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ABSTRACT This paper presents an iterative learning control-based robust distributed algorithm on the
formation issue for a group of differential-drive mobile robots. The fundamental robustness problem in
practical application involving initial state shifts, disturbances, noises, and communication time-delays are
considered. The distributed algorithm is proposed for each robot in directed network, which is based on the
iterative learning rule with both predictive and current learning terms. It is shown that the convergence of
formation tracking objective can be guaranteed under a matrix norm condition by using the two-dimensional
analysis approach. Numerical simulation and experiment are both given to validate the effectiveness of the
proposed algorithm.

INDEX TERMS Iterative learning control, differential-drive mobile robots, robust formation control.

I. INTRODUCTION
Formation control is one of the most challenging problems
in the collaboration of multiple mobile robots, which has
attracted significant attention in the robot research commu-
nity over the past decades [1]–[3]. In general, the mobile
robots formation can be described as controlling a group of
mobile robots track a desired trajectory while maintaining a
desired geometric shape including positions and orientations.
Using such certain shape, the multiple mobile robots system
can accomplish many complex tasks such as environment
reconnaissance [5], pursue and capture a group of evaders [6],
and transportation of large objects [4].

Apart from high level planning, the trajectory tracking
control is the key issue in the formation task, and many
works have been carried out on designing formation con-
trol strategies for multiple robots system. For example, [7]
proposed a three-level hybrid control architecture for con-
trolling multiple mobile robots to achieve formation based
on a leader-following approach; [8] studied the execution
of different formation-control missions by using the null-
space-based behavioral control strategy. However, the com-
munication delays, noise and disturbance are not considered
in [7] and [8]. It is common to observe from the numerical
experiments that the communication delays among robots

occur frequently due to the limited information transmission
speed. Moreover, the noise and disturbance are inevitable
for a mobile robot moving in the real environment. There-
fore, investigating the effect of the communication delays,
noise and disturbance in formation control problem is an
interesting and important research topic. A pioneering result
about robust control with decoupling performance is first
obtained in [9] for mobile vehicle by proposing a novel
reduction method for nonlinear system model, base on which
better maneuverability can be achieved compared with the
traditional triangle decoupling control. Reference [10] pro-
posed an improved receding horizon controller to solve the
leader-follower formation problem for multi-robot systems
with bounded time-varying communication delays and asyn-
chronous clock. The stability analysis and the consensus
protocol for the multi-agent system with time-varying delay
have been investigated in [11]. The robust formation prob-
lem for a multi-robots system affected by measurements
noise, disturbance or un-modeled perturbations has been
addressed by several authors [12]–[15]. Especially, in [15]
a new predictive approach is first proposed to reduce the
conservativeness for the analysis and design of uncertain
continuous-time systems, by which a group of existing results
can be easily derived. Furthermore, [16]–[20] investigated
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the consensus of multi-agent systems with communication
delays under disturbance and noisy environments. However,
the proposed algorithms in the above references can not solve
the formation control for multiple non-holonomic mobile
robots under the realistic situation involving initial state
shifts, disturbances, noises, and communication time-delays
simultaneously.

Iterative learning control (ILC) technique is a well
established control strategy, which utilizes the informa-
tion obtained from the previous trial as experience to
improve the control performance for the current trial, and
many significant theory results have been established and
have been widely applied to deal with many practical
applications [21]–[29]. Therefore, under the circumstances
that the cooperative multiple mobile robots working on repet-
itive tasks over finite-time interval, such as building-cleaning,
parts-transporting, storage, security and patrol, and the ILC is
a preferable approach to improve the trajectory tracking per-
formance. Actually, many promising attempts have been con-
sidered to improve the control performance for multi-agent
systems formation by using ILC. For example, [30] employed
the ILC scheme to generate a sequence of control signals for
multi-agent formation control problem, but the fixed commu-
nication topology without any time-delay and the multi-agent
system without any measurement noise and disturbance are
the assumed conditions in [30]. In [31], the result obtained
in [30] is expanded to formation description independent of
the interaction by introducing a ‘‘virtual leader’’. In [32],
the robust control problem is considered against the uncer-
tainties using the two-dimensional (2-D) analysis approach
for ILC. However, the convergence results in [30]–[32] are
obtained by the assumptions that the number of system
outputs is greater than the number of system inputs and
the matrix C(k + 1)B(k) has full-row rank, which are not
satisfied for differential-drive mobile robots with nonholo-
nomic constraints. In order to release these assumptions, there
are two ways, one is to transform the kinematic model of
differential-drive mobile robot from the non-holonomic to
the holonomic by defining a hand position P (placed at a
fixed distance d > 0 on the robot) as the control point
instead of the center of robot, as in [33] and [34]. However,
the orientation of the mobile robot cannot be controlled under
this transformation. The other is to assume that there exits
a unique control signal for the mobile robot exactly tracks
the desired trajectory, which can be achieved by planning a
trajectory satisfied the non-holonomic constraint, as stated
in [35]–[37]. But the ideal situation without disturbances and
noises are considered in there. So far, to the best of our
knowledge, for the problem of employing ILC scheme to
solve the non-holomonic mobile robot formation problem
under a general and realistic condition, there are no such
results in the existing literature, which motivates our present
study.

