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ABSTRACT Alzheimer’s disease (AD) is the most common form of dementia, causing progressive impair-
ment of memory and cognitive functions. Radiomic features obtained from brain MRI have shown a great
potential as non-invasive biomarkers for this disease; however, their usefulness has not yet been explored for
individual brain regions. In this paper, we hypothesize that distinct regions are affected differently by AD
and, thus, that shape or texture changes occurring in separate regions can be expressed by different radiomic
features. Moreover, to improve the classification of AD and healthy control (HC) subjects, we propose novel
features based on the entropy of the convolution neural network (CNN) feature maps. The proposed approach
is evaluated comprehensively using the Open Access Series of Imaging Studies database. Our experiments
assess the significance of 45 different radiomic features from individual subcortical regions, via the Wilcoxon
test. We also use the random forest classifier to identify the subcortical regions that best differentiate AD
patients from HC subjects. Our analysis identified the features derived from several subcortical regions that
show significant differences between AD and HC (corrected p < 0.01). Specifically, we found correlation
and volume features from the hippocampus (AUC = 81.19% — 84.09%) and amygdala (AUC = 79.70%
— 80.27%) regions to have the greatest discriminative power. Furthermore, the proposed entropy features
derived from CNN layers yielded the highest classification AUC of 92.58%, compared to 84.45% for the
combined radiomic features of all subcortical. These results suggest that the proposed CNN entropy features

could be used as an effective biomarker for AD.

INDEX TERMS Alzheimer’s, radiomics, classification.

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder which represents the most common cause of demen-
tia in the elderly [1]. Its symptoms consist of memory loss,
confusion in time and place, lack of communication with oth-
ers and failure to recognize close ones [2]. While AD patients
constitute 2% of the population at the age of 65 years, this
number increases to 30% at the age of 85 years [3]. Moreover,
the total number of AD sufferers is expected to double in the
next 20 years, with around 1/85 people affected by 2050 [4].
Many efforts have been made to better understand AD and
find an effective treatment, however there currently exists
no treatment to cure or slow the progression of this disor-
der [5]. As Alzheimer progresses, brain cells die and connec-
tions among these cells are lost, which produces cognitive
symptoms. This anatomo-pathology can be visualized non-
invasively via MRI imaging, and described quantitatively by

radiomic analysis. In general, AD is characterized by cortical
atrophy in regions like the hippocampus, and by the enlarge-
ment of extra cerebral spaces. Figure 1 illustrates differences
between AD and healthy control (HC) brains using 3D brain
MRI.

Non-invasive imaging features are a very promising tech-
nique to characterize the cortex and subcortical regions of
AD patients. A variety of studies have been proposed to
characterize and predict AD [5], [7]-[13] with the most
important biomarkers detected as brain volume and thickness.
Villain et al. [14] showed that the hippocampus of AD
patients is a third smaller than in healthy subjects. A study
of anatomical region differences in AD patients revealed that
the mesial temporal region is the most effective region in
the brain to identify patients with mild cognitive impairment
(MCI) [15]. A feature-based morphometry approach, which
considered the scale-invariant features transform (SIFT)
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FIGURE 1. MRI slice of 3D brain illustrating the differences between a
healthy control subject (HC, first row) and Alzheimer’s disease

(AD, second row). A zoom view of the images shows an atrophy of the
cortical surface (in the red cadre) involving the hippocampus area that
related to the short-term memory formation in AD patients.

model, was also able to identify several structural differ-
ences between AD and healthy control (HC) subjects [16].
Employing other invariant features, such as Gray-level Invari-
ant features (GLIF), confirmed differences between AD
and HC using multicenter datasets [17]. It was found
that, with increasing age, HC subjects could transform to
AD [18] or dementia [19] through changes occurring in white
matter regions [20]. Such changes, including cerebral thin-
ning, could lead to cognitive decline [21] as well as to poor
episodic memory, late-life depression and MCI [22].

