
Received August 8, 2018, accepted October 2, 2018, date of publication October 17, 2018, date of current version November 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2876597

A Hybrid Architecture With Low Latency
Interfaces Enabling Dynamic Cache Management
MICHEL GÉMIEUX1, MENG LI 1,2, YVON SAVARIA 1, (Fellow, IEEE),
JEAN-PIERRE DAVID1, (Member, IEEE), AND GUCHUAN ZHU 1, (Senior Member, IEEE)
1Department of Electrical Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
2School of Information and Science Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

Corresponding author: Meng Li (lmbuaa@gmail.com)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and in part by Huawei Technologies
Canada Co., Ltd.

ABSTRACT The main focus of the dominant technologies in the high performance computation (HPC)
market, such as GPU and multicore systems, is put on processing power, while much less attention
has been paid to communication delays inside hybrid architectures. To fill this gap, this paper presents
an experimental study on Intel’s Broadwell Xeon multicore processor with integrated Arria 10 FPGA
capabilities to characterize the communication delays between CPUs and the FPGA, using both the low
latency cache coherent interface and the two PCIe links offered by this platform. The obtained results
show that an FPGA cache access latency can be as low as 25 cycles at 400 MHz and that the platform is
capable of reaching a bandwidth over 20 GB/s using an aggregate of the three available links. Furthermore,
an FPGA-based cache management mechanism is proposed and implemented in this paper. A case study on
aMerkle tree hash function shows that a hardware accelerator can achieve a fivefold data access acceleration
in the worst case scenario. This scheme takes advantage of the QPI cache coherency and queuing theory to
achieve a low latency and efficient memory management. In addition, design recommendations regarding
the use of the CPU-FPGA platform for the implementation of fine-grained memory management schemes
are suggested.

INDEX TERMS CPU-FPGA, multi-chip package, low latency, QPI, cache management.

I. INTRODUCTION
The advent of ‘‘Big Data’’ increased the demand for high
performance computing systems to handle an overwhelming
amount of information circulating in data centers around
the world. Due to the volume of the data consumed at
any time, throughput aware acceleration remains a bottle-
neck in HPCs [1]. This need motivated the development of
heterogeneous computing clusters, which are mostly pop-
ulated by accelerator cards, powered by GPUs, DSPs, and
more recently add-on cards with large Field Programmable
Gate Arrays (FPGAs). Some mainstream systems have been
deployed by leading industrial companies, such as Amazon,
which provides FPGA-accelerated clusters [2] for energy
efficient and cost effective data processing.

Meanwhile, new applications may introduce new concerns
that need to be addressed. Deep learning, for instance, stresses
two prevalent requirements, namely the need for high mem-
ory bandwidth during the training of a neural network [3]

and the need for low latency calculations for the inference
of a trained application [4]. Other applications, such as High
Frequency Trading (HFT) and 5G communication systems,
impose also strict latency constraints [5]. There is no doubt
that one of the key technological bottlenecks to solve is
to guarantee low-latency and high-performance communica-
tions, while providing a high throughput.

Considered as a major step in High Performance Recon-
figurable Computing (HPRC), Intel provides a platform
with integrated FPGAs in CPU packages for data-center-
based applications, called Multi-Chip Package (MCP) [6].
Specifically, this platform features a cache coherent inter-
face between the CPU cache and a memory structure on the
FPGA used as cache, which gives the opportunity for low
latency hardware acceleration through its proprietary links.
The cache coherent MCP allows for a cache-based commu-
nication with the FPGA. Such an interface enables cache
manipulations of x86 processor caches, which is usually

62826
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3284-0832
https://orcid.org/0000-0002-3404-9959
https://orcid.org/0000-0003-2117-6796

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

FIGURE 1. Accelerator Architectures. (a) Accelerator Card. (b) Socketed FPGA. (c) MCP.

reserved to inaccessible hardware system interfaces embed-
ded in the CPU. This feature provides the end-users with
more control over the processor’s cache through the use of
an FPGA, which can ultimately reduce the latency, increase
the throughput, and enhance the determinism of co-designed
applications.

By exploiting the new capabilities mentioned above,
the aim of the present work is put on providing a solution
for low-latency resource allocation acceleration for a class of
hybrid architectures, especially cache management schemes,
and an enhanced execution determinism. Due to the versatil-
ity and the parallelism provided by FPGAs, the present work
explores some widely adopted CPU-FPGA architectures.
Note that communication interfaces can significantly affect
the transfer efficiency of a given architecture. Therefore,
we investigate two prevalent CPU-FPGA interfaces from the
literature, namely the Peripheral Component Interconnect
Express (PCIe) [7] and the Quick Path Interconnect (QPI) [8].

The contributions of the present work include:
• the development of an accelerator-controlled cacheman-
agement scheme that allows for a more efficient use of
CPU cores for computations;

• an in-depth empirical characterization of the HARPv2
CPU-FPGA platform, which enables low latency
resource allocation and application acceleration;

• the implementation of an accelerator for the hashing of
a blockchain application to validate the proposed cache
management scheme.

The experience gained in this work suggested guidelines on
how to efficiently use socketed FPGA architectures, in order
to identify means of manipulating CPU caches in a determin-
istic manner, with low latency accesses to shared memory in
a multi-system architecture.

The rest of the paper is organized as follows: Section II
reviews some communication standards widely adopted in
hybrid architectures, as well as the architectures in which
they are embedded. It also states the problem of real-
time resource allocation on hybrid architectures. Section III
presents the methods used to characterize low latency inter-
faces. In Section IV, we introduce a proposed queue-based
cache management scheme. Section V presents the experi-
mental characterization results of the MCP, along with a case

study of a blockchain application conducted to validate the
proposed cache management mechanism. Section VI con-
cludes the paper and elaborates on future work.

II. BACKGROUND
This section presents some popular CPU-FPGA microarchi-
tectures andmakes a brief comparison of somemost prevalent
interfaces associated with memorymodels (hierarchy). It also
presents a review of related work on latency optimization for
hardware acceleration of real-time applications.

A. MICROARCHITECTURES
In high performance computing, device locality and fast inter-
connects between the host and its accelerator are performance
critical. To a certain extent, regardless of the interface used
in CPU-FPGA platforms, accelerator locality has a signifi-
cant impact on communication delays, for both computation
acceleration and data transmission.

A typical FPGA-accelerated server is composed of a
daughter card in a PCIe slot on the motherboard, as shown
in Figure 1a. This configuration induces usually a high
latency. In addition, the complexity of the CPU’s root
complex can add extra overhead in cases where the data
coming from the accelerator have to go through bridges,
switches or chipset to reach the processing units. The
accelerator’s bandwidth is usually bounded by the physical
implementation of its communication interfaces. Important
improvements have been made in recent years by hardware
platforms providers, such as Intel FPGA (previously Altera)
and Xilinx, to enable the use of FPGA acceleration in HPC
for ‘‘Big data’’ type workloads. Microsoft has successfully
integrated Virtex 6 FPGAs in its first launch of their Catapult
hardware [9], and then outperformed it with its new upgrade
using Stratix D5 FPGAs [10]. Bing also used a hardware-
accelerated search engine in its data centers for massive data
analysis. The data flow is then highly optimized to favor
massive processing over latency as explained above.

