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ABSTRACT Recently developed variable pulse width finite rate of innovation (VPW-FRI) theory offers
an efficient way for sampling pulse streams with various shapes at the sub-Nyquist rate. Unfortunately,
for real signals, noise, and model mismatch will induce inaccuracies to such scheme in the reconstruction
process. In this paper, an optimization model-based sub-Nyquist sampling system for pulses with various
shapes is proposed, which improves the performance of VPW-FRI scheme under noise and model mismatch
situation. Since the real pulse streamswith various shapes may bemodeled as the sum of an unknown number
of Lorentzian pulses and a model mismatch error signal, we build an optimization object function with the
purpose of minimizing the energy of this model mismatch error signal. Then, for solving such function,
we propose a two-channel sub-Nyquist sampling system to obtain a Fourier coefficients subset and several
discrete samples from the input signal. We demonstrate that the best number of Lorentzian pulses and the
corresponding pulse parameters can be found by using an improved particle swarm optimization algorithm.
Finally, simulations with the electrocardiogram signals in MIT-BIH database have shown that the proposed
method has better performance and stability than traditional VPW-FRI scheme.

INDEX TERMS Optimization, sub-Nyquist, finite rate of innovation (FRI), electrocardiogram (ECG),model
mismatch, pulse streams.

I. INTRODUCTION
Signals consisting of the sum of a few pulses are widely
used in wireless communication [1]–[3], biomedicine [4], [5]
and radar [6]–[8]. Such signals can be determined uniquely
with the amplitude parameters and time delay parameters of
the pulses. According to the Nyquist sampling theorem [9],
to perfectly recover a signal from the samples, the sampling
rate should satisfy the Nyquist rate, i.e., twice the maximum
frequency of the signal. However, for wide-band pulses, such
theorem becomes challenging since it is very hard to build
hardware operating at very high rate. Recently, the finite rate
of innovation (FRI) scheme [10]–[12] has been proposed as
a sub-Nyquist sampling scheme for streams of pulses with
known shapes. It was shown that, perfect parameter estima-
tion is allowed by uniformly sampling the filtered version of
the FRI signals at a much lower rate, nearly equal to the rate
of innovation, i.e., the average number of degrees of freedom
per unit of time.

Various FRI sampling kernels have been proposed, among
which are Sinc kernel and Gaussian kernel in [10], B-spline,

E-spline and rational kernels in [13], SoS (Sum of Sincs)
kernel in [14]. In addition to streams of Diracs, these ker-
nels give the FRI theory more flexibility to retrieve short
pulses with more generic shapes. However, these kernels are
hard or impossible for hardware realization. To reduce the
complexity of the system’s hardware design and improve the
noise resistance, several muti-channel FRI sampling systems
are proposed. Gedalyahu et al. [15] proposed a multi-channel
FRI sampling system based on mixers and integrators,
in which the discrete Fourier coefficients can be obtained.
Unfortunately, since only one Fourier coefficient can be
obtained in a single channel, such system has a complex struc-
ture characterized by a large number of sampling channels.
To obtain several Fourier coefficients subsets distributed over
the signal spectrum, Baransky et al. [16] proposed another
multi-channel sampling scheme. However, to avoid spec-
trum aliasing, such system obtained the Fourier coefficients
subsets by using a redundant and complex approach. So
in [17] we have presented a simplified FRI sampling scheme
with similar functions. To further solve the spectrum aliasing
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problem, we proposed another system in [18] to obtain the
real part of the signal spectrum.

Note that, for all above FRI sampling systems, the input
pulse streams are required to have the same pulse shape,
which is fixed and needs to be known apriori. However,
in many applications, such as the electrocardiogram (ECG),
the pulse shapes are various throughout the signal. There
are many pulse functions, such as the B-spline and E-spline
functions, the Gaussian functions, the wavelet basis functions
and the Lorentzian functions, can be used for approximat-
ing the pulses with various shapes. Based on these func-
tions, several extended FRI schemes have been proposed.
Maravic et al. [19] approximated the Fourier coefficients of
each pulse with polynomials and proposed a low-sampling
rate channel estimation for digital ultrawideband (UWB)
receivers. However, in order to approximate the pulse shapes
better, a large polynomial degree is required, which means
a high sampling rate. Zhang and Dragotti [20], [21] devel-
oped an extended FRI sampling theory for signals consist-
ing of pulses with unknown shapes. However, it requires
that each pulse can be represented as a sparse signal
in the wavelet domain, which is not common in prac-
tice. Nagesh and Seelamantula [22] proposed an asymmet-
ric model based on the sum of a Guassian pulse and its
fractional Hilbert transform, aiming to model part of ECG
signals and characterizing ventricular hypertrophy. However,
due to the fixed pulse width, such scheme may not converge
to a satisfactory result. In [23]–[25], the authors introduced
the Lorentzian functions in modeling the pulses with var-
ious shapes and then developed the Variable Pulse Width
FRI (VPW-FRI) sampling theory. Since there are four free
parameters, namely the symmetry and asymmetric ampli-
tudes, the time delay and the pulse width, in each Lorentzian
function, it allows some stability and flexibility in modeling
the pulses with various shapes. Unfortunately, such technol-
ogy turns to be unstable under noise and model mismatch
situations.

