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ABSTRACT A battery-ultracapacitor hybrid energy storage system (HESS) is a reliable candidate to
overcome the drawbacks of a single power source system for its complementary features of power and
energy in plug-in hybrid electric vehicle application. In this paper, an integrated energy management strategy
procedure, which consists of three layers, is presented to distribute the power of the battery packs and the
ultracapacitor packs. First, an HESS parameter match method is developed under different driving cycles
with optimization objectives of cost and weight. Second, three-level wavelet transform (WT) algorithm is
employed to isolate the different frequency components of power demand. The low-frequency components
with less transients and sharps in power demand are provided by extending the battery lifetime, while an
ultracapacitor satisfies the high-frequency components for its nice features of high specific power. Finally,
fuzzy logic control is used to manage power flows between various components for guaranteeing the HESS
performance. The simulation results show that compared with WT-based-only energy management strategy,
the proposed procedure can always control the battery currents within 2C rate and reduce the energy
consumption of about 6.54%.

INDEX TERMS Integrated energy management strategy, wavelet transform, fuzzy logic control, parameter
match, hybrid energy storage system, plug-in electric vehicles, ultracapacitor.

I. INTRODUCTION
Plug-in hybrid electric vehicle (PHEV) is seen as one of the
most promising technologies to deal with global warming and
dependence on fossil fuels, recently [1], [2]. Compared with
pure electric vehicles (EV), PHEV has a greater electrically
propulsion distance with lighter energy storage system (ESS)
and longer service lifetime [3], [4]. However, when the PHEV
is in starting, braking and accelerating situations, battery-only
ESS cannot provide both power and energy requirements
without damage the internal electrochemical structure of bat-
teries [5]. Therefore, hybrid energy storage system (HESS) is
implemented as one of the most reliable candidates to satisfy
the mutually exclusive attributes required between power
and energy. Many energy storage systems are introduced
in the previous literatures. It is typically divided into three

categories: mechanical energy storage systems, electrical
energy storage systems and chemical energy storage systems.
Furthermore, the fuel cell, compressed air and battery have
slow response times while the ultracapacitor, flywheel and
superconducting magnetic have fast response times. The bat-
tery, fuel cell and ultracapacitor are the typical energy storage
systems that have received many attentions from renewable
energy system and smart grid arenas. However, the appro-
priate topologies of HESSs are required to coordinate the
power distribution among different energy storage systems.
Although many combinations of HESSs have been proposed
and analyzed in the literatures, the battery-ultracapacitor
HESS is employed in this paper [6]. The reason is that batter-
ies possess high specific energy that can largely determine the
propulsion distance, while ultracapacitors have a nice feature
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of high specific power to satisfy the power requirements on
acceleration, starting and braking situations.

A combination of battery and ultracapacitor and a suit-
able energy management strategy can extend the battery
lifetime by alleviating the stress of battery current load.
Generally, the energy management strategies not only limit
battery currents within a suitable rate but also control ultra-
capacitor to absorb short-time peak currents. Many energy
management strategies have reported in the literatures [7].
The rule-based energy management strategy is mainly coop-
erated with other optimization methods such as dynamic
programming (DP) algorithm. For example, the optimized
control rules are extracted among different driving cycles by
DP, and the optimal control effects under specific operating
condition are obtained [8], [9]. Wang et al. [10] developed
a Markov model to predict the power demand for improving
the fuzzy logic control (FLC) effects. According to a detailed
analysis of historical data, Zhou et al. [11] presented an
adaptive membership function. In addition, Yi et al. [12]
proposed a combination energy management strategy includ-
ing FLC and machine learning method to improve the control
performance. Shen and Khaligh [13] trained the neural
network model by DP optimized parameters for online-
controlling of battery-ultracapacitor HESS. To observe the
battery aging track, Song et al. [14] built a battery degradation
model implementing in HESS. Gomozov et al. [15] employed
non-uniform sampling times for realizing model predictive
control under different conditions to reduce the calculating
burden. Recently, with the rapid development of artificial
intelligence (AI) algorithms, the reinforcement learning algo-
rithm has been applied in energy management field [16].
Liu et al. [17] proposed a reinforcement learning-based adap-
tive energymanagement, and the results show that themethod
has nice adaptability, optimality and learning ability. How-
ever, in spite of the above mentioned energy management
strategies can deal with the issues of HESS optimization
control in many aspects, the transients and sharps in power
demand, which can damage the battery internal electrochem-
ical structure and shorten battery lifetime, were not fully
considered. Therefore, researchers proposed a frequency-
based filtering algorithm to isolate the low and high frequency
components while these components are provided by battery
and ultracapacitor, respectively. Nonetheless, the constant
debugging process to approach the ideal filter effect is a
serious computational burden [18].