Socketed FPGAs, as shown in Figure 1b, aim at offer-
ing low latency, high throughput hardware acceleration.
As discussed in [11] and [12], socketed FPGAs can
offer low latency communication using the Front Side

VOLUME 6, 2018 62827

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

Bus [13], or its new upgrade, the QPI bus. The earlier sock-
eted FPGAs came as custom-made adapter cards fitting a
specific socket type (i.e. LGA2011) [14]. In our previous
work [14], we implemented a dynamic resource allocator
using a QPI-based CPU-FPGA platform equipped with a
Virtex 7 socketed FPGA. The introduction of QPI allows
for a cache coherent interface with the accelerator. Using
the accelerator system combined with an efficient parallel
algorithm can achieve a speedup of two orders of magni-
tude, while reducing the latency overhead. With the same
configuration, Intel launched the Heterogeneous Acceler-
ator Research Program (HARP), through which the first
QPI-based CPU-FPGA architecture using Stratix FPGAswas
introduced [15].

A year later, Intel introduced in the second iteration of the
HARP platform a Multi-Chip Package containing a Xeon-
CPU and an FPGA [16], as described in Figure 1c. This new
iteration coming out from the HARP offers improvements
on the QPI management of the accelerator side and software
development kits (SDKs), as well as the addition of two new
communication interfaces exploring the PCIe Gen3 x8 stan-
dard. For a given implementation on the MCP, the interfaces
can be used separately or combined. To the best of our knowl-
edge, no latency bounded application exploiting the HARP
MCP platform has been reported, while most publications
using the HARP platform are related to machine learning.
Unlike the work reported in [17], which provides information
on processing performance per watt and/or accuracy for given
models on specific configurations, the work reported in this
paper focuses on latency metrics and characterization of the
pre-market MCP.

Remarkably, most of the aforementioned platforms follow
similar design flows for software and hardware co-design.
The typical flow is to use APIs provided with a SDK to
program the application on the CPU side, the Accelera-
tor Abstraction layer (AALSDK) [18] and the Open Pro-
grammable Acceleration Engine (OPAE) [19] for the new
IntelMCP. The FPGApart can be designed at various abstrac-
tion levels, ranging from low-level Hardware Description
Languages (HDLs), such as VHDL and Verilog, to higher
level languages, such as OpenCL. The OpenCL design envi-
ronment varies according to the FPGA manufacturer, e.g.,
SDAccel for Xilinx [20] and FPGARuntime Environment for
Intel [21].

An important bottleneck in such systems is the interface
between the host CPU and the FPGA. In this subsection we
focus on the two types of interfaces available on the MCP:
PCIe and QPI. The throughput of QPI is proportional to the
processor clock frequency. A QPI has unidirectional send
and receive link pairs, which can be activated simultaneously
or independently. For a 2.4 GHz CPU, a QPI link has a
2 bit/Hz rate (double data rate), 20 data bits per direction,
and duplex operation, with 8 bits/byte, which yields a theo-
retical throughput of 19 GB/s. An interesting feature of QPI
is that the link comes with a cache coherency mechanism
allowing for a unified memory space between the accelerator

and the processor. Such mechanism allows for cache based
communication between the host and the FPGA. It typically
provides lower latency than other link types, and is equivalent
to a 64B cache line access on x86 platforms. Given the infor-
mation above, we can calculate the theoretical bandwidth of
the QPI link as follows:

Bandwidth=
Freq×Rate×Directions×Duplex

Bits
(1)

The typical implementation of PCIe for FPGA accelerators
is PCIe 8x Generation 3, which gives a link running at up
to 8 GB/s. A PCIe link typically has a larger overhead than a
transfer induced by QPI. As PCIe interfaces are throughput
efficient, they are usually recommended for data transfers
larger than 4KB.However, PCIe is not cache coherent, even if
it is allowed to access the unified address space of a process
in the case of a CPU-FPGA MCP. Moreover PCIe links do
not always deliver their theoretical performance. The actual
bandwidth depends on the connection with the processor.
It was shown in [22] that, in a topology similar to the one
presented in Figure 1a, PCIe under-performed. However,
in this work, a study of PCIe transfers in various scenarios
allowed us to observe a close to the maximum theoretical
performance. The main differences between PCIe and QPI
are summarized in Table 1.

TABLE 1. Communication interfaces.

Cache coherent interfaces enabled by unified memory
spaces in, e.g., QPI and CAPI interfaces provided by
IBM [23] allow for a better memory management in accel-
erator architectures. Whereas non-coherent memory spaces
imply that the host and/or the accelerator need to explicitly
copy and allocate the data. In the case of message transmis-
sion acceleration towards the host with a topology similar to
Figure 1b or Figure 1c, data copy and allocation are needed
only on the host side. Simpler data structures will result in
lower data allocation latency (new/alloc). For the case of
private memory spaces, typically with a topology similar
to Figure 1a, data allocation needs to be performed (copied)
on both the host and accelerator main memories.

The main advantage of coherent unified memory spaces
is that it allows for a device to directly access and consume
the data without reallocation and duplication, as both the
accelerator and the host have a direct access to the memory
space. The MCP is one of the first platforms to support a
unifiedmemory-mapped I/O (MMIO) space between the host
and the accelerator for x86 high performance server-based
processors, allowing for zero-copy transactions. In this paper
we use the combination of the cache coherent MCP and

62828 VOLUME 6, 2018

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

low latency interfaces for real-time hardware acceleration of
resource allocation.

B. REAL-TIME RESOURCE ALLOCATION
This subsection reviews some notable results on accelerators
for real time resource allocation, among which latency reduc-
tion is one of the most attractive subjects. A typical way to
get a reduced latency is to use a Real Time Operating system
(RTOS), such as FreeRTOS [24]. It is explained in [25] how
to reduce the latency inferred by resource management with
smart assembly insertions at the kernel level. However, a
problem associated with RTOSs is their rigidity and their
lack of support for new computation libraries. A solution
consists in the use of a new method and architecture. Indeed,
there exist many solutions for hardware-base implementation
of scheduling algorithms, such as [26]–[29]. In a previous
work [30], we demonstrated that using StarPU with an ade-
quate scheduling algorithm enabled the virtualization of a
latency sensitive application (LTE) on a computing platform.
It is demonstrated in [31] that gains can be obtained in
terms of latency reduction for a RTOS supported by hardware
implemented scheduling algorithms. Compared to the work
reported in [31], where a RTOS on Xilinx Zynq is used,
we plan in the present work to leverage hardware acceleration
on a much larger scale based on a MCP FPGA on an HPC
compliant OS.

III. CHARACTERIZATION OF LOW LATENCY INTERFACES
ON A HYBRID CPU-FPGA ARCHITECTURE
In this section, we provide a detailed description on the
method used to characterize low latency interfaces, including
the specifications of the platform used, the test environment,
and the means used to control the state of the memory hierar-
chy during the experiments.

A. HARDWARE CONFIGURATION
The detailed configuration of the hybrid architecture is built
on a multichip package (MCP), as presented in Section II-A.
This MCP contains a Broadwell 14 core 2.4 GHz Xeon pro-
cessor integrated with an Arria 10 GX 1150 FPGA, both are
server grade processing units. The FPGA has one hardware
single precision floating point unit embedded in each DSP
block (1518 blocks) and 54000 M20k memory blocks for
high performance applications. Such a large FPGA coupled
with a powerful general purpose processor allows performing
large scale computations, and the cache coherent interface
enables the implementation of fine grain accelerators.