In this paper, we consider the problem of sub-Nyquist
sampling of pulse streams with various shapes under noise
and model mismatch situations. Based on the VPW-FRI
framework in [23]–[25], wemodel the practical pulse streams
as the sum of an unknown number of Lorentzian pulses
and a model mismatch error signal. In order to find the
best number of Lorentzian pulses and other pulse parame-
ters, we propose a two-channel sub-Nyquist sampling sys-
tem. One channel obtains a Fourier Coefficients subset from
the signal spectrum, which is used to initially estimate the
unknown parameters of the Lorentzian pulses. The samples
of the other channel are used to optimize these parame-
ters by minimizing the energy of the model mismatch error
signal. Finally, simulation results of the real electrocardio-
gram (ECG) pulses demonstrate that the proposed system
outperforms the VPW-FRI scheme under noise and model
mismatch situations.

The rest content of this paper is arranged as follows: The
problem formulation is given in Section II and a brief review

of VPW-FRI is introduced in Section III. Our sampling
system is proposed in Section IV. The recovery algorithm
and some practical considerations of real ECG signals are
proposed in Section V. We analyze the performance our
system and compare it with some related works using some
simulations in Section VI. Finally, a brief conclusion is given
in Section VII.

II. PROBLEM FORMULATION
In this paper, the problem of sub-Nyquist sampling of
pulse streams with various shapes is considered. As shown
in [23]–[25], the Lorentzian pulses bring more versatility and
flexibility in modeling such signals. Considering the noise
and model mismatch situations, we model such signals with
the sum of an unknown number of Lorentzian pulses and a
model mismatch error signal, that is,

x(t) =
K∑
k=1

fk (t)+ σ (t), 0 ≤ t < τ, (1)

where τ is the time duration of the signal x(t) and K is the
number of Lorentzian pulses. The functions fk (t), with k =
1, 2, · · · ,K , are the Lorentzian pulses which can be divided
into

fk (t) = f sk (t)+ f
a
k (t) , (2)

where

f sk (t) = ck
rk

π
(
r2k + (t − tk)

2) , rk > 0, tk ∈ [0, τ ), (3)

and

f ak (t) = dk
t − tk

π
(
r2k + (t − tk)

2) , rk > 0, tk ∈ [0, τ ). (4)

Here, f sk (t) and f ak (t) are symmetric and anti-symmetric
parts of the Lorentzian pulse fk (t), respectively. Obviously,
each Lorentzian pulse fk (t) can be determined uniquely
by 4 parameters: symmetric amplitude ck , anti-symmetric
amplitude dk , pulse width rk and time delay tk . Such function
offers more versatility and flexibility than the simpler sym-
metric functions, which are only defined by amplitude and
time delay parameters of the pulse. Since it is not common
that a real signal completely matches the sum of Lorentzian
pulses, we introduce the mismatch error signal σ (t) in our
model.

An example of a real ECG signal with an appropriate
expression of our model is shown in Figure 1. The sum
of 8 different Lorentzian pulses

∑8
k=1 fk (t) is represented

in Figure 1(b) and the model mismatch error signal σ (t) is
depicted in Figure 1(c). We can see that this model offers an
exactly equivalent expression of the ECG signal x(t).

If the input signal x(t) perfectly matches the VPW-FRI
model in [23]–[25], that is, the number of Lorentzian
pulses K is known and the model mismatch error σ (t) = 0.
Then there are only 4K unknown parameters in (1),
i.e., {ck , dk , rk , tk}Kk=1. As shown in [23], these 4K unknown
parameters can be estimated uniquely from only 2K + 1
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FIGURE 1. ECG signal model: (a) Real ECG signal x(t); (b) Sum of 8 different Lorentzian pulses
∑8

k=1 fk (t); (c) Model mismatch error
signal σ (t).

continuous Fourier coefficients of the signal x(t), described
as

X [m] =
K∑
k=1

ck − idk
τ

e−2πm(rk+itk )/τ

=

K∑
k=1

vkumk , m ∈ Z, (5)

where vk =
ck−idk
τ

and uk = e−2πm(rk+itk )/τ . Note that
the Fourier coefficients X [m] have been restricted to positive
indices (m ≥ 0) for the convenience of calculation, as sug-
gested in [23]. The problem in (5) is very often encountered
in spectral estimation, and the parameters {vk , uk}Kk=1 can be
estimated uniquely by using the annihilating filter method
in [10] or other spectral estimation methods in [26]–[30].
After that, we can estimate the pulse parameters as: ck =
real(vkτ ), dk = −imag(vkτ ), rk =

τ log |uk |
2π and tk = −

τ 6 uk
2π .

Here, real(·) is the real part of (·), imag(·) is the imaginary part
of (·), log(·) is the natural logarithm of (·) and 6 (·) ∈ [0, 2π )
is the principle argument of (·).
However, the input signal usually does not perfectly match

the VPW-FRI model, that is, the number of Lorentzian
pulses K is usually unknown and the model mismatch
error σ (t) 6= 0. This situation is very common since the
pulse shapes of the signal are usually unknown in practice,
and the sampling process may also introduce some noise.
In this case, the traditional VPW-FRI technology needs to
select an appropriate value for the number of Lorentzian
pulses K with experience, which may lead to a large error of
the reconstruction results. Moreover, as shown in [23]–[25],
such model mismatch problem will lead the solution of (5)
unstable. That is, some of the solutions uk = e−2πm(rk+itk )/τ

are mapped outside a unit circle, corresponding to the fact
that the estimated pulse width rk < 0. In this paper, our goal
is to propose a sub-Nyquist sampling method for signals with
the model in (1), where the number of Lorentzian pulses K is
unknown and the model mismatch error σ (t) 6= 0.

