e−6. ρ is a

positive number, and its value affects the speed of conver-
gence of the ADMM algorithm. Here, we set ρ = 1.05 [30].
The parameter C is associated with the allocation of weights
to singular values, and it is a very important parameter.
Therefore, we discussed its value separately in the following
separate.

All simulations were run in the MATLAB environment
on a desktop computer equipped with a 3.60-GHz Intel
i7-4790 CPU and 8 GB RAM.

B. SIMULATION PARAMETERS AND RESULTS
Figure 5 shows the locations of sensor nodes and their clusters
in the Intel Berkeley Research Laboratory. Here, the number
of clusters is 12. The corresponding sensor nodes of each
cluster are shown within the solid lines. Our DR-AWNNM
algorithm for missing data reconstruction was applied within
each group.

The main reason for clustering the sensors was to find
similarities between their measurements. Figure 6 shows
temperature measurements from the sensors in two clus-
ters. Here, sensors 22 and 20 are in the first cluster, and

FIGURE 6. Comparison of the measurements within and among clusters.

FIGURE 7. Total maximum prediction error for different numbers of
clusters.

sensors 44 and 45 are in the second cluster. As can be
seen in Fig. 6, measurements recorded by the sensors within
one cluster follow very similar patterns, but the difference
between clusters is relatively large.

Therefore, when there are missing values in a cluster,
we can estimate them from neighboring nodes within the
same cluster. We first used the spatial relationship between
sensor nodes to divide them into different clusters and
then applied our algorithm within each cluster. To enhance
the reliability of the proposed algorithm, we changed K
from 3 to 17 and then calculated the difference between the
predicted and original values within each cluster to obtain the
maximum error between them.

Theoretically, as the cluster size decreases, the spatial
relationships within the same cluster become stronger; thus,
the final calculation result is more accurate. However, as the
number of clusters increases, there will be fewer nodes in the
same cluster.

Figure 7 shows the simulation results of the total maximum
prediction error (TMPE) for different numbers of clusters.
The red and the blue curves, respectively, represent the total
maximum error of all classes corresponding to each K in
the case of consecutive missing and random missing data.
According to the obtained results, the TMPE value decreases
upon increasing the number of clusters, which confirms the

VOLUME 6, 2018 61427



X. Yu et al.: Multi-Attribute Missing DR-AWNNM in IoT

TABLE 3. Partial experimental results with RMP.

TABLE 4. Partial Experimental Results With CMP.

theoretical expectations. However, when the number of clus-
ters exceeds a certain threshold, the curve shows an upward
trend. Thus, we selected the minimum TMPE corresponding
to the best K as the basis for subsequent research.
Next, we evaluated the performance of the proposed

DR-AWNNM algorithm in reconstructing multi-attribute
sensor data. In this step, we first used multi-attribute sensor
data to constitute a third-order tensor, where the three modes
represent sensor time stamp, sensor node ID, and attributes
(such as temperature and humidity). Then, we obtained the
tensor of multi-attribute sensor data.

In our experiment, we compared the output of the recov-
ered sensor data with that of existing algorithms, namely,
HaLRTC [30], ADMAR [31], CAMP [27] and EM-based
Tucker decomposition algorithm [38]. The Tucker rank is
approximately rank-[2,2,2]. By contrast, we used the cor-
rect rank (rank-[2,2,2]) and a higher rank (here we obtained
rank-[5,5,2]) to execute Tucker decomposition. We applied
Tucker decomposition to the Intel Berkeley dataset under two
patterns: random missing and consecutive missing.

We know that the parameter C is very important, and it
can even directly affect the effectiveness of our algorithm.
Therefore, we discuss it separately. In [18], the parameter
C was set empirically as the square root of the tensor size;
we changed its value on this basis, and its final value was as
follows:

• RMP : C = 2m2,
• CMP : C = 1.3m.

where m is the row of T . We obtained this result by conduct-
ing multiple experiments, and some of these experimental
results are presented in Tables 3 and 4; ε represents the
sampling ratio, and ε represents the data missing rate.
Figure 8 shows the results of multi-attribute sensor data

reconstruction by using data from the Intel Berkeley Research

FIGURE 8. Tensor-based multi-attribute sensor-data reconstruction, with
random missing pattern.