In the HESSs, the wavelet transform (WT) algorithm is
selected to play a role aiming to avoid the rapid variation
and peak in power demand [19], [20]. The WT has a nice
feature that decomposes a time domain signal into different
frequency groups by a scalable modulated time window of
varying size [21], [22]. Since the WT algorithm shows excel-
lent performance in comprehending the time and frequency
information simultaneously, it is employed to capture the
transients in power demand such as the driving cycles of
a vehicular system [23], [24]. The FLC methodology has
been proven that it is an effective way to obtain certain and

reliable results from imprecise information, which is essen-
tially a type of rule-based control method. The establishment
of FLC does not require a definite mathematical model while
its robustness and precision are strongly dependent on the
researcher’s experience [25]. In order to improve the effec-
tiveness of HESS, a FLC considering battery and ultracapac-
itor (State of Charge) SOCs is applied in dealing with power
distribution either. In addition, the parameters of HESS are
strongly related to the PHEV performance. Namely, the series
and parallel structure of battery and ultracapacitor largely
determines the characteristics of HESS [26]. Thus, the HESS
parameter match method should be integrated into energy
management strategy.

Consequently, this paper develops an energy management
strategy procedure consisting of three steps. Firstly, a HESS
parameter match method is introduced in details to determine
an optimal HESS configuration with reasonable considera-
tion of overall cost and weight. Secondly, the WT algorithm
splits the low and high frequency power demand directly.
Finally, the FLC strategy distributes these components by
considering the natural features of power sources to guarantee
the energy management performance.

This paper is organized as follows. Section II describes
the HESS parameter match method in details. Section III
presents the energy management strategy based on WT and
fuzzy logic control. In Section IV, the results of devel-
oped energy management strategy are evaluated and verified.
Finally, conclusions are given in Section V.

II. HESS PARAMETER MATCH METHOD
The object of HESS parameter match method is to ensure
vehicles’ power performance with an optimized combina-
tion between battery and ultracapacitor. The HESS param-
eter match method consists of three steps. First, the primary
parameters of the PHEV and the key indicators of six typical
driving cycles are analyzed in details. Second, the energy and
power requirements are systematically discussed to calculate
the thresholds of the HESS. Finally, the HESS optimized
parameters are obtained with the optimization objectives of
HESS cost and weight.

A. ANALYSIS OF DIFFERENT DRIVING CYCLES
In HESSs for PHEV, battery is the main energy supply sys-
tem, and ultracapacitor is the main power supply system. The
dynamical model of PHEV can be shown as following

Preq =
1
η

(
Mgf cos(β)

3600
va +

Mg sin(β)
3600

va +
CDA
76140

v3a

+
δM
3600

dva
dt

)
(1)

where, Preq is power requirement, va represents the vehicle
velocity and β denotes the grade of the road. In addition, the
corresponding parameters of the PHEV are listed as Table 1.

The standard driving cycle can reflect the vehicle run-
ning status actually. The power and energy requirements
are determined by characteristic parameters of driving cycle
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TABLE 1. The primary parameters of the PHEV.

such as duration, driving range, average velocity, maxi-
mum acceleration and maximum velocity. Since each driving
cycle has its individual characteristic parameters, in order
to improve the suitability of parameter match results, the
Highway Road (HWFET and INDIA_HWY), Suburb Road
(CSHVR_Vehicle and WVUBUS) and Urban Road (MAN-
HATTAN andNYCC) driving cycles are employed to analyze
the power and energy requirements. The velocity and power
curves of six standard driving cycles are shown in Fig. 1, and
the characteristic parameters are listed as Table 2.