III. REVIEW OF VPW-FRI
In this section, we give a brief review of the VPW-FRI the-
ory proposed in [23]–[25]. Formally, VPW-FRI framework

FIGURE 2. Sampling structure of VPW-FRI. Here, f (t) is sum of Lorentzian
pulses; ϕ(t) is the sampling kernel; T is the sampling interval and g[n] is
the discrete-time samples.

considers the signals formed by the sum of some Lorentzian
pulses. Such signals can be described as

f (t) =
K∑
k=1

[
f sk (t)+ f

a
k (t)

]
, 0 ≤ t < τ, (6)

where the number of Lorentzian pulses K is known, f sk (t)
and f ak (t) are given by (3) and (4) respectively. Obviously,
we have f (t) = x(t), only when the model mismatch error
signal σ (t) = 0.
The VPW-FRI sampling structure is illustrated in Figure 2.

Firstly, the signal f (t) is filteredwith the sampling kernel ϕ(t),
which is an ideal low-pass filter (LPF). After that, the filtered
signal is sampled uniformly at the rate twice the cut-off
frequency of the LPF. Then a set of Fourier coefficients F[m]
can be obtained by calculating the discrete Fourier trans-
form (DFT) of the samples. Formally, the Fourier coefficients
of f (t) are

F[m] =
K∑
k=1

{
F sk [m]+ F

a
k [m]

}
, (7)

where

F sk [m] =
ck
τ
e−2π (rk |m|+jtkm)/τ , m ∈ Z, (8)

and

Fak [m] = −
dk
τ
sgn(m)e−2π (rk |m|+jtkm)/τ , m ∈ Z. (9)

The absolute value |m| derives from the conjugate symmetry
of the spectrum. F sk [m] and F

a
k [m] are the Fourier coefficients

of f sk (t) and f
a
k (t), respectively. Obviously, F

s
k [m] is essen-

tially the Hilbert transform of Fak [m].
To estimate the unknown parameters of the Lorentzian

pulses, i.e., {ck , dk , rk , tk}Kk=1, from the obtained Fourier
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coefficients F[m], the annihilating filter method in [10] is
used. Let uk = e−2πm(rk+itk )/τ and the filter

A(z) =
K∏
k=1

(1− ukz−1) =
K∑
l=1

A[l]z−l, (10)

then

(A ∗ F)[m] =
K∑
l=0

A[l]F[m− l]

=

K∑
l=0

K∑
k=1

(ck − jdk )A[l]u
m−l
k

=

K∑
k=1

(ck − jdk )

(
K∑
l=0

A[l]u−lk

)
︸ ︷︷ ︸

A(uk )

umk = 0, (11)

where the integer m is restricted to positive indices, i.e.,
m ≥ 0, for the sake of calculation. Solving the filter coef-
ficients A[l] by (11) requires at least 2K + 1 non-negative
Fourier coefficients F[m]. Then the parameters tk and rk can
be estimated from the roots of filter A(z), and other param-
eters ck and dk are retrieved by solving (11). Although the
annihilating filter method works stable in the traditional FRI,
it is not guaranteed in the VPW-FRI framework. As shown
in [23], the unstable solutions correspond to the roots of the
filter A(z), i.e., uk = e−2πm(rk+itk )/τ , mapped outside a unit
circle. That is, the estimated Lorentzian pulse width rk < 0.
Such unstable solutions appear much more frequently under
noise and model mismatch situations.

IV. OPTIMIZATION MODEL BASED VPW-FRI
SAMPLING SYSTEM
In this section, we present a two-channel sub-Nyquist sam-
pling system for signals with the model in (1), where the
number of Lorentzian pulses K is unknown and the model
mismatch error σ (t) 6= 0. The system structure is described in
Section IV-A. In order to find the best number of Lorentzian
pulses K and other unknown parameters {ck , dk , rk , tk}Kk=1
of the input signal x(t) in (1) with the samples from our
system, we build an optimization object function with the
purpose of minimizing the energy of the model mismatch
error signal σ (t), as shown in Section IV-B. Finally, the choice
of the system parameters is analyzed in Section IV-C.

A. SYSTEM DESCRIPTION
In order to obtain a Fourier coefficients subset of the
continuous-time signal x(t) in (1), we use a low-pass fil-
ter (LPF) and an analog-to-digital converter (ADC) with
the sampling rate twice the cut-off frequency of the LPF.
In this way, a band of Fourier coefficients can be obtained
by calculating the DFT of the samples. Besides the Fourier
coefficients, we use an additional channel consisting of a
simple low-rate ADC to obtain several time domain samples
x[n′]. Such additional sampling channel is designed to opti-
mizing the recovery results of the main sampling channel.

The proposed sampling structure is illustrated in Figure 3.
This system has two parallel sampling channels, with one
consists of a LPF and an ADC in sequence, and the other only
consists of a low-rate ADC.

FIGURE 3. Block diagram of our system. The components include a LPF
and two ADCs.