Intel’s HARPv2 connects the host to the accelerator
(FPGA) with three links: two PCIe interfaces and one QPI
as shown in Figure 2. This provides flexibility in data transfer
adapted workloads. Intel’s Core Cache Interface (CCI-P) [32]
allows for leveraging all the links simultaneously or profiting
from the use of a specific interface. Normally, the QPI link
can achieve a maximum bandwidth of 12.8 GB/s. The plat-
form also offers two PCIe 8x Gen 3 links, each with a the-
oretical maximum throughput of 8 GB/s giving a combined

FIGURE 2. The QPI and PCIe connections between CPUs and FPGA. Last
Level of Cache (LLC), Double Data Rate (DDR), Accelerated Function
Unit (AFU).

PCIe bandwidth of 16 GB/s. Combining all three links gives
the system a theoretical maximum throughput of 28.8 GB/s.

B. CHARACTERIZATION APPROACH OF
LOW LATENCY INTERFACES
This subsection details the method used for MCP characteri-
zation, while the related experimental results will be reported
in Section V. It should be noted that the results are obtained on
a pre-production platform and may not reflect the best perfor-
mance that a production-readyMCP can offer. Efficiency and
optimization analysis of the interfaces should be carried out
once more when the production platform is available. This
is justified as the pre-production devices might have some
unresolved issues to be corrected in the final product.

Latency and bandwidth measurements of the MCP
reported later were performed using a loopback application.
We first explain the test environment and our workflow,
followed by a detailed report of the method used for char-
acterization.

We used the AALSDK 5.0.3 for the host program coded in
C, and the Accelerated Function Unit (AFU) in the FPGA is
coded in Verilog. Due to the scarce availability of the MCP
platform, the current workflow imposes to work remotely on
HPC servers [33]. For efficiency purpose, we first simulated
the entire environment using the Intel’s Accelerator Func-
tional Unit Simulation Environment (ASE) [34]. The ASE is
linked to Questasim 10.6a [35] (or Synopsys) for code com-
pilation and simulations, as well as to Quartus 17.0 [36] for
the synthesis and place-and-route features. Once a program
is validated in the simulation environment, the entire program
and the bit file are transferred to the HARP servers for testing.
At runtime, the overall FPGA clock is bounded at 400 MHz
by the CCI-P maximum frequency, giving a 2.5 ns period.

As the QPI link is cache coherent, the cache initial state
needs to be defined. To have reproducible results, this exper-
imentation starts at a state where the cache is not full nor

VOLUME 6, 2018 62829

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

configured to maximize collisions. To optimize the experi-
ments, the current implementation of the loopback enables
the system to have a warmed up cache in order to facilitate
cache hits [37].

FIGURE 3. The loop back application.

Figure 3 illustrates an in-depth representation of the pro-
posed loopback test. At high level, a loopback test consists
simply in sending a message and waiting until the message is
sent back to the transmitter. The CPU starts the test, then the
FPGA initiates a write request and starts the time-stamping.
As soon as the CPU receives the data, they are written back
to another location in the shared (cached) memory. When the
FPGA receives an acknowledge that the data were written,
time-stamping is stopped. At the end, the FPGA verifies the
data transferred.

Note that on the software side, Intel’s AALSDK provides
an API that can be used to setup a service between the CPU
and the FPGA, as well as MMIO bounded functions to use
and align virtual and physical addresses. Table 2 shows some
useful functions used in the considered loopback test.

TABLE 2. Useful AALSDK API functions.

The hardware implementation of the loopback application
is straightforward. The AFU contains three main blocks:
a read Finite State Machine (FSM), a write FSM, and a free
running counter based on which important events will be time
stamped. The remaining Verilog code assists and enables the
AFU and CCI-P communication. Each FSM can receive and
send requests to and from the CCI-P.

Typically, for the case of an FPGAwrite loopback initiated
test, the free running counter starts when the processor start

flag is received by the AFU and stops when the AFU reads
its last cache line. As an example, the operation initiated by
the AFU would go as follows:
• Starts a free running counter at an AFU start;
• Timestamps an event at a write request to the CCI-P;
• Timestamps an event at a response of the request from
the CCI-P;

• Stops the free running counter at the last read response.
At the end of each test, the timestamps are sent back to the
CPU for evaluation.

Figure 3 shows the detailed interactions of the processor
and the FPGA for platform characterization. Each arrow is
associated with a number, which corresponds to the action
described by the bullet of the same number listed below. The
list corresponds to a typical FPGA initiated loopback test,
where the FPGA writes the source buffer in cache, and the
CPU copies that source buffer to the destination buffer. The
FPGA then validates the data to confirm the test validity.

1) The processor sets up the Domain Specific Memories
(DSMs). The DSMs are a combination of host spe-
cific memory spaces as well as cache aligned spaces
intended to be used for commands to be passed to the
AFU, also called Control Specific Registers (CSRs).

2) The host creates and initializes the source and destina-
tion memory spaces. Each space is set to a specific size
of 1024 cache lines, which is 64KB. It also corresponds
to the size of the FPGA cache on the AFU side.

3) The CPU sets the MMIO CSRs. It creates and asserts a
start flag for the test in the CSR. It dictates the AFU to
start.

4) The CPU listens until the done flag is set.
5) The AFU writes in the source buffer and then reads the

content copied by the CPU in the destination buffer.
6) The done flag is set.
7) The CPU acknowledges the termination of the test,

receives the events timestamps, and the AFU verifies
that the data in the SRC and DST buffers are the same.

The acknowledgement received in Step 7 concludes a typ-
ical execution of the loopback application. The above test is
initiated from the FPGA, however the loopback test can also
be initiated from the CPU side, which should yield similar
results. The low latency interfaces enable us to have a cache
management mechanism implemented on an FPGA. The fol-
lowing section provides the details of the implementation of
the proposed cache management. The characterization results
are presented in Section V.

IV. PERFORMANCE IMPROVEMENTS WITH
QUEUE-BASED CACHE MANAGEMENT ON AN MCP
In this section, we propose a novel approach using an FPGA
to enable efficient cache management and reduce the wait-
ing time caused by data fetching. In general, cache man-
agement is performed by dedicated CPU hardware, such as
the Cache Allocation Technology (CAT) [38] for Intel pro-
cessors, which aims at enhancing the system. However, it
is not trivial to implement cache management as well as

62830 VOLUME 6, 2018

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

FIGURE 4. Proposed hybrid architecture composed of CPUs and an FPGA.

task scheduling on the CPU side in an efficient manner.
Benefiting from the hybrid CPU-FPGA platform shown in
Figure 4 and its low latency transmission delay through the
QPI interface, we propose a queue-based cache management
technique inside the FPGA, which can be used in real-time
applications, such as task allocation and scheduling. Indeed,
cache management with deterministic performance can be
implemented with the help of modules in the FPGA. The
immediate benefits of this hybrid architecture are summa-
rized as follows:
• Deterministic execution and performance guarantee of
a cache manager provided by the FPGA for real-time
applications;

• Low latency QPI and high throughput PCIe buses for
communication between a CPU and the FPGA;

• Reconfigurable implementation of cache management
and upgraded capacity for function acceleration with the
FPGA over the CPU alone.

As the main processor in the MCP is cache coherent with
its accelerator, FPGA cache can be regarded as a copy of a
designated part of the CPU’s Last Level of Cache (LLC).
Therefore, any change in either cache will be replicated to
the other side via the low latency QPI bus. This mecha-
nism enables the management of the shared cache with an
FPGA. It is known that an FPGA offers parallel computa-
tion capability. Thus, the FPGA can provide deterministic
performance cachemanagement without interference from an
operating system (OS). Furthermore, in practice, it is possible
to boost execution performance and hide transmission latency
by pre-fetching data from main memory to cache before task
execution. However, it may be impossible to pre-fetch large
amounts of data for a given execution, due to cache current
state and overall size. Thus, efficient management schemes
are required.