Laboratory with the random missing pattern. In general,
the performance of our algorithm is better than that of the
existing algorithms considered for comparison. The proposed
DR-AWNNM algorithm performs as well as the other algo-
rithms when sampling ratio is higher than 40%. Moreover,
when the sampling ratio is lower than 40%, our error is close
to 0.2, which is considerably lower than that of the other three
algorithms. We can also know that the CAMP algorithm also
has a good performance, because when the data is missing,
the algorithm can develop and gradually develop the sparsity
adaptive matching tracking framework based on these obser-
vation nodes to reconstruct the missing data more accurately.

Figure 9 shows the results of the consecutive missing
pattern. From this figure, it can be seen that the overall
error ratio under this pattern is lower than that under the
randommissing pattern. The Tucker decomposition of correct
rank-[2,2,2] leads to the best performance, and the
DR-AWNNM algorithm performs as well as the best one
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FIGURE 9. Tensor-based multi-attribute sensor data reconstruction, with
consecutive missing pattern.

when the data missing rate of each node is lower than 50%.
However, with a slightly higher rank-[5,5,2], Tucker decom-
position achieves poor performance. This means that to use
the Tucker decomposition-based algorithm for accurately
reconstructing sensor data, we should first obtain the correct
n-rank. However, this is usually difficult in practice, espe-
cially when the tensor is incomplete. In addition, the error rate
of the CAMP algorithm is also lower than other algorithms.
When the sparsity becomes better and the compression ratio
gets higher, the CAMP algorithm can effectively reduce the
error and improve the accuracy. Notably, when the data miss-
ing rate exceeds 50%, the error rate of the proposed algorithm
is considerably lower than that of the other three algorithms,
and even when the data missing rate is as high as 90%,
the error rate of the proposed algorithm is lower than 20%.
The reason is that we combine the various attributes of the
data to enhance the intrinsic relationship between the data,
and our algorithm uses the K -means cluster algorithm to
group sensors at the beginning, which greatly enhances the
external connection of the data and improves the accuracy of
the algorithm.

In addition, we present in Figure 10 the results obtained
by using only the DR-AWNNM algorithm (DR-AWNNM1)
to reconstruct the missing data under the RMP and the CMP
models, here all parameters have the same value as DR-
AWNNM algorithm. It can be seen that when the data loss
rate is high, the DR-AWNNM1 algorithm can reconstruct the
missing data well. Moreover, the DR-AWNNM algorithm is
superior to the other algorithms, including DR-AWNNM1.

The solution of DR-AWNNM algorithm, ADMAC algo-
rithm, and HaLRTC algorithm essentially involves finding
the augmented Lagrange function of the target function, and
then the ADMM algorithm is used to solve it. Hence, Fig.11
shows the convergence curves of the three algorithms in the
continuous missing data mode, in which the abscissa repre-
sents the iteration number of algorithm convergence, and the
ordinate represents the tolerance of the relative difference of
outputs of two neighboring iterations. The red curve repre-
sents the proposed algorithm. It can be seen that our algorithm
is convergent, and it is slightly superior to other algorithms.

FIGURE 10. (a) DR-AWNNM algorithm and DR-AWNNM1 algorithm under
RMP model. (b) DR-AWNNM algorithm and DR-AWNNM1 algorithm under
CMP model.

The computational complexity of DR-AWNNM consists
mainly of two parts. One is the complexity of the K -means
clustering algorithm, and the other is the cost of matrix
completion calculation. When we use K -means clustering
algorithm to separate sensor nodes, we first set k cluster
centers are randomly, and then calculate the distance from n
points to k centers, the distance between the single image and
the image is calculated as d , and last repeat the above process
for t times, so the complexity ofK -means isO = k×n×d×t ,
namely O(kndt). Usually k, d and t can be considered as
constants, therefore, the computational cost of K -means can
be simplified to O(n), which is linear. From Alg.1 we know
that the matrix completion algorithm mainly involves the
iteration ofX k+1

i ,Mk+1
i andUk+1

i , the parameters iteratedM
times each time forN times, so the computational complexity
of the matrix completion algorithm is O(n2), that is to say
the complexity of the ADMAC algorithm and the HaLRTC
algorithm is O(n2). Based on Eq.(24)-(26) we can learn that
the calculation cost of the weighted nuclear norm is O(1).
Therefore, the computational complexity of DR-AWNNM in
this paper is also O(n2). In addition, Fig.8 and Fig.9 show
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FIGURE 11. Convergence Curves with consecutive missing pattern.

that the DR-AWNNM algorithm has significant effects and
far-reaching significance.

To summarize, the proposed DR-AWNNM algorithm out-
performs the other tested algorithms on the dataset obtained
from Intel Berkeley Research Laboratory and considering
the two patterns of data missing. Specifically, the proposed
algorithm provides better results under the random missing
pattern than the consecutive missing pattern.