In the first sampling channel, the input signal x(t) is filtered
with a LPF. Assume that the impulse response of the LPF
is h(t) and the cut-off frequency of the LPF is fcut . So the
filtered signal is y(t) = x(t)∗h(t). After the filtering process,
the filtered signal y(t) is uniformly sampled at a rate fs ≥2 fcut
and the samples are

y[n] = x(t) ∗ h(t)|t=n/fs , 0 ≤ n < N − 1, n ∈ Z , (12)

where N = bτ fsc + 1 is the number of samples.
Then we show how to obtain the Fourier coefficients of the

input signal x(t) from the samples y[n] (n = 0, 1, · · · ,N−1)
in (12). Based on the DFT of y[n], the Fourier coefficients of
the filtered signal y(t) can be calculated as

Y [m] =
1
fs

N−1∑
n=0

y[n]e−j
2π
N mn, m = 0, 1 · · ·N − 1. (13)

Suppose that the signal spectrum is truncated by an ideal LPF
with cut-off frequency fcut , then we have

Y (f ) = rect(
f

2fcut
)X (f )

=

{
X (f ), |f | ≤ fcut
0, |f | > fcut ,

(14)

where X (f ) is the Continuous-Time Fourier Trans-
form (CTFT) of the input signal x(t). If we substitute f = mf0,
where m is an integer and f0 = 1/τ , (14) can be rewritten as:

Y [m] = X [m], 0 ≤ m ≤ M − 1, (15)

where M = bfcut/f0c + 1. The mathematical symbol b(·)c
rounds the elements of (·) to the nearest integer less than
or equal to that element. Note that the Fourier coefficients
X [m] have been restricted to positive indices (m ≥ 0) for
the convenience of calculation, as mentioned in Section II.
Thus, we can obtain M = bτ fcutc + 1 Fourier coefficients
X [m] (m = 0, 1, · · · ,M − 1) from the obtained samples y[n]
(n = 0, 1, · · · ,N − 1) .
In the other parallel sampling channel, the input signal x(t)

is uniformly sampled at a rate f ′s = 1/T ′s and the samples are

x[n′] = x(t)|t=n′/f ′s , 0 ≤ n′ < N ′ − 1, n′ ∈ Z , (16)

where N ′ =
⌊
τ f ′s
⌋
+ 1 is the number of samples.
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It is natural to wonder how to solve the aliasing of the
sub-Nyquist samples. As illustrated in Figure 3, the proposed
system consists of two parallel sampling channels. The first
channel is used to obtain a few discrete frequency domain
samples (i.e., Fourier coefficients) of the input signal. In this
channel, a LPF is used to prevent frequency aliasing. Accord-
ing to the well known Nyquist sampling theorem [9], fre-
quency aliasing can be avoided when the sampling rate of the
ADC is twice the cut-off frequency of the LPF. Aliasing effect
is nullified at a certain set of discrete frequencies by employ-
ing a suitable LPF, and the following time-domain samples
thus obtained could be used to find the Fourier coefficients
of the input signal at those discrete frequencies. The sec-
ond channel is used to obtain several discrete time domain
samples of the input signal. In the proposed system, only a
few discrete frequency domain samples from the first channel
and several discrete time domain samples from the second
channel are required to reconstruct the input signal. Thus,
if the system parameters are appropriate selected, aliasing
wouldn’t be a problem to our system.

B. OPTIMIZATION OBJECT FUNCTION
Before explaining the sampling scheme, we build an opti-
mization model for approximating the input signal x(t) with
the sum of K Lorentzian pulses. In practice, we aim to find
the most optimal number of Lorentzian pulses K and other
unknown Lorentzian pulse parameters {ck , dk , rk , tk}Kk=1 by
minimizing the energy of the model mismatch error sig-
nal σ (t) in (1). Such optimization problem can be described as

min
∫ τ

0
σ 2(t)dt. (17)

Since σ (t) = x(t)−
K∑
k=1

fk (t), (17) may be rewritten as

min
∫ τ

0

(
x(t)−

K∑
k=1

fk (t)

)2

dt. (18)

However, the optimization problem (18) can not be solved
since the input signal x(t) is unknown. So we replace x(t)
with its discrete samples x[n′] (n′ = 0, 1, · · · ,

⌊
τ f ′s
⌋
) given

by (16). Then the optimization problem (18) is converted into

min
N ′−1∑
n′=0

(
x[n′]−

K∑
k=1

fk [n′]

)2

, (19)

where
∑K

k=1 fk [n
′] =

∑K
k=1 fk (t)|t=n′T ′s .

From (2) it can be seen that the sum of Lorentzian pulses∑K
k=1 fk (t) can be determined uniquely by 4K parameters
{ck , dk , rk , tk}Kk=1. If the sampling rate f ′s = 1/T ′s is known,
then the sum of discrete Lorentzian pulses

∑K
k=1 fk [n

′] can
also be determined by 4K parameters {ck , dk , rk , tk}Kk=1. The
optimization problem in (19) may be described as

minfitness(K , {ck , dk , rk , tk}Kk=1), (20)

where

fitness(K , {ck , dk , rk , tk}Kk=1) =
N ′−1∑
n′=0

(
x[n′]−

K∑
k=1

fk [n′]

)2

(21)

is called as the optimization object function. Our goal
is to find the most optimal K and the corresponding
{ck , dk , rk , tk}Kk=1 with minimum fitness(·).