In its basic implementation, the management scheme is
represented as content queues written by the FPGA to be
replicated or read from the CPU through the cache. This
mechanism can be explained with a task scheduler using our
cache management scheme. Therefore, for a given Directed
Acyclic Graph, a queue-based cachemanager is proposed and
implemented in an FPGA.

As shown in Figure 5, the shared cache is divided in two
main memory blocks. The first block is used to receive the
control signals for and to the FPGA, such as done, ready,

FIGURE 5. Queue-based cache management.

send and acknowledge flags, represented as the sub-blocks
arrow in the figure. The other block is used to write the
fetched data, in order to have it ready for task execution by a
CPU core. In a typical flow, the FPGA containing ready task
queues for each CPU execution units fetches the necessary
data ahead of task execution if it is ready into the corre-
sponding CPU queues. The fetched data are therefore ready
for execution. In order for the FPGA to keep track of tasks
execution and to maintain its ready task queues, the CPU
sends control information to the FPGA such as task ID, ready
and done flags.

The handshake between the processor and the accelerator
ensures an efficient resource management. Using the hand-
shake and the FPGA in a well configured OS environment
enables a near deterministic hardware accelerated cacheman-
agement, improving the underlying system’s performance.
Multiple steps, such as adding kernel patches [39], running on
a bare metal OS [40], disabling hyperthreading [41], as well
as using core isolation techniques, can be taken in order to
improve the determinism. Even though taking all these steps
should produce a much more deterministic cache manage-
ment, it remains to be confirmed experimentally whether
other sources of performance variability would remain.

Note that in order for the previously exposed scheme
to be efficient, it is assumed that there are enough tasks
ready for execution. Besides, task execution time needs to
be longer or comparable to the time required for prefetch-
ing data. Thus, normally, benefiting from queue-based cache
management and cache prefetching, a continuous task pro-
cessing can be realized without any waiting delay due to input
data loading from main memory to cache.

To validate the expected benefits from the queue-based
cache management and cache prefetching scheme introduced
above, we present a ‘‘case study’’ in the following section.
It serves as a proof of concept on which future work may
expand.

VOLUME 6, 2018 62831

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

V. VALIDATION OF LOW LATENCY COMMUNICATION
AND CASE STUDY OF CACHE MANAGEMENT
In this section, the low latency interfaces are characterized
and utilization recommendations of the hybrid platform are
provided. Then, we implement the proposed cache manage-
ment scheme in an FPGA embedded in the MCP architecture
to validate the improvements it can bring to system perfor-
mance. Note that due to the scarcity or non-availability of
socketed and MCP type CPU-FPGA architectures from other
vendors, such as Xilinx, this paper focuses on the comparison
of delay and bandwidth for all three architectures mentioned
in Section II, based on the Intel platforms.

TABLE 3. MCP access latency.

A. CHARACTERIZATION RESULTS OF LOW
LATENCY INTERFACES
This subsection presents and dives in depth in all the results
obtained on the MCP platform. It also provides some rec-
ommendations on how the platform may be used to gener-
ate low overhead applications. The MCP CPU-FPGA QPI
communication has typical cache memory access patterns,
where a cache transaction is described as either a ‘‘cache
hit’’ or a ‘‘cache miss’’. As shown in Table 3, the QPI’s cache
hit latencies are similar to those exposed in [22]. However
the average read and write miss latencies are reduced by
around 65%. We also observed that unlike [22], the empirical
bandwidths are close to their theoretical values for QPI, about
12.6 GB/s as seen in Figure 7b, but still lacking for PCIe with
about 5.2 GB/s for PCIe, as shown in Figure 6c.

To better understand the intricacies of the different links,
we first compare their performances in the cold cache envi-
ronment, then with a warm cache to conclude with a discus-
sion on which link is adequate for what situation. Figure 6a
shows the write throughput of PCIe alongside QPI’s, for
transfers from 1 to 65535 cache lines in a cold cache envi-
ronment. We observe that PCIe has a higher write throughput
thanQPI for small transfers, i.e., 1 to 32 cache lines. However
for transfers over 32 cache lines up to the cache capacity,
QPI’s throughput is better than that of PCIe, exhibiting a
peak at around 10 GB/s, almost twice PCIe’s throughput
and dropping down towards the level of PCIe after cache
capacity is reached. For all transfers over the 64 KB cache
capacity, throughput for QPI and PCIe are similar around
8192 cache lines, while QPI lacks behind for larger transfers,
due to the cache coherency protocol (evictions and cache
misses). For the case of read throughput, Figure 6b shows
that QPI has a slight advantage over PCIe for read throughput
up to 128 cache lines, at which point PCIe and QPI have
a similar read throughput of about 5.2 GB/s, equivalent to

PCIe’s measured limit. Figure 6c and Figure 6d, show the
detailed evaluations of PCIe and QPI for their read and write
throughput in the aforementioned cold cache environment.
As for the links latency, we observe in Figure 6e that QPI
has a smaller latency of about 100 cycles for transfers from
1 to 32 caches lines reaching PCIe’s latency around 128 cache
lines. However the inverse happens for PCIe, where its write
latency in this cache environment is smaller than QPI’s for
the same small transfer interval, as shown by comparing
Figure 6f and Figure 6g. Figure 6h compares PCIe and QPI
loopback latencies. It shows that they are similar, meaning
that the PCIe write affinities and QPI’s read affinities cancel
out in a cold cache environment. It indicates that for all
applications requiring quick loopback performance in a cold
cache environment, either links are suitable.

As for results in the warmed cache environment,
we observe that QPI is greatly affected by the cache state.
It can be observed that its results in a cold cache environment
are both worst in read and write latencies over the warmed
cache results. Figure 7a shows that we can achieve the lowest
read and write latencies for QPI, i.e., 25 and 28 cycles
respectively. The warmed environment allows for QPI to
reach its announced maximum throughput of 12.6 GB/s for
reads and writes, as shown in Figure 7b. Due to the multiple
links available on the MCP, using an aggregate of the two
PCIe and the QPI link is possible. Figure 7c and Figure 7d,
show the overall latency of read and write transfers when the
links are used simultaneously. The histograms on each figure
display the number of reads and writes done by each type of
links (QPI and 2x PCIe). For instance, it can be observed that,
in Figure 7b, the aggregate read latency is equivalent to that of
QPI in a warmed cache; that is due to the aggregated protocol
using only QPI, as its histogram display 1 count for QPI and
0 for the combination of both PCIe links. For a bigger transfer
of 256 cache lines, we observe that the read latency of the
aggregate is better than PCIe alone but worse than QPI alone
for the same transfer size, which can also be explained by
the transfer count of the aggregate favoring QPI over PCIe,
with 137 QPI reads and 119 PCIe reads. Lastly, Figure 7e
shows that the highest throughput can only be achieved using
aggregated transfers, with an average of 19 GB/s and a max
of 20.634 GB/s for a 1024 cache lines writes.