From Table 2, it can be seen that compared with high-
way road and urban road, the suburb road driving cycles
have the longest duration. Specifically, the durations of
CSHVR_Vehicle and WVUBUS correspondingly are 1781s
and 1665s. Due to the frequent starting and stopping of PHEV,
the MANHATTAN and HWFET have the shortest driving
ranges of 3.3243 km and 1.8984 km, respectively. More-
over, the maximum acceleration of NYCC can be as high
as 2.6822 m/s2. The HWFET has the longest driving range,
the maximum average velocity and the maximum velocity of
16.5061 km, 77.5744 km/h and 96.3971 km/h.

The power and energy requirements under different driving
cycles can be summarized as Table 3. It can be observed that
HWFET, INDIA_HWY and NYCC driving cycles have the
larger positive peak power, which can reach to 41.2089 kW,
43.2945 kW and 44.4458 kW, respectively. Compared with
other driving cycles, the HWFET driving cycle has the largest
energy consumption of 12551 kJ. On the contrary, since
the driving ranges are only about 11 km, the INDIA_HWY
and WVUBUS driving cycles have energy consumptions of
about 600 kJ. However, the energy consumption per km of
HWFET reaches to 760 kJ and the value under other five driv-
ing cycles is only about 500 kJ. Since the frequent starting,

FIGURE 1. The velocity and power curves of six standard driving cycles.
(a) HWFET; (b) INDIA_HWY; (c) CSHVR_Vehicle; (d) WVUBUS;
(e) MANHATTAN; (f) NYCC.

acceleration and braking of PHEV in urban road, the ratios
of positive energy requirement to negative energy require-
ment under MANHATTAN and NYCC correspondingly are
44.71 % and 45.56 %.

B. PARAMETER MATCH FOR ENERGY
AND POWER REQUIREMENTS
1) BATTERY ENERGY REQUIREMENTS
In this paper, the battery is regarded as an ideal component
and its efficiency is 100 %. If PHEV is driving at a constant
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TABLE 2. The characteristic parameters of six standard driving cycles.

TABLE 3. The power and energy requirements under different driving cycles.

velocity of 60 km/h on the ideal road, the theoretical driving
range is 200 km. Since the battery should satisfy the energy
requirement for maximum theoretical driving range, which
can be expressed as Eq. (2).

S =
E200va
Preq

(2)

where, S denotes the driving range, E200 represents the
battery energy for 200 km, Preq is the power requirement
for constant velocity and va denotes the constant veloc-
ity. The E200 can be easily calculated by Eq. (2) and the
primary parameters of the PHEV are shown in Table 1.
The safety factor of energy consumption is set to 1.2, and
E200 = 35 kW.h. The battery energy can be expressed
as Eq. (3).

Ebat = CbatUbatNbat,sNbat,p (3)

where, Cbat is the battery cell capacity, Ubat denotes the
nominal voltage of battery cell, Nbat,s represents the battery
number in series for each braches and Nbat,p is the number
of parallel braches. Thus, the first constraint equation can be
obtained as following

Cbat ≥
1000E200

UbatNbat,sNbat,p
(4)

In this paper, the HESS includes a battery pack, an ultra-
capacitor pack and two bi-directional DC/DC converters.
The efficiency of the DC/DC converter seriously affects
the performance of the HESS. In addition, from Table 1,
it can be seen that the motor voltage is 360 V. In order
to keep the DC/DC converters in high efficiency working
area, the battery pack voltage is set to 360 V as well. Thus,
Nbat,s ≥ 100.
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2) ULTRACAPACITOR ENERGY REQUIREMENTS
The ultracapacitor is also considered an ideal component with
efficiency of 100 % in this paper. The aim of ultracapacitor in
HESS is to provide enough energy and power in the starting
and acceleration status and absorb the braking energy in
braking status.

a: PHEV STARTING
If PHEV start on the ideal road, the energy is only provided
by ultracapacitor. The ultracapacitor energy should be no less
than the maximum energy requirement for PHEV starting.