C. CHOICE OF PARAMETERS
An essential property of a FRI sampling system is that the
sampling sequences provide enough Fourier coefficients to
recover the unknown parameters, since otherwise recovery
is impossible. For the signals perfectly match the VPW-FRI
model in [23]–[25], we have determined in Section II that
the unknown parameters {ck , dk , rk , tk}Kk=1 can be estimated
uniquely when the number of Fourier coefficients is more
than 2K + 1. Since we can obtain M = bτ fcutc + 1 Fourier
coefficients X [m] (m = 0, 1, · · · ,M − 1) from the obtained
samples y[n] (n = 0, 1, · · · ,N − 1) by (15), we recommend
choosing the cutoff frequency of LPF as

bτ fcutc + 1 ≥ 2K + 1

⇒ fcut ≥ 2K/τ. (22)

The next uniformly sampling process should satisfy the
Nyquist sampling theory to prevent aliasing. So the sampling
rate of the first channel should satisfy

fs ≥ 2fcut ≥ 4K/τ. (23)

Note that the lowest sampling rate is 4K/τ and it is far below
the Nyquist rate of x(t) in most cases.
However, in this paper, our interest focus on the more

common signals which do not perfectly match the VPW-FRI
model, that is, the model mismatch error signal σ (t) 6= 0 and
the number of Lorentzian pulses K is unknown. In this case,
the solution of (5) is usually unstable, as shown in [23]–[25].
The unstable solution corresponds to the fact that the esti-
mated Lorentzian pulse width rk < 0. So the misestimated
parameters {ck , dk , rk , tk}k∈9 can be obtained from all esti-
mated parameters {ck , dk , rk , tk}Kk=1 by judging the value of
each rk . Here, 9 ⊂ {1, 2, · · · ,K } is the index set of the
estimated Lorentzian pulses with negative width. According
to (22), we have

K ≤ bτ fcut/2c . (24)

So our system allows a unique recovering of at most bτ fcut/2c
pulses. The range of choices of the number of Lorentzian
pulses K is {1, 2, · · · , bτ fcut/2c}.

We use another sampling channel to find the optimal num-
ber of Lorentzian pulses K , as well as to find the optimal
solutions to replace the unstable solutions. For each selected
K ∈ {1, 2, · · · , bτ fcut/2c}, the parameters {ck , dk , rk , tk}Kk=1
can be estimated from the obtained Fourier coefficients by
using the spectral estimation methods in [26]–[29]. Then we
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can easily calculate the sum of Lorentzian pulses
∑K

k=1 fk (t)
by (2) and calculate its discrete version as

∑K
k=1 fk [n

′] =∑K
k=1 fk (t)|t=n′/f ′s . In order to solve optimization problem

of (20), at least N ′ ≥ 1 time domain samples x[n′] (n′ =
0, 1, · · · ,N ′ − 1) is required. So the sampling rate of the
additional channel must satisfies

N ′ =
⌊
τ f ′s

⌋
+ 1 ≥ 1

⇒ f ′s ≥ 1/τ. (25)

Note that such sampling rate f ′s should be properly increased
to reduce the effect of noise. In fact, we set f ′s = fs for
convenience. Finally, the optimization problem of (20) can
be solved, for example, by using the particle swarm optimiza-
tion (PSO) algorithm in [31]–[33].

V. RECONSTRUCTION
A. RECOVERY ALGORITHM
Now we show how to reconstruct the input signal x(t) from
the obtained samples y[n] in (12) and x[n′] in (16). The
reconstruction scheme is based on the optimization object
function proposed in (20). In the reconstruction process as
illustrated in Figure 4, the best number of Lorentzian pulses
Kbest is found by testing all possible values. While the best
Lorentzian pulse parameters Pbest = {ck , dk , rk , tk}

Kbest
k=1 are

estimated by using the improved PSO algorithm proposed in
Algorithm 1. Such process can be described as follows:

FIGURE 4. Flow chart of the reconstruction process.

Step 1, Initialization. At the beginning, the samples y[n]
in (12) and x[n′] in (16) are obtained from the proposed sam-
pling system in Figure 3. The number of Lorentzian pulses
is set to K = 0, the best number of Lorentzian pulses is set

to Kbest = 0, the best Lorentzian pulse parameters are set to
Pbest = { } and the best value of (21) is set to fbest .
Step 2, Calculating the Fourier coefficients X [m]

(m = 0, 1, · · · , bτ fcutc) through (13), (14) and (15), by using
the samples y[n].

Step 3, Update the number of Lorentzian pulses
K = K + 1.

Step 4, Solving (5) with the Fourier coefficients X [m],
by using the spectral estimation methods in [26]–[29]. The
estimated parameters P̂ =

{
ĉk , d̂k , r̂k , t̂k

}K
k=1 are used as the

initial position of a few selected particles of the improved
PSO algorithm proposed in Algorithm 1.

Step 5, Solving the optimization problem of (20) by
using the improved PSO algorithm proposed in Algorithm 1.
Assume that the global optimal position is Popt .

Step 6, Update the best solutions. If fitness(K ,Popt ) <
fbest , then 

Kbest = K
Pbest = Popt
fbest = fitness(K ,Popt )

(26)

Step 7, Output the results. If K = bτ fcut/2c, the best
solutions are output. Otherwise, go back to Step 3 and repeat.