V. CONCLUSION
Missing data causes many difficulties in various IoT applica-
tions. Although this is inevitable due to the inherent character-
istic of IoT, to solve the problem, it is imperative to estimate
the missing data as accurately as possible.

In this paper, a missing data reconstruction method based
on automatic WNNM was developed, and K -means cluster-
ing analysis was embedded into this forecasting process to
improve the prediction accuracy. First, to apply spatial corre-
lation between sensor nodes, we used the K -means clustering
algorithm to separate sensor nodes into different groups.

Second, we considered sensor networks with multiple
types of sensors in each node. Accounting for possible cor-
relations among multiple-attribute sensor data, we provided
a tensor-based method to estimate missing data and proposed
an algorithm based on matrix rank-minimization method,
namely, DR-AWNNM. We considered the weights between
singular values and adaptively assign different weights to
each singular value. Especially, when the weights are sorted
in a non-descending order, the optimal solution can be easily
obtained in closed-form.

Third, to demonstrate the feasibility of proposed method,
a traditional EM-based Tucker decomposition algorithm and
other excellent algorithms, namely ADMAC, HaLRTC and
CAMP were introduced and compared. Our experiment sug-
gested that the proposed method, on the one hand, when
the data missing rate is low or the sampling rate is high,
have outstanding performance as well as the other algorithms.
On the other hand, when the data missing rate is high or the
sampling rate is low, it performs much better than the other
algorithms.

Finally, by comparing the convergence of different algo-
rithms, we showed that the proposed algorithm is better,
easier to converge, and less complex. In addition, we learned
that the proposed algorithm is more suitable for missing
data reconstruction under the random missing pattern than
under the consecutive missing pattern. In future research,
we will provide more insights into the performance of the
DR-AWNNM algorithm in different scenarios.

REFERENCES
[1] IEEE Internet Initiative. (2015). Towards a Definition of the Internet of

Things (IoT). [Online]. Available: http://iot.ieee.org/images/files/pdf/
IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1
_27MAY15.pdf

[2] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[3] K. Rose, S. Eldridge, and L. Chapin, ‘‘The Internet of Things:
An overview,’’ Internet Soc., Reston, VA, USA, Tech. Rep., 2015,
pp. 1–50.

[4] L. Xu, J. Wang, H. Zhang, and T. A. Gulliver, ‘‘Performance analysis
of IAF relaying mobile D2D cooperative networks,’’ J. Franklin Inst.,
vol. 354, no. 2, pp. 902–916, Jan. 2017.

[5] L. Xu, J. Wang, Y. Liu, J. Yang, W. Shi, and T. A. Gulliver, ‘‘Outage
performance for IDF relaying mobile cooperative networks,’’ in Proc. Int.
Conf. 5G Future Wireless Netw.. Springer, 2017, pp. 395–402.

[6] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, ‘‘A vision of IoT: Applica-
tions, challenges, and opportunities with china perspective,’’ IEEE Internet
Things J., vol. 1, no. 4, pp. 349–359, Aug. 2014.

[7] D. Bonino et al., ‘‘ALMANAC: Internet of Things for smart cities,’’ in
Proc. 3rd Int. Conf. Future Internet Things Cloud, Rome, Italy, Aug. 2015,
pp. 309–316.

[8] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, ‘‘A survey on
Internet of Things from industrial market perspective,’’ IEEE Access,
vol. 2, pp. 1660–1679, 2014.

[9] O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, ‘‘Edge computing
enabling the Internet of Things,’’ in Proc. IEEE 2nd World Forum Internet
Things (WF-IoT), Milan, Italy, Dec. 2015, pp. 603–608.

[10] M. Heil and R. Karban, ‘‘Explaining evolution of plant communication by
airborne signals,’’ Trends Ecol. Evol., vol. 25, no. 3, pp. 137–144, 2010.

[11] L. Kong et al., ‘‘Surface coverage in sensor networks,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 1, pp. 234–243, Jan. 2014.

[12] B. Nathani and R. Vijayvergia, ‘‘The Internet of intelligent things:
An overview,’’ in Proc. Int. Conf. Intell. Commun. Comput. Techn. (ICCT),
Jaipur, India, Dec. 2017, pp. 119–122.

[13] Z. Yang, M. Li, and Y. Liu, ‘‘Sea depth measurement with restricted
floating sensors,’’ in Proc. 28th IEEE Int. Real-Time Syst. Symp. (RTSS),
Tucson, AZ, USA, Dec. 2007, pp. 469–478.