In the last decade, radiomic approaches have been widely
considered for medical image analysis [6], [23], [24]. Such
approaches extract texture or shape features from medical
images like MRI, which are correlated to patient/disease
characteristics. Several types of texture features, includ-
ing SIFT [25], GLCM [26] and wavelets filters [27], have
shown their relevance in the detection and quantification of
various diseases. For example, textural features based on
co-occurrence matrix and run-length matrix were shown to
differentiate patients with AD from those with dementia
Lewy bodies [28]. Similarly, 3D texture features extracted
from the hippocampus and entorhinal cortex were signifi-
cantly different in AD patients compared to healthy con-
trols [29]. Abnormalities of hippocampal texture in MCI
patients has also been shown to be prognostic of early cog-
nitive decline [30].

A recent study showed that constructing individual hier-
archical networks of six 3D texture features from brain
images indicates differences between tissues in AD, MCI,
and HC [31]. Another study considered the combination of
volume, cortical thickness, and hippocampal shape/texture
for the diagnosis of HC, MCI, and AD. It was shown that hip-
pocampal texture was the most important feature for predic-
tion, followed by hippocampal volume, ventricular volume,
and parietal lobe thickness [32].

So far, most radiomic studies have focused on extracting
features from whole brains or from target subcortical regions
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like the hippocampus. Since different brain regions can be
affected by AD in a distinct manner, we hypothesize in this
work that analyzing texture in individual subcortical regions
can lead to a better classification of AD and HC subjects.
This is based on the idea that the characteristics of separate
brain regions can be best captured by different texture fea-
tures. Moreover, although some researchers have proposed
using deep learning techniques like convolution neural net-
works (CNNs) to classify AD or MCI patients [33], deep
features have not yet been compared to traditional features
in a single radiomic analysis.

This manuscript proposes a deep radiomic analysis of
subcortical region features for the classification of AD and
HC subjects. The two main contributions of this study are:
1) A comprehensive analysis of traditional radiomic fea-
tures in individual subcortical regions labeled using an atlas.
2) A novel technique, based on the entropy of convolu-
tional feature maps, to characterize local texture in a data-
driven manner. Our experiments show that the proposed CNN
entropy features lead to a higher classification accuracy.

The rest of this paper is structured as follows.
Section 2 describes the population, image data and pro-
posed radiomic features for classifying AD from HC sub-
jects. Section 3 provides experimental setup and results.
Section 4 discusses our finding. Finally, Section 5 concludes
with a summary of our work’s main contributions and results.

Il. MATERIALS AND METHODS

We use radiomic features derived from brain MRI data
to find associations between subcortical regions and AD.
Employing the processing pipeline of Freesurfer [34], MRI
volumes are first registered to an atlas and labeled into
25 key subcortical regions: left/right Cerebral-White-Matter,
left/right Cerebellum-White Matter, left/right Thalamus-
Proper, left/right Caudate, left/right Putamen, left/right Pal-
lidum, left/right Hippocampus, left/right Amygdala, left/right
Accumbens-area, left/right VentralDC, left/right Vessel,
Optic-Chiasm, Brain-Stem, and Cerebrospinal Fluid (CSF).
A total of 45 radiomic features derived from intensity his-
tograms, gray level co-occurrence matrix (GLCM), neighbor-
hood gray-tone difference matrix (NGTDM), and gray-level
size zone matrix (GLSZM) are then computed in subcortical
regions of each MRI scan.

A significance test was performed to identify features in
each region exhibiting significant differences between AD
and HC subjects. Radiomic features in different subcortical
regions were then used as input to a random forest model
for classifying AD and HC subjects. To improve classifica-
tion, we also proposed novel radiomic features based on the
entropy in convolution layers of a deep CNN [35]. Figure 2
shows a flowchart of the proposed approach. The following
sections describe each step of our approach in greater detail.

A. PARTICIPANTS AND DATA ACQUISITION
The data used in this study were obtained from The
Open Access Series of Imaging Studies (OASIS) database
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FIGURE 2. Processing pipeline of the proposed radiomic analysis. 1) T1 weighted MR images are acquired. 2) Subcortical brain regions are labeled using
FreeSurfer. 3) Features are extracted from each region, quantifying intensity, shape and texture. 4) Features analysis and classification between AD and

HC.

TABLE 1. Demographics and clinical information for AD and HC subjects.

. HC AD
Variable (N=135) (N=100) p value
CDR 0 0.5-2
Age, median 71 (33-94) 77 (62-96) 2.6 x 107
(min-max)
Sex, male/female 38/97 41/59 2.7 x10°
MMSE score, 29 (25-30) 26(14-30) | '5.03 x 107
median (min-max)
Legends: *Wilcoxon rank test; ** Fisher exact test.