After the best number of Lorentzian pulses Kbest and the
corresponding parameters Pbest = {ck , dk , rk , tk}

Kbest
k=1 are

found, the input signal can be reconstructed as:

xbest (t) =
Kbest∑
k=1

ckrk + dk (t − tk )

π
(
r2k + (t − tk)

2) , 0 ≤ t < τ, (27)

where τ is the time duration of the input signal x(t).
To reduce the computational complexity and to improve

the convergence rate, we propose an improved PSO algo-
rithm as shown in Algorithm 1, where rand() is the random
function in the range [0, 1]. In this algorithm. we select a
few particles and set the initial position of these particles
as the estimated results of the spectral estimation meth-
ods in [26]–[29]. For these selected particles, as suggested
in [34], only some of the elements of the position (i.e.,
the parameters of the Lorentzian pulses with negative width)
should be updated. This is achieved by setting the velocity
of the other elements of the position (i.e., the parameters
of the Lorentzian pulses with nonnegative width) to zero.
While for other particles, the updating process was carried
out for all elements of the position. Assume that the index
set of the Lorentzian pulses with negative width is 9 ⊂
{1, 2, · · · ,K }. As shown in Figure 5, for each selected parti-
cle, in each searching process, only the misestimated parame-
ters {ck , dk , rk , tk}k∈9 are updated. While the right estimated
parameters {ck , dk , rk , tk}k∈8, where 8 = {1, 2, · · · ,K } −
9 is the index set of the estimated Lorentzian pulses with
nonnegative width, remain unchanged.

B. PRACTICAL CONSIDERATIONS OF REAL ECG SIGNALS
Now we discuss the practical considerations which should
be paid attention to when applying our sampling scheme to
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FIGURE 5. Updating process of the position for each selected particle.

real ECG signals. To prevent lifestyle diseases, portable heart
beat detection systems by ECG for daily life monitoring have
attracted attention [35]. For portable systems, power con-
sumption is critical. It is quite intuitive that a higher sampling
rate requires more power when converting a continuous-time
signal to digital, since a faster and more precise clock is
needed. It is thus beneficial to reduce the sampling frequency
at the point of acquisition. Furthermore, a low-sampling rate
is also beneficial in reducing the amounts of ECG data for
storage and transmission. This will results in a longer dura-
tion recording for the patient’s ECG, which is desirable for
doctors to detect the human body’s abnormalities [36]. Thus,
sub-Nyquist sampling of ECG signals has advantage in the
medical field, especially for portable heart beat detection
systems.

First, the medical literatures [37] have declared that there
are five different waves in each ECG signal, which can be
labeled as P wave, Q wave, R wave, S wave and T wave. Each
wave represents a single human heart beat stage. As shown
in Figure 6, the P wave and T wave are clear and wide,
while the Q wave, R wave and S wave are close and narrow.
In practice, the ECG signals exhibit a cyclic behavior due
to the repeated human heart beat. At the beginning of each
heart beat, the electrical signal polarizes the left and right
atria and generates the P wave. After that, the depolarization
process results in the QRS complex wave, which is consist
of the Q wave, the R wave and the S wave. The duration of
these waves are very short while the peaks are large. After a
short rest, the repolarization process also behaves as a positive
Twave. At the end of the Twave, a new heart beat cycle starts.
Therefore, the ECG signals can be split into separate heart
beat by segmenting between the P wave and T wave. So we
process each heart beat of the ECG signals independently,
as [37] declares.

Second, to decrease the effect of noise and improve
the recovering performance, we use several denoising tech-
niques borrowed from spectral estimation theory [26]–[29]
when initial estimate the unknown parameters. For exam-
ple, the iterative Cadzow denoising algorithm [38] may be
applied to the obtained Fourier coefficientsX [m] before being

Algorithm 1 Improved PSO Algorithm
Require: Number of particles Num; Learning factors c1, c2;

Inertia weight w; Number of iterations tf ; Number of
Lorentzian pulses K ; Initial position P̂; Maximum and
minimum values of the position Pmax , Pmin; Maximum
and minimum velocity Vmax , Vmin; Number of selected
particles S.

Ensure: Global optimal position Popt .
1: for i = 1 to Num do
2: Vi is randomly selected in [Vmin,Vmax];
3: if i ≤ S then
4: Pi = P̂;
5: else
6: Pi is randomly selected in [Pmin,Pmax];
7: end if
8: Pilocal = Pi;
9: f ilocal = fitness(K ,Pilocal);
10: if f ilocal < fopt then
11: Popt = Pilocal ;
12: fopt = f ilocal ;
13: end if
14: end for
15: for t = 1 to tf do
16: for i = 1 to Num do
17: Vi

= w ∗ Vi
+ c1 ∗ rand() ∗ (Pilocal − Pi) + c2 ∗

rand() ∗ (Popt − Pi);
18: if i ≤ S then
19: for k = 1 to K do
20: if rk ≥ 0 then
21: Vi(4k − 3 : 4k) = [0, 0, 0, 0];
22: end if
23: end for
24: end if
25: Pi = Pi + Vi;
26: if fitness(K ,Pi) < f ilocal then
27: Pilocal = Pi;
28: f ilocal = fitness(K ,Pilocal);
29: end if
30: if f ilocal < fopt then
31: Popt = Pilocal ;
32: fopt = f ilocal ;
33: end if
34: end for
35: end for

processed with the annihilating filter method. Applying Cad-
zow iterations tends to reduce the error of the measurements.
After denoising, the denoised data matrix can then be used
in conjunction with the annihilating filter method. Another
widely used denoising techniques are the MUSIC [27] and
ESPRIT [28], which are subspace methods. Such techniques
are realized by separating the measurement space into signal
and noise subspaces. Unlike Cadzow, they are a non-iterative
algorithms.
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FIGURE 6. Compositions of a real ECG signal.