[14] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, and X. Li, ‘‘Does wireless sensor
network scale?Ameasurement study onGreenOrbs,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 10, pp. 1983–1993, Oct. 2013.

[15] X.-Y. Liu, K.-L. Wu, Y. Zhu, L. Kong, and M.-Y. Wu, ‘‘Mobility increases
the surface coverage of distributed sensor networks,’’ Comput. Netw.,
vol. 57, no. 11, pp. 2348–2363, 2013.

[16] M. G. Lawrence, ‘‘The relationship between relative humidity and the
dewpoint temperature in moist air: A simple conversion and appli-
cations,’’ Bull. Amer. Meteorol. Soc., vol. 86, no. 2, pp. 225–233,
2005.

[17] E. J. Candès and B. Recht, ‘‘Exact low-rank matrix completion via con-
vex optimization,’’ in Proc. Found. Comput. Math., 2009, vol. 9, no. 6,
pp. 806–812.

[18] S. Gu, Q. Xie, D.Meng,W. Zuo, X. Feng, and L. Zhang, ‘‘Weighted nuclear
normminimization and its applications to low level vision,’’ Int. J. Comput.
Vis., vol. 121, no. 2, pp. 183–208, Jan. 2017.

[19] L. Kong, M. Xia, X.-Y. Liu, M.-Y. Wu, and X. Liu, ‘‘Data loss and
reconstruction in sensor networks,’’ in Proc. IEEE INFOCOM, Apr. 2013,
pp. 1654–1662.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, ‘‘TinyDB:
An acquisitional query processing system for sensor networks,’’ ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

61430 VOLUME 6, 2018



X. Yu et al.: Multi-Attribute Missing DR-AWNNM in IoT

[21] E. Granger, M. A. Rubin, S. Grossberg, and P. Lavoie, ‘‘Classification
of incomplete data using the fuzzy ARTMAP neural network,’’ in Proc.
IEEE-INNS-ENNS Int. Joint Conf. Neural Netw. (IJCNN), Neural Comput.,
New Challenges Perspect. New Millennium, Como, Italy, vol. 6, Jul. 2000,
pp. 35–40.

[22] T. Cover and P. Hart, ‘‘Nearest neighbor pattern classification,’’ IEEE
Trans. Inf. Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967.

[23] L. Pan and J. Li, ‘‘K-nearest neighbor based missing data estimation
algorithm in wireless sensor networks,’’ Wireless Sensor Netw., vol. 2,
no. 2, pp. 115–122, 2010.

[24] M. H. Le Gruenwald, ‘‘Estimating missing values in related sensor data
streams,’’ in Proc. COMAD, 2005, pp. 83–94.

[25] L. Gruenwald, H. Chok, and M. Aboukhamis, ‘‘Using data min-
ing to estimate missing sensor data,’’ in Proc. 7th IEEE Int. Conf.
Data Mining Workshops (ICDMW), Omaha, NE, USA, Oct. 2007,
pp. 207–212.

[26] J. Karjee, H. K. Rath, and A. Pal, ‘‘Efficient data prediction, recon-
struction and estimation in indoor IoT networks,’’ in Proc. IEEE
6th Int. Conf. Future Internet Things Cloud (FiCloud), Aug. 2018,
pp. 236–243.

[27] H. Wu, M. Suo, J. Wang, P. Mohapatra, and J. Cao, ‘‘A holistic approach
to reconstruct data in ocean sensor network using compression sensing,’’
IEEE Access, vol. 6, pp. 280–286, 2018.

[28] J. Chen, ‘‘The research of missing data recovery method based on feature
analysis in wireless sensor networks,’’ in Proc. China Nat. Knowl. Infras-
truct. (CNKI), 2016.

[29] G. Chen et al., ‘‘Multiple attributes-based data recovery in wireless sensor
networks,’’ in Proc. IEEE GLOBECOM, Atlanta, GA, USA, Dec. 2013,
pp. 103–108.

[30] J. Liu, P.Musialski, P.Wonka, and J. Ye, ‘‘Tensor completion for estimating
missing values in visual data,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 208–220, Jan. 2013.

[31] Y. Shao, Z. Chen, F. Li, and C. Fu, ‘‘Reconstruction of big sensor data,’’
in Proc. 2nd IEEE Int. Conf. Comput. Commun.(ICCC), Chengdu, China,
Oct. 2016, pp. 1–6.