Euc ≥ Estart_max =

∫ t

0
Fv(t)dt

(5)

where, Euc denotes ultracapacitor energy requirement,
Estart_max denotes the maximum energy requirement for
PHEV starting. In general, the acceleration in the starting
status reaches the maximum value. The maximum acceler-
ation of NYCC is larger than that of other five driving cycles.
Namely, if the ultracapacitor energy meets the maximum
energy requirement for NYCC, it satisfies the requirement for
other presented driving cycles as well. When PHEV accel-
erates to 50 km/h with an acceleration of 2.6822 m/s2, the
maximum ultracapacitor energy requirement is 0.049 kWh.

b: PHEV ACCELERATION
In the PHEV acceleration status, the HWFET has a maximum
positive average power of 18.9308 kW and the MANHAT-
TAN has a minimum positive average power of 6.4244 kW
among the six driving cycles. In addition, the NYCC and
CSHVR_Vehicle have the maximum and minimum positive
peak power, respectively. The remaining power is defined
as the difference between positive average power and pos-
itive peak power. In the energy management strategy, bat-
tery provides energy to meet the positive average power and
ultracapacitor satisfies the remaining power. In addition, the
maximum ultracapacitor energy requirement can be calcu-
lated as Eq. (6).

Euc ≥ Eass_max

=
1

3600
max

(∫ t

0
(Pass_peak(t)− Pavg(t))dt

)
(6)

where,Eass_max denotes themaximum energy requirement for
PHEV acceleration, Pass_peak and Pavg represent the positive
peak power and positive average power of driving cycles,
respectively. The assisting time t is set to 15s in this paper.
Fig. 2 lists the ultracapacitor energy requirements under dif-
ferent driving cycles in acceleration status. It can be seen
that compared with other driving cycles, the NYCC has a
maximum ultracapacitor energy requirement of 0.1542 kWh.

c: PHEV BRAKING
In order to determine the maximum energy requirement for
ultracapacitor in braking status, the ultracapacitor energy
requirement should be no less than the maximum feedback

FIGURE 2. The ultracapacitor energy requirements under different driving
cycles in acceleration status.

energy requirement among the six driving cycles. The max-
imum ultracapacitor energy requirement can be calculated
as Eq. (7).

Euc ≥ Ereg_max =
1

3600
×

∫ t

0
Preg(t)tdt (7)

where, Ereg_max represents the maximum feedback energy
requirement among the six driving cycles, Preg denotes the
negative peak power of driving cycles. The braking time t
is set to 1s in this paper. Fig. 3 shows the ultracapacitor
energy requirements under different driving cycles in braking
status. It can be observed that compared with other driving
cycles, the HWFET has a maximum ultracapacitor energy
requirement of 0.01241 kWh.

FIGURE 3. The ultracapacitor energy requirements under different driving
cycles in braking status.

However, the ultracapacitor energy requirement Euc is
greater than the maximum value among Estartmax, Eassmax
and Eregmax. Thus, Euc can be calculated by Eq. (8) and
Eq. (9).

Euc ≥ max(Estart_max,Eass_max,Ereg_max) (8)

Euc =
1

3600
×

1
2
CucNuc,sNuc,p

(
U2
cmax − U

2
cmin

)
(9)

where, Cuc is the rated capacity of ultracapacitor, Ucmax
denotes the maximum ultracapacitor voltage of 2.7 V and
Ucmin denotes the minimum ultracapacitor voltage of 1.35 V.
Nuc,s represents the battery number in series for each braches
and Nuc,p is the number of parallel braches. Therefore, the
second constraint equation can be obtained as following

Cuc≥
3600×2×1000×max

(
Estart_max,Eass_max,Ereg_max

)
Nuc,sNuc,p

(
U2
cmax−U

2
cmin

)
(10)
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Since the variation range of ultracapacitor voltage is much
greater than that of battery voltage, the addition of DC/DC
converter can stabilize the bus voltage of HESS. If the maxi-
mum ultracapacitor voltage is less than the minimum battery
voltage, theDC/DC converter can be utilizedmore efficiently.
Due to the battery SOC range is set to [0.2, 1.0] and the min-
imum battery voltage is about 270 V, the Nuc,s is set to 100.