To summarize, in the cold cache environment, the QPI
link does not have a clear advantage over PCIe. PCIe has a
small latency over QPI for writes when transferring less than
32 cache lines, which is also evident for write throughput.
On the other hand, QPI displays better read latencies and
throughput across the board for all transfers under the FPGA
cache size. Once the cache size limit is reached, PCIe and
QPI have similar performances. Lastly, in the warmed cache
environment, QPI read and writes are better than PCIe in all
instances where the data fit in cache, where the read latency
reaches as low as 25 FPGA cycles, as well as reaching the
link’s theoretical max bandwidth of 12.6 GB/s. Note that as
PCIe is a non-cache coherent link, its performance is not
affected by the cache state. The results show that as long as the

62832 VOLUME 6, 2018

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

FIGURE 6. Cold cache characterization results. (a) QPI vs PCIe write throughput. (b) QPI vs PCIe read throughput. (c) PCIe throughput results.
(d) QPI throughput results. (e) PCIe throughput results. (f) QPI throughput results. (g) QPI Read and Writes latency. (h) QPI vs PCIe loopback latency.

transfers fit in the available cache, QPI is the preferred inter-
face to use for low latency communication with the processor,
while it cannot deliver a high throughput for under 32 cache

line writes. In most of the results, PCIe comes second to
QPI in performance, except in write performance for small
data transfers due to the PCIe write affinity to main memory.

VOLUME 6, 2018 62833

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

FIGURE 7. Warmed cache characterization results. (a) QPI read and write latency. (b) QPI throughput results. (c) Aggregate Link Read latency.
(d) Aggregate Link Write Latency. (e) Aggregate Link Throughput.

Note that as QPI is a cache coherent link, data transfers are
cached, allowing for better performing applications based on
data locality alone. A good compromise for latency and band-
width is the use of aggregated transfers on the three available
links. Note that in both read and write latencies, the QPI
link is favored over the PCIe links. This ensures the lowest
possible latencies for reads and writes, while getting the best
overall throughput. Spreading the transfer load on multiple
interfaces could have a benefit on memory contention with
long running applications. However, more experiments are
necessary to verify this hypothesis.We also noted that in most
of our warmed-up cache experiments, we would get a cache
miss on the second cache-line transfer. More investigations

are needed to find the source of the problem, although it does
not invalidate the insights and the results provided in this
paper.

In light of the results in Figure 6 and Figure 7, conclusions
on how to better use the MCP can be drawn. Most of the
insights provided in [22] on offload to an accelerator with an
architecture similar to Figure 1a hold true, especially those
related to data movements. However, some assumptions and
recommendations targeting the PCIe in particular are inval-
idated by the use of the unified memory space of the MCP.
A decision tree to choose interfaces in different circumstances
is provided in [22]. The following tips and suggestions should
be taken as recommendations for MCP users and designers.

62834 VOLUME 6, 2018

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

Insight 1: For the lowest latency transfers, QPI should be
prioritized. We would recommend that as long as the amount
of data to be transferred is less than the remaining available
cache size, the QPI interface should be used over the PCIe.
For a cacheline, the typical latency of a QPI transfer is 64 ns
(25 cycles) versus 625 ns (250 cycles) of a PCIe transfer.
A QPI cache miss penalty of a cacheline is still more latency
efficient than a PCIe transfer.

Insight 2: QPI offers a higher bandwidth than one PCIe
x8 Gen3 for payloads up to 64 KB (for an empty cache).
In order to have a higher bandwidth irrespective of latency,
both high latency links should be used, offering up to 16 GB/s
throughput.

Insight 3: If latency variability is not an issue, using the
Intel automated aggregate interface outperforms the PCIe
interface alone for most cases. Using both interfaces provides
the ‘‘best of both worlds’’ as exposed by Figure 7. Whenever
the payload is small enough, QPI will be the prioritized
interface, while PCIe will be for larger payloads and both for
the in-between. Compared to PCIe only, even with the latency
added bymemcopy, the aggregate transfers aremore efficient.
The same applies for high throughput needs, and Figure 7
shows a throughput up to 20 GB/s using the automatic aggre-
gate interfaces, out of a theoretical 28 GB/s. However using
all the links at once, a well-crafted manual implementation
might allow for a higher bandwidth.

Insight 4:TheMCP accelerator may not be the solution for
all use cases of FPGA acceleration. For example, if the data
from the functions to be accelerated are to be transferred to
another machine, the multi-interface transfer latencies might
invalidate the use of the integrated accelerator. That would be
the case if the latency to perform an additional back and forth
transfer between the CPU and FPGA adds more time to the
execution than the processing time saved. In this case a NIC
equipped daughter card FPGA might be preferable.

Insight 5: On the accelerator side, using the FPGA cache
might still be ill-advised due to its long access latency (64 ns
for reads and 70 ns for writes) compared to a BRAM or reg-
ister access (typically 1 to 2 cycles). The cache is better used
as an interface between the CPU-FPGA than as a storage
medium for FPGA’s AFUs.

Insight 6: The MCP accelerator is better used in the uni-
fied memory space of the system. Whenever offsite memory
accesses are needed, a DMA enabled daughter accelerator
card might be preferred.

B. A CASE STUDY - MERKLE TREE ACCELERATION
Since the inception of Bitcoin by a still unknown creator
going under the pseudonym of ‘‘Satoshi Nakamoto’’ [42]
in January 2009, hash-based cryptography for decentralized
applications gained a widespread popularity. The growing
cryptocurrencies realm counts over 1624 different ‘‘active’’
tokens over multiple exchanges and platforms. Most of these
tokens rely on a hash-based tree structure for their digital
signature schemes. This tree based generalization of a hash
list is called a ‘‘Merkle tree’’ [43]. Each leaf node is a hash of

a block of data and a non-leaf node is the hash of its children.
Typically, a Merkle tree has a branching factor of two.

An integral part of decentralized trust-less transaction
systems, such as the first pseudo-anonymous Bitcoin [44],
the enterprise aware Ethereum peer-to-peer networks [45]
or the privacy token Monero [46], is called a ‘‘Block’’. The
block represents the main scalability feature of cryptocurren-
cies, where it is part of a multi-level data structure within
the ‘‘Blockchain’’. The block records all the transaction data
for the case of Bitcoin. Therefore the sequence of multiple
blocks over time represents the blockchain. Figure 8 shows
the relationship between the block and the Merkle tree, and
also displays a typical hash-based tree structure.

FIGURE 8. Merkle Tree in Blockchain applications.

The case study considered in the present work includes a
simple implementation of a blockchain with a SHA-256 hash
function. Within the Bitcoin network, the SHA-256 hash
function serves for two mains purposes [42]:
• Mining, where a ‘‘miner’’ creates a new block to the
block chain with a process called ‘‘proof-of-work’’ to
ensure that all the blocks added to the blockchain are
legitimate and free of fraudulent information. The proof-
of-work mechanism solves a SHA-256 hash function.

• Creation of new addresses, where every new address
needs a public key to be hashed. SHA-256 is the hash
function used for the creation of new addresses because
it allows for greater security as well as shorter addresses.

The advantage of creating Merkle trees within blocks in
the case study is that the size of a SHA-256 hash function

VOLUME 6, 2018 62835

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

is 256 bits, i.e., 32 bytes [47], which is coincidentally half
a cacheline long. It allows for our implementation of hard-
ware prefetching to combine data, addresses, and any other
possibly relevant data in one cacheline transfer between the
CPU and the AFU. Another advantage is that the computation
of a more complex hash function on the CPU side allows
for longer computation, and hence, it hides some of the
communication time implied by the accelerator prefetching
on the MCP.