(http://www.oasis-brains.org) [36]. This database is made
available by the Washington University Alzheimer’s Disease
Research Center, Dr. Randy Buckner at the Howard Hughes
Medical Institute (HHMI) at Harvard University, the Neu-
roinformatics Research Group (NRG) at Washington Uni-
versity School of Medicine, and the Biomedical Informatics
Research Network (BIRN). The goal of OASIS is to offer
MRI dataset of the brain freely available to the scientific
community in order to facilitate future discoveries in basic
and clinical neuroscience. For up-to-date information, see
http://www.oasis-brains.org/.

The OASIS 1 database consists of 416 right-handed HC
and patients with early-stage AD, with 3D T1-weighted mag-
netization prepared rapid gradient echo (MPRAGE) images
acquired at 1.5 Tesla (i.e., specifications are repetition time
(TR) = 9.7 ms, inversion time (TI) = 20 ms, flip angle = 10°,
echo time (TE) = 4.0 ms). The MRI protocol was the same for
all subjects with more details available in [36]. All data are
anonymized with no protected health information included.
Image acquired with a resolution of 1 mm?, for a total size
of 256 x256x256 voxels.

Our study included T1-weighted MRI data from the
135 available HC subjects with Clinical Dementia Rating
(CDR) of 0, and from 100 AD patients (70 with CDR=0.5,
28 with CDR=I1, and 2 with CDR=2). Subjects with
unknown CDR score were excluded from this study. The
demographic and clinical characteristics of AD and HC sub-
jects in the database are reported in Table 1.
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B. IMAGE PROCESSING

We use a preprocessed version of the OASIS database, which
is publicly available for download.! T1 weighted MR images
were processed using Freesurfer’ [34], following the fol-
lowing six steps: 1) small-motion correction by averaging
the available volumes of subjects, 2) (non-uniform) inten-
sity normalization, 3) affine registration of volumes to the
MNI305 atlas, 4) skull-stripping, 5) non-linear registration
and further normalization using the Gaussian Classifier Atlas
(GCA), and 6) brain parcellation and subcortical region label-
ing using the GCA. The final outputs of this pipeline tool are
the skull-stripped, intensity normalized brain volumes in the
subject space (i.e., the brain.mgz file), and the sub-cortical
labeling of these volumes into 41 hemisphere-distinct regions
(i.e., the aseg.mgz file).

C. RADIOMIC FEATURES

We extracted various radiomic features characterizing the
heterogeneity and shape of subcortical regions. Specifically,
we extracted 3D GLCMs of image intensities uniformly
resampled to 32 gray-levels, considering the combination
of 13 angles and 4 offsets/displacements [37]. Each of the
52 resulting GLCM matrices were converted to a feature
vector by applying 19 different quantifier functions: angu-
lar second moment, contrast, correlation, sum of squares vari-
ance, homogeneity, sum average, sum variance, sum entropy,
entropy, difference variance, difference entropy, information
correlation 1, information correlation 2, autocorrelation, dis-
similarity, cluster shape, cluster prominence, maximum prob-
ability and inverse difference [38]. Finally, these 52 vectors
were averaged into a single vector of 19 features.

Following a similar process, we also computed 5 features
based on NGTDM (i.e., coarseness, contrast, busyness, com-
plexity and texture strength [39]), as well as 11 features based
on GLSZM (i.e., small zone size emphasis, large zone size

1 http://ftp.nrg.wustl.edu
2http://surfer.nmr.mgh.harvard.edu/
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emphasis, low gray-level zone emphasis, high gray-level zone
emphasis, small zone / low gray emphasis, small zone / high
gray emphasis, large zone / low gray emphasis, large zone /
high gray emphasis, gray-level non-uniformity, zone size
non-uniformity and zone size percentage [40]). Combining
GLCM, NGTDM and GLSZM features, we obtained a total
of 35 texture features measuring the heterogeneity of subcor-
tical regions.