3) POWER REQUIREMENTS
The HESS power requirements should meet the maximum
power among the six driving cycles. From Table 3, compared
with other driving cycles, the NYCC has a maximum positive
peak power of 44.4458 kW. Therefore, the third constraint
equation can be obtained as following

Pbat + Puc ≥ Pcyc_max (11)

where, Pbat is battery power and Puc denotes ultracapacitor
power, which can be obtained as Eq.(12).{

Pbat = Pavg
Puc = Nuc,sNuc,pmuc,cellsuc

(12)

where, muc,cell represents the ultracapacitor cell weight,
suc is ultracapacitor power density. Since the surge current
and large current can damage the internal electrochemi-
cal structure of batteries, the battery current is controlled
within 2 C rate. In addition, the ultracapacitor will provide
excessive current to ensure the power performance of PHEVs.
Hence, the fourth constraint equation can be obtained as
following

2CbatUbus ≥ Pavg (13)

where,Ubus denotes the DC bus voltage which is set to 360 V,
Pavg is the maximum positive average power among the six
driving cycles. From Table 3, compared with other driving
cycles, the HWFET has a maximum positive average power
of 18.9308 kW [27].

4) PARAMETER MATCH METHOD
The different topologies of batteries and ultracapacitors lead
to individual performance. According to the previous analy-
sis, Eq. (4), (10), (11) and (13) are the constraint conditions
of the parameter match method. Table 4 shows the capacity
range of battery and ultracapacitor under different topologies.

The overall cost Chess and weight Mhess of the HESS
are the two optimization objectives and the battery capacity
and ultracapacitor capacity are the optimization variables in
this paper. In addition, the objective function is shown as
following

J (x) = αChess + βMhess

Chess = Nbat,sNbat,pmbat,cellsbatwbat

+Nuc,sNuc,pmuc,cellsucwuc

Mhess = Nbat,sNbat,pmbat,cell

+Nuc,sNuc,pmuc,cell

(14)

TABLE 4. The capacity ranges of battery and ultracapacitor under
different topologies.

where, sbat and suc are battery power density and ultraca-
pacitor power density, respectively. wbat denotes battery unit
energy price which is 0.43 $/Wh, and wuc represents the
ultracapacitor unit energy price of 11.55 $/wh.mbat,cell rep-
resents the battery cell weight, and mb\uc,cell represents the
ultracapacitor cell weight. α and β are correspondingly the
weight coefficients for cost and weight of HESS with a range
of [0, 1]. In addition, the weight coefficients must satisfy
α + β = 1.
Considering the reliability and adaptability, the NMC

lithium-ion battery with rated capacities of 25 Ah, 35 Ah,
60 Ah amd 100 Ah are selected in this paper. In addition, the
selected ultracapacitor is supplied by Maxwell manufacturer,
and the rated capacities are 650 F, 1500 F, 2000 F and 3000 F,
respectively. The parameters of battery and ultracapacitor are
correspondingly summarized as Table 5.

TABLE 5. The parameters of battery and ultracapacitor.

The optimizing results of HESS parameters are shown as
Fig. 4. If α = 0 and β = 1, it shows that the weight Mhess is
the only optimization objective. Point No.1 is the optimiza-
tion result withChess = 17.74 k$,Mhess = 375 kg,Nbat,p = 1
and Nuc,p = 4. From Table 4 and Table 5, the battery with
a capacity of 100 Ah and the ultracapacitor with a capacity
of 650 F are selected. On the contrary, If α = 1 and β = 0, the
cost Chess is the only optimization objective. Point No.2 is the
optimization result with Chess = 20.74 k$, Mhess = 289 kg,
Nbat,p = 4 and Nuc,p = 1. The selected battery and ultra-
capacitor have capacities of 25 Ah and 3000 F, respectively.
Considering the balance between costChess and weightMhess,
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FIGURE 4. The optimizing results of HESS parameters.

α is set to 0.9 and β is set to 0.1, respectively. In this paper,
point No.3 is the selected result with Chess = 20.74 k$,
Mhess = 298 kg, Nbat,p = 4, Nuc,p = 2, battery capacity
Cbat = 25 Ah and ultracapacitor capacity Cuc = 1500 F.
Consequently, the configuration of HESS is Nbat,s = 100,
Nuc,s = 100, Nbat,p = 4 and Nuc,p = 2.

FIGURE 5. The equivalent circuit models for battery and ultracapacitor.
(a) First-order RC model; (b) Rint model.