This makes use of a simple Merkle tree with a
SHA-256 cryptographic hash function reminiscent of cryp-
tocurrencies, such as Bitcoin, representing an adequate appli-
cation to test our cache-based management scheme for hash
computation acceleration using an accelerator prefetching.
The following subsection dives into the details of the method
and implementation, as well as giving the results of this proof
of concept.

C. IMPLEMENTATION OF MERKLE TREE
AND EXPERIMENT RESULTS
In order to show that accelerator prefetching could be benefi-
cial, we developed a simple Bitcoin-esc blockhain chain with
an oversizedMerkle tree. For each block, we created a 30MB
Merkle tree to make sure that during the tests the CPU would
not fetch the entire tree when needing to compute the hash of
a given node. For each test, a block is created and it would
iterate multiple times to compute the hash of random nodes
until 64 000 nodes are computed. The use of the random
function allows for low to no compiler optimization. Listing 1
shows the order in which the application runs.

Listing 1. Merkle tree implementation pseudo code.

Each time we access a specific node of the Merkle tree
to compute its hash, we use a pseudo random function that
chooses the next branch to compute. The predicted address is
relayed to the FPGA in order to prefetch the data associated
with the address, while the processors compute the previous
node’s hash. In order to transfer the address from the CPU to
the FPGA, a simple service is implemented. A virtual address
is linked to a cache-aligned physical address. Listing 2 shows
the use of pointers to the virtual address to copy the next node
to compute via the communication service implemented with
the AALSDK.

Listing 2. Address transfer through a service..

On the FPGA side a simple memcopy type application
is implemented. It receives the address and reads the data
associated with the address in order to keep the data in cache.
The hardware interface is coded. The AFU ‘‘read’’ FSM is
shown in Listing 3.

Listing 3. Simple application.

Essentially, once the AFU reads the next address to hash,
the data becomes available in the cache for the processor
resulting in fewer accesses to the main memory for computa-
tion, which should allow the application to run faster.

One thing to note is that the current implementation of the
MCP provides a MMIO space accessible by the FPGA, but it
has a limited size of only 4MB. This means that the current
case study only runs with addresses in that 4MB span. Given
that span, the theoretical maximum number of 64B accesses

62836 VOLUME 6, 2018

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

is 64,000. Given the information above, we can calculate the
theoretical improvement limit of accelerator prefetching as
the maximum latency (data is not in cache) divided by the
minimum latency (data is in cache):

Acceleration =
THash + TMainAccess
THash + TL3Acces

, (2)

where ‘‘TMainAccess’’ is the typical main memory access time,
‘‘TL3Acces’’ the typical L3 cache read access time from the
CPU, and ‘‘THash’’ the typical time to compute one SHA-256
hash on one CPU core. This equation is true only if the hash
computation takes longer than the time it takes for the AFU
to receive the next node’s address and read. It is important
that AFU processing time is masked by the hash computation,
otherwise it would add time to the overall execution, thus
invalidating the acceleration. For the equation to be effective,
it also needs a typical main memory access longer than a
L3 cache access. The Xeon E5 provides a typical per core
hash rate of 2.06 Mh/s. This implies that it would take about
490 ns to compute one SHA-256 hash, which is 4.9x longer
than the 100 ns of worst case main memory access on a CPU.
The values in Table 3 and Table 4 show that a typical send
address and read address from the CPU to the AFU would be
around 72.5 ns in the best case and in the event of an AFU
cache miss and the longest L3 access, 317 ns would be the
worst case. The formula is therefore true for our test, and the
theoretical acceleration limit for the considered application
is 1.157 for the worst scenario, where the respective L3 and
main memory accesses would take the most time.

TABLE 4. Typical memory hierarchy access times.

A remarkable outcome is a faster access time implied by
the efficient prefetching. As shown in Table 4 the AFU-based
prefetching reduces a main memory access to a LLC access,
giving a 5-fold latency improvement in the worst case sce-
nario. This implies that for a more memory bounded appli-
cation, the overall application speed up would be much more
significant. For an application in which time would be con-
sumed 90% by memory transfers, Amdahl’s law expresses:

Smax =
1

(1− p)+ (ps)
, (3)

where s is the performance improvement factor and p the part
that can be improved. The maximum theoretical speedup of
the application would be of a factor of 3.6, where the improv-
able portion of the application is 90% and the improvement
is 5-fold.

After running the Merkle Tree test for 1 million differ-
ent blocks, we get an average acceleration of 1.118 with a
min of 1.10 and a maximum of 1.133, which is close to
the theoretical limit of 1.157 computed by (3). After some

investigation, we may improve the acceleration using a low
latency messaging API provided by the AALSDK. Another
possible improvement would be to limit the Merkle tree and
the random node accesses to a specific 4MB space. It would
allow the AFU to ‘‘prefetch’’ all the data to be processed.
However such an implementation could induce more evic-
tions and cache misses in the FPGA cache, which could result
in a lower performance, thus negating the need for accelerator
prefetching.

The case study described above serves as a proof of concept
for accelerator-based cache management. The results show
that the prefetching can be done using an FPGA embedded
in the MCP. Other cache management techniques would be
feasible using the MCP, which will be addressed in our future
work.

VI. CONCLUSION AND FUTURE WORK
In this paper, we provided an in depth characterization of
the new CPU-FPGA MCP. We introduced a new cache man-
agement technique, where the accelerator shares the control
and is able to prefetch data to make it readily available
to the CPU cores. The study of the MCP exposed a new
CPU-FPGA platform which enables low latency and high
bandwidth resource management, while being able to be
used to accelerate latency bounded applications. The MCP’s
characterization shows that it can achieve access latencies as
low as 64 ns and throughput as high as 20.6 GB/s. A fine-
grained acceleration became possible due to the coherent
FPGA cache with the LLC through the QPI interface, as well
as being able to deal with larger datasets using the CPU’s
main memory’s address space through the PCIe. We made a
proof of concept using the accelerator of the MCP to prefetch
the following hash to be computed of a Merkle tree, which
resulted in a typical application speedup of 1.118 and a 5x
data access speedup in section V-B. We also confirm the
recommendations provided in [22], while adding newer ones
for the use of the new MCP platform.

This research is a first step towards low latency resource
allocation in HPC environments. As future work, it is planned
to use the on-board FPGA of the MCP to study cache man-
agements techniques on top of using lock-free and wait-free
programming to obtain lower latency and more deterministic
processing for more real-time applications.

REFERENCES
[1] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’

in Readings in Computer Architecture, M. D. Hill, N. P. Jouppi, and
G. S. Sohi, Eds. San Francisco, CA, USA: Morgan Kaufmann, 2000,
pp. 56–59.

[2] F1 Instances. Aug. 2018. [Online]. Available: https://aws.amazon.com/
ec2/instance-types/f1/

[3] Y. Umuroglu et al., ‘‘FINN: A framework for fast, scalable binarized neural
network inference,’’ CoRR, vol. abs/1612.07119, pp. 1–10, Dec. 2016.

[4] M. Courbariaux and Y. Bengio, ‘‘Binarized neural networks: Training deep
neural networks with weights and activations constrained to +1 or −1,’’
CoRR, vol. abs/1602.02830, pp. 1–11, 2016.

[5] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and K. Vissers,
‘‘A low-latency library in FPGA hardware for high-frequency trading
(HFT),’’ in Proc. IEEE 20th Annu. Symp. High-Perform. Interconnects
(HOTI), Aug. 2012, pp. 9–16.