In addition to texture features, we also encoded the mor-
phological characteristics of subcortical regions using 4 shape
features: porosity, fraction dimension, surface-area and vol-
ume [41]. The volume and surface area of the hippocampus
are known biomarkers for detecting AD [42]. Lastly, we sum-
marized the distribution of voxel intensities in subcortical
regions via 6 additional features: average, variance, skewness,
kurtosis, energy and entropy. The 45 resulting features were
considered in uni- and multi-variate analyses to identify the
subcortical regions showing significant differences between
AD and HC, and determine the most important features for
classifying these two subject groups.

D. PROPOSED CNN ENTROPY FEATURES

As deep learning models have recently achieved state-of-
the-art performance in different medical applications [43],
we used the features learned by a convolution neural net-
work (CNN) [44]-[46] to improve the classification of AD
and HC subjects. Toward this goal, we considered the feature
maps of convolutional layers as texture images, and measured
the heterogeneity of this texture via entropy. As described
in [35], we considered a 3D CNN architecture composed
of 5 layers:

Input: Image size = 256 x256x256 voxels

Layer-1: Filter size = 2x2x2; stride=2; filters=10;
Max pooling; ReLU; output=10 feature maps
of size 128 x 128 x 128

Layer-2: Filter size = 2x2x2; stride=2; filters=10;
Max pooling; ReLU; output=10 feature maps
of size 64 x64x64

Layer-3:  Fully connected layer; output=vector size 128

Output: AD class probability

The 21 feature maps produced by convolutional layers (i.e.,
10 from Layer-1, 10 from Layer-2 and 1 from Layer-3)
are considered as filtered images, from which are derived
21 entropy values. The entropy in each feature map is
measured on the histogram of values constructed using
256 bins.

This approach is related to the Information Bottleneck the-
ory [47], where information flow through a CNN is modeled
as Markov chain and quantified via the mutual information
between network filters. Here, we leverage the principle
that, for a discriminatively trained filter set F', the entropy
H(Y|C, F) of CNN features Y conditioned on the class C and
filter set F is a highly class-informative code, and that small
sets of conditional entropy features can be used to improve
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CNN classification. More details about this approach can be
found in [35].

E. STATISTICAL ANALYSES

We applied the Wilcoxon non-parametric test to
identify subcortical brain regions where the distribution
of texture features is significantly different in AD and
HC subjects. Since we perform multiple comparisons (i.e.,
25 sub-cortical regions x 45 texture features = 1125 tests),
we corrected obtained p values according to the Holm-
Bonferroni method [48], and then considered corrected
p < 0.01 as significance threshold.

For the multivariate analysis, the area under the receiver
operating characteristic (ROC) curve is considered to mea-
sure the classifier’s ability to discriminate between AD and
HC subjects. The ROC is a graph of true positive rate (TPR)
as function of false positive rate (FPR) at various cut-off val-
ues [49]. While other classifiers can be used, we employed a
random forest (RF) model with 100 trees, since it is one of the
most effective and general-purpose classification algorithms,
and can run efficiently on large databases with thousands of
input variable [50]. RF models use bootstrap aggregation to
reduce model variance and, thus, chances of overfitting the
training data. In addition, RFs can be used to inspect features
having the most importance in the classification process [51].
We applied a 5-fold cross-validation strategy to obtain unbi-
ased estimates of performance. In this strategy, training exam-
ples are divided into 5 equal-sized subsets and, in each fold,
a subset is put aside for testing and the remaining 4 subsets
are used to train the RF classifier. The final classification
accuracy is computed as the average AUC obtained across
the 5 folds.

To analyze the importance of individual features, we mea-
sured the increase in prediction error resulting from permut-
ing their values across out-of-bag observations. This measure
of importance is computed for every RF tree and averaged
over the entire ensemble. Measured values are then normal-
ized by dividing them by the ensemble’s standard deviation,
and then averaged across all 5 folds. Positive importance
values indicate that a feature is predictive, whereas negative
values correspond to non-predictive features.

IIl. EXPERIMENTAL RESULTS

A. PATIENT CHARACTERISTICS

T1-weighted MRI images of 100 AD patients and 135 HC
subjects were obtained from the public OASIS database.
From this dataset of 235 subjects (i.e., HC/ AD, N=135/100),
the HC/AD gender distribution was 97/59 females and
38/41 males. The median [min-max] HC/AD age was 71
[33-94] / 77 [62-96] years. The median [min-max] HC/AD
of the Mini-Mental State Examination (MMSE) score was
29 [25-30] / 26 [14-30]. We found that the age, gender and
MMSE score were significantly different (p < 0.01) between
AD and HC subjects. Detailed demographic characteristics of
the patients are presented in Table 1.
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FIGURE 3. Heatmap of p values (—log10 space) obtained from Wilcoxon test for radiomic features differences between AD (n=100) and HC
(n=135) subjects. Black-green circles indicate subcortical brain regions showing significant radiomic feature with corrected p <

0.01 following Holm-Bonferroni.