III. ENERGY MANAGEMENT STRATEGY BASED
ON WAVELET TRANSFORM AND FUZZY
LOGIC CONTROL
A. CONFIGURATION OF HESS
A battery-ultracapacitor HESS includes multiple topologies
which are generally divided into fully active, semi-active and
passive. In the HESS, the fully active topology is selected,
which employs two bi-directional DC/DC converters to
decouple the battery and ultracapacitor directly. As shown
in Fig. 5, the first-order resistance-capacitance (RC) model
and Rint model are selected for battery and ultracapaci-
tor modeling, respectively. The model equations of battery
and ultracapacitor are corresponding expressed as Eq. (15)
and Eq. (16) [28], [29]. In order to accurately describe
the dynamic characteristics of battery and ultracapacitor
under different SOCs, the model parameters are identi-
fied by genetic algorithm (GA) and the parameters are
shown in Fig. 6. From our previous research [30], to reduce
the computational burden of modeling, a response surface
ξ (ir, Pr)-based efficiency map shown in Table 6 is employed
to simulate DC/DC converter efficiency. Additionally, ir
denotes output current and Pr represents the output power of
DC/DC converter.{

U̇b1 = −
1

Cb1Rb1
Ub1 +

1
Cb1

ib
Ubt = OCV− ibRb − Ub1

(15)

Uct = Uc − icRc (16)

FIGURE 6. Identification parameters of battery and ultracapacitor.
(a) ∼ (d) battery parameters; (e) ∼ (f) ultracapacitor parameters.

TABLE 6. The efficiency map of DC/DC converter.

B. THEORY OF HAAR-WT AND FLC ALGORITHM
Owing to its shortest filter length and the simplest structure,
Haar-wavelet is selected among different kinds of wavelets.
In our previous study, a three-level Haar-wavelet transform
shown as Fig. 7 is employed for the signal decomposing
and reconstructing. A low pass filter l0(z) and a high pass
filter h0(z) are used in the decomposition process and then
a low pass synthesis filter l1(z) and a high pass synthesis
filter h1(z) are used in the reconstruction process. Finally,
the original signal x(n) is reconstructed with very slight
errors and the low and high frequency components of power
demand are separated directly. It is well known that the
critical issue of battery consists on reducing charging and
discharging cycles in order to extend its lifetime, specially
avoiding deep discharges as well as overcharges taking into
account the SOC. In order to extend battery lifetime and take
advantage of ultracapacitor, the battery will undertake the low
frequency components and the ultracapacitor will satisfy the
high frequency components. Due to the electric vehicle is a
nonlinear of multivariable system and the exact mathematical
model is difficult to establish, the FLC is quite suitable for
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FIGURE 7. Three-level-Haar-WT decomposition and reconstruction.

FIGURE 8. The structure of developed energy management based on
WT and FLC.

HESS modeling with a higher level of abstraction originating
based on the engineering experience. In this paper, multiple
linear systems are employed for fitting nonlinear systems via
Takagi-Sugeno controller. Since the structure of FLC is easy
to implement and it has been widely and successfully used
in various fields, we will not discuss the basic concept and
principle in details.

C. ENERGY MANAGEMENT STRATEGY STRUCTURE
The structure of developed energy management based onWT
and FLC is shown in Fig. 8. It can be seen that it composes
of three steps: Modeling of HESS for PHEV and WT and
FLC based energy management strategy. The first step and
second step are correspondingly introduced in Section 2 and
Section 3.1 in details while this section will discuss the

FIGURE 9. The load profile of combination driving cycle.

last step. Firstly, a comprehensive driving cycle consisting
of NEDC, UDDS and UNIF01 driving cycles is developed
to evaluate the dynamic response of HESS. The combination
driving cycle shown in Fig. 9 is a 4486-s test procedure for
reflecting different traffic conditions. Secondly, the wavelet
transform can decompose the combination driving cycle into
low and high frequency components. Pbref and Pcref denote
the reference power demands for battery and ultracapacitor,
respectively. Thirdly, in the HESS, the FLC has three input
and one output variables. The inputs of FLC include the
reference power demand for battery Pbref, the SOC values of
battery SOCbat and the SOC values of ultracapacitor SoCuc
while the output is the power demand for battery Pb. The
SOCbat and SoCuc are set as [0, 1], and the values of Pbref is
set as [−1, 1] by using the normalization tool. The fuzzy sub-
set of SoCb and SoCc are divided into L,M, H, and the subsets
of Pbref and Pb are divided into NH, NM, NL, Z, PL, PM,
PH. In addition, the FLC consists of 63 rules designed by the
engineering experience. Then Pb is obtained according to the
anti-normalization tool. The membership functions of input
and output variables are shown in Fig. 10. In addition, the
power demand for ultracapacitor can be expressed as Eq. (17).