VOLUME 6, 2018 62837

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

[6] (Apr. 2016). Intel Begins Shipping Xeon Chips With FPGA Accelerators.
[Online]. Available: http://www.eweek.com/servers/intel-begins-shipping-
xeon-chips-with-fpga-accelerators.html

[7] PCI-SIG. (Nov. 2010). PCI Express Base Specification Revision 3.0.
[Online]. Available: http://composter.com.ua/documents/PCI_Express_
Base_Specification_Revision_3.0.pdf

[8] Intel. (2009).An Introduction to the Intel QuickPath Interconnect. [Online].
Available: http://www.intel.com/content/www/us/en/io/quickpath-
technology/quick-path-interconnect-introduction-paper.html

[9] A. Putnam et al., ‘‘A reconfigurable fabric for accelerating large-scale
datacenter services,’’ SIGARCH Comput. Archit. News, vol. 42, no. 3,
pp. 13–24, Jun. 2014.

[10] A. M. Caulfield et al., ‘‘A cloud-scale acceleration architecture,’’ in Proc.
49th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2016,
pp. 1–13.

[11] L. Ling et al., ‘‘High-performance, energy-efficient platforms using in-
socket FPGA accelerators,’’ in Proc. ACM/SIGDA Int. Symp. Field Pro-
gram. Gate Arrays (FPGA), New York, NY, USA, 2009, pp. 261–264.

[12] P. Chow, ‘‘Why Put FPGAs in your CPU socket?’’ in Proc. Int. Conf. Field-
Program. Technol. (FPT), Dec. 2013, p. 3.

[13] C. Steffen and G. Genest, ‘‘Nallatech in-socket FPGA front-side bus
accelerator,’’ Comput. Sci. Eng., vol. 12, no. 2, pp. 78–83, Mar. 2010.

[14] M. Gémieux, Y. Savaria, J.-P. David, and G. Zhu, ‘‘A cache-coherent
heterogeneous architecture for low latency real time applications,’’ in Proc.
IEEE 20th Int. Symp. Real-Time Distrib. Comput. (ISORC), May 2017,
pp. 176–184.

[15] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and
K. Olukotun, ‘‘Automatic generation of efficient accelerators for recon-
figurable hardware,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 115–127.

[16] P. Colangelo, E. Luebbers, R. Huang, M. Margala, and K. Nealis, ‘‘Appli-
cation of convolutional neural networks on Intel Xeon processor with
integrated FPGA,’’ in Proc. IEEE High Perform. Extreme Comput. Conf.
(HPEC), Sep. 2017, pp. 1–7.

[17] S. Krishnan, P. Ratusziak, C. Johnson, D. Moss, and S. Subhaschandra.
Accelerator Templates and Runtime Support for Variable Precision CNN.
[Online]. Available: https://parasol.tamu.edu/pact17/Sri-architecture-
templates-runtime_final.pdf

[18] Intel. (2007). Intel QuickAssist Technology Accelerator Abstraction Layer
(AAL). [Online]. Available: https://blog-assets.oss-cn-shanghai.aliyuncs.
com/18951/6103fadf4dd3a0dfbd0d637308a94b8e99e799d2.pdf

[19] Intel. (Feb. 2017). Open Programmable Acceleration Engine (OPAE)
C API Programming Guide. [Online]. Available: https://www.altera.
com/en_US/pdfs/literature/ug/opae-programming-guide.pdf

[20] SDAccel Development Environment. [Online]. Available: https://www.
xilinx.com/products/design-tools/software-zone/sdaccel.html

[21] Intel. Intel FPGA SDK for OpenCL—Overview. [Online]. Available:
https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.html

[22] Y.-K. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, ‘‘A quan-
titative analysis on microarchitectures of modern CPU-FPGA platforms,’’
in Proc. 53nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016,
pp. 1–6.

[23] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, ‘‘CAPI: A coherent
accelerator processor interface,’’ IBM J. Res. Develop., vol. 59, no. 1,
pp. 7:1–7:7, Jan. 2015.

[24] FreeRTOS—Market Leading RTOS (Real Time Operating System) for
Embedded Systems with Internet of Things Extensions. [Online]. Available:
http://www.freertos.org/index.html

[25] P. Laplante, Real-Time Systems Design and Analysis. Hoboken, NJ, USA:
Wiley, 2004.

[26] B. K. Kim and K. G. Shin, ‘‘Scalable hardware earliest-deadline-first
scheduler for ATM switching networks,’’ in Proc. 18th IEEE Real-Time
Syst. Symp., Dec. 1997, pp. 210–218.

[27] P. Kuacharoen, M. A. Shalan, and V. J. Mooney, III, ‘‘A configurable hard-
ware scheduler for real-time systems,’’ in Engineering of Reconfigurable
Systems and Algorithms. 2003, pp. 96–101.

[28] N. Gupta, S. K. Mandal, J. Malave, A. Mandal, and R. N. Mahapatra,
‘‘A hardware scheduler for real time multiprocessor system on chip,’’ in
Proc. 23rd Int. Conf. VLSI Design, Jan. 2010, pp. 264–269.

[29] D. Gregorek, C. Osewold, and A. Garcia-Ortiz, ‘‘A scalable hardware
implementation of a best-effort scheduler for multicore processors,’’ in
Proc. Euromicro Conf. Digit. Syst. Design, Sep. 2013, pp. 721–727.

[30] M. Gémieux, ‘‘Analyse de faisabilité de l’implantation d’un protocole de
communication sur processeur multicoeurs,’’ M.S. thesis, École Polytech.
Montréal, Montreal, QC, Canada, Apr. 2015.

[31] R. Mancuso, P. Srivastava, D. Chen, and M. Caccamo, ‘‘A hardware
architecture to deploy complex multiprocessor scheduling algorithms,’’
in Proc. IEEE 20th Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
Aug. 2014, pp. 1–10.

[32] Intel. (Sep. 2017). Intel FPGA IP Core Cache Interface (CCI-P). [Online].
Available: https://01.org/sites/default/files/downloads/opae/intel-fpga-ip-
cci-p-inter-spec-external-0.5.pdf

[33] Universitat Paderborn—University. [Online]. Available: http://www.uni-
paderborn.de/en/university/

[34] Intel, ‘‘Intel accelerator functional unit (AFU) simula-
tion environment (ASE)-user guide,’’ Intel, Santa Clara,
CA, USA, Tech. Rep. UG-20091. [Online]. Available:
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/ug/ug-ase.pdf

[35] (Oct. 2017). Questa Advanced Simulator—Mentor Graphics. [Online].
Available: https://www.mentor.com/products/fv/questa/

[36] Intel Quartus Prime Software—What’s New in Quartus Prime. [Online].
Available: https://www.altera.com/products/design-software/fpga-design/
quartus-prime/what-s-new.html

[37] J. W. Haskins and K. Skadron, ‘‘Memory reference reuse latency: Accel-
erated warmup for sampled microarchitecture simulation,’’ in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2003, pp. 195–203.

[38] Introduction to Cache Allocation Technology in the Intel Xeon Proces-
sor E5 V4 Family | Intel Software. [Online]. Available: https://software.
intel.com/en-us/articles/introduction-to-cache-allocation-technology

[39] F. Cerqueira and B. Brandenburg, ‘‘A comparison of scheduling latency
in linux, PREEMPT-RT, and LITMUS RT,’’ in Proc. 9th Annu. Workshop
Operating Syst. Platforms Embedded Real-Time Appl., Paris, France, 2013,
pp. 19–29.