B. RADIOMIC FEATURES RELATED TO AD

We first investigated radiomic feature differences between
AD and HC patients. Figure 3 shows the heatmap of uncor-
rected p values (in -log10 space) obtained from the Wilcoxon
test. Significant region-feature combinations (with corrected
p < 0.01) are marked with a black-green circle. Several
regions show significant feature differences: cerebral-white-
matter, thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, accumbens, ventral DC and CSF. We also observe
a pronounced bilateral symmetry for the cerebral-white-
matter, thalamus, caudate, pallidum, hippocampus, amygdala
and accumbens regions, as well as a notable asymmetry for
putamen and ventral DC regions. Moreover, we find the
highest significance for GLCM-correlation, surface-area and
volume features of hippocampal regions, followed by amyg-
dala regions.

C. CLASSIFICATION USING REGION-SPECIFIC FEATURES

We assessed the usefulness of each subcortical brain region
to discriminate between AD and HC subjects with the
RF classifier. Using all radiomic features (n=45), the
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FIGURE 4. Bar graph of AUC values for classifying AD vs HC subjects
using radiomic features extracted from each subcortical brain region.

resulting AUC-ROC values varied between 56.63% and
84.09%, depending on the region (Figure 4). We observe that
the hippocampus achieves the highest accuracy (left: 81.19%,
right: 84.09%), followed by the amygdala (left: 79.70%,
right: 80.27%).
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FIGURE 5. Heatmap of feature importance for classifying AD and HC subjects based on each subcortical brain region. Reported values correspond to the
mean increase in prediction error obtained by permuting the values of individual features across out-of-bag observations [51].

D. IDENTIFICATION OF IMPORTANT FEATURES

Figure 5 shows the heatmap of feature importance in
each of subcortical brain region. We see important fea-
tures for all categories: (histogram-based) variance and
entropy; (GLCM) correlation, sum-variance and informa-
tion correlation; (NGTDM) coarseness and texture strength;
(GLSZM) large zone/ high gray emphasis and gray-level
non-uniformity; (Shape) surface area and volume. Among
them, “correlation” and “volume” features in hippocampus
and amygdala regions are the most dominant. This result is
consistent with our previous findings which identified these
regions using the Wilcoxon test and RF classifier.

E. CLASSIFICATION WITH ENTIRE FEATURE SETS

We compared the classification performance of the RF clas-
sifier trained with the 45 standard radiomic features or with
the 21 proposed entropy features (i.e., entropy from 3D CNN
layers). As baseline, we considered the 128 outputs of the
CNN’s fully-connected layer as feature vector. Note that
the final CNN prediction is a linear function of these fea-
tures, thus they encode information that is highly-relevant for
classification.

For this analysis, we split the data of our study in two
separate sets. The first set consists of 198 (AD=100, HC=98)
MRI scans from demographically matched subjects with
age > 60 years. This set is used to train and test the RF
classifier with different inputs (standard radiomic features,
CNN entropy, or CNN fully-connected outputs), following
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the 5-fold cross-validation strategy described in the previ-
ous section. The second set, which contains the remaining
37 scans, is employed to train the CNN classifier for fea-
ture extraction. Note that this two-set strategy is considered
to ensure that the feature extraction is completely indepen-
dent from the AD vs. HC prediction. Figure 6 shows the
AUC-ROC curves obtained by the RF model for the different
input features.

We see that using entropy features derived from CNN
layers leads to the highest average AUC value of 92.58%,
representing accuracy improvements of 8.13% and 10.90%,
respectively, over standard radiomic features and CNN fully-
connected outputs. This finding indicates the ability of CNN
entropy to encode morphological abnormalities related to
AD.