[32] X. Wu, C.-L. Chuang, and J.-A. Jiang, ‘‘Temperature map recov-
ery based on compressive sensing for large-scale wireless sensor net-
works,’’ in Proc. IEEE Int. Conf. Green Comput. Commun. IEEE Internet
Things IEEE Cyber, Phys. Social Comput., Beijing, China, Aug. 2013,
pp. 1202–1206.

[33] J.-F. Cai, E. J. Candès, and Z. Shen, ‘‘A singular value threshold-
ing algorithm for matrix completion,’’ SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[34] D. Raval, G. Raval, and S. Valiveti, ‘‘Optimization of clustering process
for WSN with hybrid harmony search and K-means algorithm,’’ in Proc.
Int. Conf. Recent Trends Inf. Technol.(ICRTIT), Chennai, India, Apr. 2016,
pp. 1–6.

[35] J. A. Hartigan and M. A. Wong, ‘‘Algorithm AS 136: A k-means
clustering algorithm,’’ Appl. Statist., vol. 28, no. 1, pp. 100–108,
1979.

[36] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method
of Multipliers. Now Foundations and Trends, 2011. [Online]. Available:
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=8186925

[37] [Online]. Available: http://db.csail.mit.edu/labdata/labdata.html/
[38] A. Smoliński, B. Walczak, and J. W. Einax, ‘‘Exploratory analysis of data

sets with missing elements and outliers,’’ Chemosphere, vol. 49, no. 3,
pp. 233–245, 2002.

XIANG YU received the Ph.D. degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 1995. From 1999 to
2002, he was Post-Doctoral/Associate Professor of
postdoctoral mobile station in computer science
and technology with the University of Electronic
Science and Technology of China. He first had an
industrial career in R&D, mostly in the field of
radio communications.

From 1991 to 2008, he was the Chief Repre-
sentative with Beijing Taige Electronics Co., Ltd., Chengdu Branch, and
a Deputy Chief Engineer with the Seventh Research Institute, China Elec-
tronics Technology Group Corporation. He was the expert of major projects
of national science and technology. He is currently a Professor with the
Chongqing University of Posts and Telecommunications, Chongqing, China.
His main research interests lie in the areas of digital communications and
radio signal processing. He was a member of the China delegation for
(ITU-R) WP5A, 5B, and 5C Conference.

XIA FAN received the B.S. degree in communi-
cation engineering from the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China, in 2016, where she is currently pursuing the
master’s degree in communication and electronic
information engineering. Since 2016, she has been
studying at the Wireless Communication Technol-
ogy Innovation Laboratory, Broad Band Equip-
ment Mobilization Center. Her research interests
include mobile cloud computing, artificial intel-

ligence, big data analysis in wireless communications, and the Internet of
Things.

KAN CHEN received the B.S. degree in commu-
nications engineering from the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China, in 2017, where he is currently pursuing the
M.S. degree in information and communication
engineering. Since 2016, he has been studying at
the Wireless Communication Technology Innova-
tion Laboratory, Broadband Equipment Mobiliza-
tion Center. His research interest mainly focuses
on signal processing for wireless communications,

especially the multicarrier transmissions for next generation wireless com-
munication system.

SIRUI DUAN received the Ph.D. degree from
the Beijing University of Posts and telecommu-
nications, Beijing, China, in 2014. He is cur-
rently a Lecturer with the Chongqing Univer-
sity of Posts and telecommunications, Chongqing,
China. His research interests mainly focus on sig-
nal processing for wireless communications, with
an emphasis on multicarrier transmissions for next
generation wireless communication system.

VOLUME 6, 2018 61431


	INTRODUCTION
	RELATED WORK
	EXISTING APPROACHES AND THEIR LIMITATIONS
	MATRIX COMPLEMENT BASED ON NUCLEAR NORM RELAXATION

	PROBLEM FORMULATION
	GROUPING SENSOR NODES WITH K-MEANS CLUSTERING ALGORITHM
	DATA RECONSTRUCTION WITH ADAPTIVE WEIGHTED NUCLEAR NORM (DR-AWNNM)
	 ALTERNATE DIRECTION MULTIPLIER METHOD FOR DR-AWNNM
	UPDATE Lg
	UPDATE Lg
	THE DR-AWNNM ALGORITHM


	EXPERIMENTAL RESULTS
	EXPLANATION OF THE DATASET USED FOR SIMULATION
	INTEL BERKELEY DATASET
	MISSING DATA
	PARAMETER SETTINGS

	SIMULATION PARAMETERS AND RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	XIANG YU
	XIA FAN
	KAN CHEN
	SIRUI DUAN