[40] M. Aichouch J.-C. Prévotet, and F. Nouvel, ‘‘Evaluation of the overheads
and latencies of a virtualized RTOS,’’ in Proc. 8th IEEE Int. Symp. Ind.
Embedded Syst. (SIES), Jun. 2013, pp. 81–84.

[41] X. Lu, H. Shi, D. Shankar, and D. K. D. K. Panda, ‘‘Performance character-
ization and acceleration of big data workloads on OpenPOWER system,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017, pp. 213–222.

[42] S. Nakamoto. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[43] G. Becker. Merkle Signature Schemes, Merkle Trees and Their Crypt-
analysis. [Online]. Available: https://www.emsec.rub.de/media/crypto/
attachments/files/2011/04/becker_1.pdf

[44] F. Tschorsch and B. Scheuermann, ‘‘Bitcoin and beyond: A technical
survey on decentralized digital currencies,’’ IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084–2123, 3rd Quart., 2016.

[45] (May 2018). Wiki: The Ethereum Wiki. [Online]. Available: https://github.
com/ethereum/wiki

[46] S. Noether, S. Noether, and A. Mackenzie. (Sep. 2014). A Note on
Chain Reactions in Traceability in CryptoNote 2.0. [Online]. Available:
https://lab.getmonero.org/pubs/MRL-0001.pdf

[47] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane, ‘‘Opti-
misation of the SHA-2 family of hash functions on FPGAs,’’ in Proc.
IEEE Comput. Soc. Annu. Symp. Emerg. VLSI Technol. Archit. (ISVLSI),
Mar. 2006, pp. 317–322.

MICHEL GÉMIEUX received the B.E. degree in
microelectronics engineering from the University
of Quebec atMontreal,Montreal, Canada, in 2012,
and the M.S. degree in electrical engineering from
PolytechniqueMontréal, Montreal, in 2015, where
he is currently pursuing the Ph.D. degree in elec-
trical engineering.

His research interests include the development
of hardware accelerators in high performance
computing servers, techniques for latency reduc-

tion of Linux kernel and software, as well as the study of hardware imple-
mentations for machine learning applications.

Mr. Gémieux’s awards and honors include the Hydro-Quebec’s Schol-
arship of Excellence, the Schneider Electric Student Merit Award (EFC),
the Student Merit Scholarship (EFC), and the Doctoral Scholarship (CTM),
and was a PERSWADE Trainee (CRSNG) throughout his Ph.D.

62838 VOLUME 6, 2018

M. Gémieux et al.: Hybrid Architecture With Low Latency Interfaces Enabling Dynamic Cache Management

MENG LI received the B.E. and M.S. degrees in
electronic engineering from the Beijing University
of Aeronautics and Astronautics, Beijing, China,
in 2004 and 2007, respectively, and the Ph.D.
degree in electrical engineering from Polytech-
nique Montréal, Montreal, QC, Canada, in 2016.
Since 2016, he has been with the Department of
Electrical Engineering, Polytechnique Montréal,
as a Post-Doctoral Fellow. Since 2017, he has
been with MISTLab dedicated to the Department

of Computer Engineering, Polytechnique Montréal, as a Post-Doctoral
Researcher Fellow. Currently, he is also an Associate Professor with the
School of Information and Science Technology, Zhejiang Sci-Tech Univer-
sity, Hangzhou, China. His research interests include mobile robot localiza-
tion, swarm robot control, communication networks, task scheduling, fault
tolerance, parallel computing, and real-time systems.

YVON SAVARIA (S’77–M’86–SM’97–F’08)
received the B.Ing. and M.Sc.A. degrees in elec-
trical engineering from Polytechnique Montréal
in 1980 and 1982, respectively, and the Ph.D.
degree in electrical engineering from McGill Uni-
versity in 1985. Since 1985, he has been with
Polytechnique Montréal, where he is currently
a Professor with the Department of Electrical
Engineering.

He has carried work in several areas related
to microelectronic circuits and microsystems, such as testing, verification,
validation, clocking methods, defect and fault tolerance, effects of radiation
on electronics, high-speed interconnects and circuit design techniques, CAD
methods, reconfigurable computing and applications of microelectronics to
telecommunications, aerospace, image processing, video processing, radar
signal processing, and digital signal processing acceleration. He is currently
involved in several projects that relate to aircraft embedded systems, green
IT, wireless sensor networks, virtual networks, computational efficiency, and
application specific architecture design. He holds 16 patents, and he has
published 140 journal papers and 440 conference papers. He was the thesis
advisor of 160 graduate students who completed their studies.

He has been a Consultant or was sponsored for carrying research by
Bombardier, CNRC, DesignWorkshop, DREO, Ericsson, Genesis, Gennum,
Huawei, Hyperchip, ISR, Kaloom, LTRIM, Miranda, MiroTech, Nortel,
Octasic, PMC-Sierra, Technocap, Thales, Tundra, and VXP. He is a member
of the Regroupement Stratégique en Microélectronique du Québec, Ordre
des Ingénieurs du Québec. He has been a member of the CMCMicrosystems
Board since 1999 and was the Chairman of that board from 2008 to 2010.
He was the Tier 1 Canada Research Chair (www.chairs.gc.ca) on design
and architectures of advanced microelectronic systems from 2001 to 2015.
He also received the Synergy Award of the Natural Sciences and Engineering
Research Council of Canada in 2006.

JEAN-PIERRE DAVID (M’05) received the Ph.D.
degree from the Université Catholique de Lou-
vain, Louvain-la-Neuve, Belgium, in 2002. He has
been an Assistant Professor with the Université de
Montréal, Montreal, QC, Canada, for three years
and moved to Polytechnique Montréal, Montreal,
in 2006, where he has been an Associate Professor
since 2013. His research interests include digital
system design, reconfigurable computing, high-
level synthesis, and their applications.

GUCHUAN ZHU (M’07–SM’12) received the
M.S. degree in electrical engineering from the
Beijing Institute of Aeronautics and Astronautics,
Beijing, China, in 1982, the Ph.D. degree in math-
ematics and control from the École des Mines de
Paris, Paris, France, in 1992, and the Graduate
Diploma degree in computer science fromConcor-
dia University, Montreal, QC, Canada, in 1999.

He joined Polytechnique Montréal, Montreal,
in 2004, where he is currently a Professor with the

Department of Electrical Engineering. His current research interests include
control of distributed parameter systems, nonlinear and robust control, and
optimization with their applications to microsystems, aerospace systems,
communication networks, and smart grid.

VOLUME 6, 2018 62839

	INTRODUCTION
	BACKGROUND
	MICROARCHITECTURES
	REAL-TIME RESOURCE ALLOCATION

	CHARACTERIZATION OF LOW LATENCY INTERFACES ON A HYBRID CPU-FPGA ARCHITECTURE
	HARDWARE CONFIGURATION
	CHARACTERIZATION APPROACH OF LOW LATENCY INTERFACES

	PERFORMANCE IMPROVEMENTS WITH QUEUE-BASED CACHE MANAGEMENT ON AN MCP
	VALIDATION OF LOW LATENCY COMMUNICATION AND CASE STUDY OF CACHE MANAGEMENT
	CHARACTERIZATION RESULTS OF LOW LATENCY INTERFACES
	A CASE STUDY - MERKLE TREE ACCELERATION
	IMPLEMENTATION OF MERKLE TREE AND EXPERIMENT RESULTS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MICHEL GÉMIEUX
	MENG LI
	YVON SAVARIA
	JEAN-PIERRE DAVID
	GUCHUAN ZHU