IV. DISCUSSION
Most existing models for classifying AD and HC subjects
use clinical (i.e., CDR and MMSE score) or imaging volume
features [52], [53]. Nomograms based on gene expression sig-
natures, clinical features and pathological features are not yet
ready to be used in daily practice. Radiomic features, which
include histogram, texture, and shape features extracted from
MR scans, provide a non-invasive means to predict AD [52],
[54]-[60].

In this study, we showed the usefulness of radiomic
features from subcortical brain regions for discriminating
between AD and HC subjects. The first analysis, based on
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FIGURE 6. Average Area under the ROC curves for AD vs. HC prediction
using the random forest (RF) classifier model with 21 entropy features
derived from CNN layers (black curve), with 45 radiomic features (red
curve) and with 128 features derived from CNN fully connected layer
(blue curve).

the Wilcoxon test, showed the “correlation” and ‘‘volume”
features from hippocampus and amygdala regions to have
greatest differences between AD and HC subjects (Figure 3).

Other subcortical regions, including the cerebral white
matter, thalamus, caudate, pallidum and CSF, also exhibited
features which were significantly different between AD and
HC subjects (corrected p < 0.01). Using random forest models
to separate AD from HC subjects, we also found that the
hippocampus and amygdala are the most discriminative sub-
cortical brain regions (Fig. 4 and Fig. 5). Comparing the RF
classification accuracy using the proposed 21 CNN entropy
features, 45 radiomic features, and 128 features derived from
the CNN fully-connected layer, we demonstrated the poten-
tial of entropy features to characterize AD (Figure 6).

Our findings are consistent with previous studies in the
literature, which have found various texture and shape fea-
tures to be strong biomarkers of AD [31]-[33], [54], [59],
[61]-[69]. However, this work provides a more comprehen-
sive analysis of radiomic features in individual subcortical
brain regions. Specifically, our results showed the useful-
ness of various radiomic features across different subcorti-
cal brain regions (Figure 4). The discriminative power of
radiomic features from hippocampal regions, found by our
analysis, is consistent with recent studies [30], [32], [67],
[70]-[73]. For example, hippocampal texture was shown to be
a strong biomarker for differentiating HC from AD or MCI
patients [31], [33], and hippocampal volume for detecting
MCI enrichment in [66]. Our identification of differences in
the amygdala of AD subjects is also consistent with previ-
ous studies [74]. Interestingly, a recent study showed that
polymorphism of the APOE €4 gene, the major genetic risk
factor for AD, was associated with decreased hippocampal
and amygdala volume in subjects with AD and MCI, but
was not in healthy adults of similar age [73]. It was found
that early AD disrupts intrinsic connectivity of key regions
in the medial temporal lobe, including the amygdala [75].
Moreover, our study further shows that features derived from
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the CSF, accumbens and caudate zones are different between
AD and HC subjects.

This finding could be related to the discovery that
CSF levels of AP42 is a strong biomarker for AD
patients [76]—[79], and that the volume or integrity of accum-
bens, caudate, thalamus, putamen and pallidum regions [78],
as well as cerebral white matter [80]-[82], was affected by
AD.

In comparison to previous studies, our analysis investi-
gated the link between AD and radiomic features in indi-
vidual subcortical brain regions. This is motivated by the
hypothesis that distinct regions are affected differently by
AD, and that changes in separate regions can be captured by
different features. This hypothesis is confirmed by the results
of our experiments. In addition, we demonstrated that entropy
features derived from CNN layers can improve the AUC value
by about 10% compared to standard radiomic features or the
full representation learned by the CNN (i.e., output of the
fully-connected layer).

The current study has limitations worth mentioning.
Although we used (n=235) cases from OASIS database,
employing a larger independent dataset (Alzheimer disease
neuroimaging initiative: ADNI) would further validate our
purposed method. Moreover, considering other modalities
such as FLAIR MRI and PET could increase performances.
Finally, investigating additional ways to encode texture in
convolution neural networks could potentially lead to better
classification rates.

V. CONCLUSION

This paper proposed to investigate radiomic features derived
from individual subcortical brain regions to identify AD. Our
results indicate that the hippocampus and amygdala are brain
regions showing the greatest differences between AD and HC
subjects, and that the “correlation” and “volume” features
are the most important for diagnosing AD. Furthermore, our
findings suggest that entropy features derived from CNN
layers could be used as an effective biomarker for AD.
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