VI. EXPERIMENTS RESULTS
In this section, we propose several experiments to exam
the effectiveness of our method. The ECG signals from the
MIT-BIH Arrhythmia Database (mitdb) [39] are used in the
experiments. These measurements are originally sampled at
the rate 360 Hz. Since the heart beat rate of a human varies
from 60 to 80 times per minute, the periodic of each heart
beat is about τ = 0.75 ∼ 1 sec. In our system as illustrated
in Figure 3, the cutoff frequency of LPF is fcut = 40 Hz and
the sampling rate of the first channel is fs = 2fcut = 80 Hz,
which is far below the original sampling rate 360 Hz. For
convenience, the sampling rate of the other channel is set to
be f ′s = 80 Hz too. Then an optimal number of Lorentzian
pulses K , where 1 ≤ K ≤ bτ fcut/2c = 15, can be found by
using the proposed reconstruction algorithm.

In the reconstruction process, the parameters of the
improved PSO algorithm in Algorithm 1 are listed as follows:
Number of particles Num = 100; Learning factors
c1 = c2 = 1.4962; Inertia weight w = 0.7298;

Number of iterations tf = 200; Minimum values of the
position Pmin = {−10,−10,−1, 0}; Maximum values of
the position Pmax = {10, 10, 1, 2}; Minimum velocity
Vmin = {−20,−20,−2,−2}; Maximum velocity Vmax =

{20, 20, 2, 2}; Number of selected particles S = 20. The ini-
tial position P̂ is the estimated result of the spectral estimation
methods in [26]–[29].

The objective of the experiments can be divided into five
parts:

1) Examination of the effectiveness of our method in opti-
mizing the number of Lorentzian pulses K and other
pulse parameters;

2) Verification of our method for different shapes of ECG
signals;

3) Evaluation of the performance of our method under
different sampling rate;

4) Analysis of the effect of model mismatch error for
reconstruction of real ECG signals;

5) Comparison of our method and other techniques in the
presence of noise.

To conduct quantitative analysis for simulation results,
the signal to residual ratio (SRR) in [23] is considered as the
evaluation index, which is defined as

SRR= 20 log

( ∑N−1
n=0 x

2[n]∑N−1
n=0 (x[n]− x̂[n])2

)
, (28)

where x̂[n] is the discrete reconstructed signal. Note that a
larger SRR of the reconstruction results represents a smaller
squared error.
Simulation 1: The aim of the first experiment is to exam

the effectiveness of the proposed method. In the traditional
VPW-FRI scheme, it requires that the number of Lorentzian

FIGURE 7. Recovery results of a single heart beat: (a) VPW-FRI with K set to be 3; (b) VPW-FRI with K set to be 6; (c) VPW-FRI with K set to
be 9; (d) VPW-FRI with K set to be 12; (e) VPW-FRI with K set to be 15; (f) Our method with optimal Kbest = 9.
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pulses K is chosen with experience. As is suggested in [23],
about 5 ∼ 8 Lorentzian pulses are suitable for modeling one
heart beat of ECG signals. So we choose to set K = 3,
6, 9, 12. Figure 7 represents an extract recovery of a heart
beat of the ECG signal from the database. From Figure 7(a) to
Figure 7(e) we can see that the recovery results of VPW-FRI
are various with the setting of K . So the VPW-FRI scheme
is unstable for ECG signals. Figure 7(f) shows the recovery
result of our method, with the optimal number of Lorentzian
pulses Kbest = 9. Visually, we clearly see the advantage of
optimization process of our method in finding the optimal
number of Lorentzian pulses K .
For convenient comparison, we summarize the results

of this experiment in Table 1. We introduce the error
rate to analyze the stability of the methods, which is
defined as

ER =
Kwrong
K

(29)

where Kwrong is the number of wrong pulses, i.e., the
estimated Lorentzian pulses with negative width. First,
we observe that there may exist several misestimated pulses
of VPW-FRI method, which derive from the model mismatch
error. These misestimated pulses will be corrected in each
searching process of our method. We also observe that the
error rate of VPW-FRI is the highest (26.67%) when the
number of Lorentzian pulses K is set to be 15, meaning
that a higher K does not lead to improve the reconstruction
performance. Then, it can be seen that VPW-FRI method
achieves the best SRR of 14.94 dB when the value of K
is 9. While in our method, we correct the two misesti-
mated pulses with PSO algorithm and improve SRR from
14.94 dB to 26.53 dB, which verify the effectiveness of our
method. The comparison of the parameters of VPW-FRI
and our method is shown in Table 2. It can be seen from
Table 2 that the misestimated pulses of VPW-FRI are pulse 2
(rk = −0.0248) and pulse 7 (rk = −0.0160). In our
method, these two pulses have been corrected. In practice,
all parameters of pulse 2 {c2, d2, r2, t2} have been improved
from {1.5902e − 06,−4.0102e − 06,−0.0248, 0.4105}
to {−0.0666,−0.0656, 0.4016, 1.0814}, and all param-
eters of pulse 7 {c7, d7, r7, t7} have been improved
from {2.4196e − 05,−5.9343e − 07,−0.0160, 1.1744} to
{0.0455, 0.0850, 0.4050, 0.9987}.
Simulation 2: To further verify our method, two more