Pc = Pbref + Pcref − Pb (17)

IV. SIMULATION AND VERIFICATION RESULTS
The simulation is implemented in MATLAB/Simulink plat-
form which has many convenient toolboxes. In order to show
the dynamic performances of WT and FLC based energy
management strategy, the battery SOC, ultracapacitor SOC,
battery current, ultracapacitor current, battery voltage, ultra-
capacitor voltage, battery output power and ultracapacitor
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FIGURE 10. Membership functions of input and output variables.

FIGURE 11. The evaluation results of WT and FLC based energy
management strategy. (a) battery SOC; (b) ultracapacitor SOC; (c) battery
current; (d) ultracapacitor current; (e) battery voltage; (f) ultracapacitor
voltage; (g) battery output power; (h) ultracapacitor output power.

output power variation curves are demonstrated in Fig. 11.
It is clear from Fig. 11(a), (c), (e) and (g) that the devel-
oped energy management strategy maintains the battery SOC
within a reasonable level and the terminal battery SOC
is 0.6324. The maximum battery current is only 181.86 A

FIGURE 12. The battery current distribution on the combination driving
cycle.

while it is successfully controlled to be within 2 C-rate.
Additionally, the battery current distribution on the combi-
nation driving cycle is shown in Fig. 12. It is shown that
the mainly battery currents are maintained within 0.5 C-rate
while the proportion of battery currents over 1 C-rate is
only 5.08 %. Therefore, it will greatly reduce the damage
of battery electrochemical structure by sudden load vari-
ations and it is benefit for promoting battery lifetime.
The variation of battery voltage is stable during the most of
the driving cycle except for high accelerations and starting
conditions. The battery continues to supply the steady power
to satisfy the low frequency components of positive power
demand and absorb the slow-variation negative portion. From
Fig. 11(b), (d), (f) and (h), it is obvious that the ultraca-
pacitor SOC has a wider variation range of [0.36, 0.93],
and it changes more frequently compared to that of battery.
The ultracapacitor can fulfill the power demand fluctuations
owing to its fast response capability. Since the ultracapacitor
power is close to zero at most of the time, the difference
between initial and terminal ultracapacitor SOC is only 0.13.
In addition, the maximum ultracapacitor current of 400 A and
the frequent variations of ultracapacitor current and voltage
prove that the transients and peak power demand are suc-
cessfully absorbed by ultracapacitor. The WT and FLC based
energy management strategy ensures that ultracapacitor has
enough charge for accelerating periods while regulating the
system power flow with the aim of decreasing energy con-
sumption.Moreover, theWT-based-only energymanagement
strategy without FLC provides an overall energy loss of
3936.72 kJ. It is shown that the adoption of FLC can improve
an energy consumption of about 6.54 % under the developed
energy management strategy.

V. CONCLUSIONS
In this research, a detailed study presents a WT and FLC
based energymanagement procedure including an integration
of HESS parameter match method for PHEV. The presented
HESS parameter match method can optimize the HESS struc-
ture with reasonable and reliable balance between cost and
weight. Then, aWT and FLC based energymanagement strat-
egy focused on the reduction of transients and sharps of power
demand for battery pack is proposed. The simulation results
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reveal that compared with WT-based-only energy manage-
ment strategy, the integrated energy management strategy is
effective in reducing energy consumption of 6.54 %. More-
over, the overall battery currents during the combination driv-
ing cycle are maintained within 2 C-rate, and it benefits for
alleviating the stress of battery and extend the battery lifetime.
In the future, the integrated energy management strategy
considering multi factors as well as the combination of multi
control strategies to compensate for each own deficiencies are
very attractive. In addition, the HESS is highly probable to be
advanced by big data and machine learning.
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