ECG shapes, i.e., ECG record 101 and ECG record 209 from
MIT-BIH Arrhythmia Database, have been tested. As shown
in Figure 8 and Figure 9, the simulation results demonstrate
the effectiveness of the our method. Moreover, we clearly
see that the ECG signals reconstructed by our method (red
curves) outperform the results reconstructed by VPW-FRI
scheme (blue curves).
Simulation 3: Then we study the influence of the sampling

rate to our method. According to (23), the sampling rate of
the first channel should satisfy fs ≥ 4K/τ . For traditional
VPW-FRI scheme, we set the number of Lorentzian pulses

FIGURE 8. Recovery results of ECG record 101 from MIT-BIH Arrhythmia
Database.

FIGURE 9. Recovery results of ECG record 209 from MIT-BIH Arrhythmia
Database.

FIGURE 10. Average SRR of real ECG signals under different sampling rate.

K = 7, meaning that the lowest sampling rate is 28 Hz.
In this simulation, we test our method with 48 ECG signals
from the MIT-BIH arrhythmia database with the sampling
rate increasing from 30 Hz to 180 Hz. The average results are
illustrated in Figure 10. The two curves obviously rise with
the sampling rate increasing from 30 Hz to 60Hz, meaning
that more Fourier coefficients helps to improve the recon-
struction precision. However, we also observe that there is
tiny change from around 60 Hz to 180 Hz, meaning that
the sampling rate has no influence on the reconstruction
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TABLE 1. Comparison of stability and reconstruction quality.

FIGURE 11. Recovery results of ECG record 123: (a) original ECG signal; (b) Model mismatch error signal of original ECG; (c) VPW-FRI
estimation with K = 7 pulses for each heart beat; (d) Model mismatch error signal of VPW-FRI; (e) Estimation with Gaussian based FRI
method; (f) Model mismatch error signal of Gaussian; (g) Estimation with our method; (h) Model mismatch error signal of our method.

performance when the number of Fourier coefficients is large
enough. The results also showed that our method outperforms
the VPW-FRI method at the same sampling rate.

Simulation 4: The next experiment aims to analyze the
model mismatch error of our method in real ECG signals,
and compare to the VPW-FRI model in [23]–[25] and the
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TABLE 2. Comparison of the parameters of VPW-FRI and our method.

FIGURE 12. Comparison of different approaches in the presence of noise.

Gaussian model described in [22]. Since these methods are
all based on Fourier coefficients of the input signal, we use
the same sampling structure as the first channel of our system.
That is, a LPF with cutoff frequency fcut = 40 Hz, followed
by sampling at the rate fs = 2fcut = 80 Hz. So about
41 Fourier coefficients can be obtained. Figure 11 shows
the experimental results of the ECG record 123 in MIT-BIH
database. Obviously, for original ECG signal, the model mis-
match error is 0. We can observe that the Gaussian method
has no ability to recover the low amplitude pulses of the ECG
signal. The model mismatch error signal of our method is
much better than the traditional VPW-FRI method, mainly
due to the optimization process in the reconstruction.
Simulation 5: Finally, we compare our method with the

other Fourier spectrum based methods in the presence of
noise. For the VPW-FRI method in [23]–[25] and the Gaus-
sian method in [22], the setup of the acquisitions is the same
as in Simulation 3. In this simulation, we test our method
with 48 ECG signals from the MIT-BIH arrhythmia database
with the signal-to-noise ratio (SNR) of the additive white
Gaussian noise increasing from 0 dB to 70 dB. The exper-
imental tests were carried out 100 times. The average SRR
has been measured and compared with the input SNR of
the noise. Simulation results are shown in Figure 12. We
see that our method outperforms the VPW-FRI method and
Gaussian method about 2-3 dB at the input SNR of 0-15 dB.

This is because the frequency aperture plays a dominant role
when SNR is very low. Since the Fourier coefficients are the
same for all these methods, the diversity of reconstruction
is not significant at low input SNR. As the SNR increasing,
the model mismatch error plays more significant role. We
see that our method outperforms the VPW-FRI method and
Gaussian method much more at the input SNR from 15 dB
to 35 dB. Such results are due to the fact that our method
provides an efficient way to minimize the energy of the
model mismatch error signal. For high enough SNR values
(i.e., 35 dB), the reconstruction results tend to be stable.

VII. CONCLUSIONS
In this paper, we propose an optimization model based
sub-Nyquist sampling system for pulses with various shapes
to improve the performance of the VPW-FRI scheme under
noise and model mismatch situations. The proposed system
consists of two sub-Nyquist sampling channels, with a LPF
and two low rate ADCs in total. To reduce the effort of noise
and model mismatch, we build an optimization function and
solve it with the obtained frequency and time domain sam-
ples, by using the PSO algorithm. We demonstrate that the
optimal number of Lorentzian pulses and the corresponding
pulse parameters can be found by our method. According to
the simulations with real ECG records from the MIT-BIH
arrhythmia database, our method achieves better performance
and stability than previous technologies, even under noise
situations.
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