In view of the ILC scheme can achieve high-performance
tracking, in this paper, we attempt to present a distributed
ILC algorithm for a group of non-holonomic mobile robots

to form a desired geometric formation shape in the realistic
situation involving the initial state shifts, disturbances, noises,
and communication time-delays. The reference trajectory for
the robots system is represent by a virtual leader and the
output of this virtual robot is accessible by only a subset of
the real robots according to the directed and fixed commu-
nication topology. The iterative learning rule makes use of
both predictive and current learning terms to help the tracking
errors to converge more quickly than only use predictive
learning term. Furthermore, using measurement time-labeled
technique as in [10], the accurate delay is calculated to com-
pensate the delay effect in current learning term.With the help
of the 2-D analysis approach and graph theory, it is shown
that the convergence of the robots system can be robustly
ensured under the proposed distributed iterative learning
controller. Finally, the simulation and experiment tests are
performed to prove that the desired formation task can be
effectively and robustly accomplished by using the pro-
posed distributed algorithm. By comparison with the exist-
ing results, the main contributions of this paper lie in three
aspects:

1) We extend the results in [30]–[32] and [38] about
developing the ILC-motivated distributed algorithm for the
multi-agent system imposed constraint on the number of
system inputs and outputs, which is not satisfied by the
non-holomonic mobile robot system.

2) Comparing with the result in [35], which proposes
a high-order internal model based ILC scheme for three
differential-drive mobile robots formation, the distributed
ILC-based algorithm developed in this paper has a uniform
controller form for each robot and can easy expand to a
general formation problem.

3) Comparing with the results in [8], [10], and [12]–[14],
the fundamentally problem in practice involving the ini-
tial state shifts, disturbances, noises, and communication
time-delays are considered, and a experiment using real
differential-drivemobile robots is conducted, which is critical
in illustrating the effectiveness of the algorithm for practical
application.

The rest of this paper is organized as follows. Problem for-
mulation of differential-drive mobile robots formation is
given in Section II. The distributed iterative learning algo-
rithm is constructed in Section III and the convergence of
the multi-robot system formation error is analyzed. Compar-
ative simulation results and verifying experimental results
are shown in Section IV. Finally, we conclude this paper in
Section VI.
Notation 1: Z+ = {0, 1, · · · ,N }, In = {1, 2, · · · , n},

In denotes the n × n dimensions identity matrix, Om×n
denotes the m × n dimensions null matrix, and a diago-
nal matrix, whose off-diagonal (block) elements are zero
and diagonal elements are given by {D1,D2, · · · ,Dn},
is denoted as diag{D1,D2, · · · ,Dn}. ‖A‖ denotes the norm
of a vector (or, matrix) A and A ≥ 0 means elements
in A are all nonnegative. A ⊗ B denotes the Kronecker
product.
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II. PROBLEM DESCRIPTION
A. COMMUNICATION TOPOLOGY AMONG THE
MULTI-ROBOT SYSTEMS
In this paper, we assume that the multi-robot system consists
of n differential-drive mobile robots labeled 1 through n, and
each robot is a vertex in a nth order directed graph G. Denote
the vertex set, edge set and weighted adjacency matrix of G as
V(G) = {vi : i ∈ In}, E ⊆ {(vi, vj) : vi, vj ∈ V(G)},A = [aij],
respectively and the vi’s neighbor set is defined as Ni =

{j : (vi, vj) ∈ E(G)}. Then the Laplacian matrix of G can be
denoted byLA = 1A−A, where1A is the diagonal matrix:
1A = diag

{∑
j∈N1

a1j,
∑

j∈N2
a2j, . . . ,

∑
j∈Nn

anj
}
, and

the edge (vi, vj) in E(G) can be regarded as the available chan-
nel, where information flows from the robot vj to the robot
vi. Moreover, we assume that there exist a virtual robot v0 in
themulti-robot system,which generates a reference trajectory
for only a portion of the robots, and each mobile robot in the
directed graph network should keep a desired deviation from
this reference trajectory. The directed graph G incorporating
virtual robot v0 is denote as G̃ and the accessibility of virtual
robot v0 by the robot vi is denote as a non-negative weight
ai0 (i.e. the virtual robot v0 can be accessed by vi in G̃ if
and only if ai0 > 0). The weighted matrix associated with
the accessibility of reference trajectory for the robots in G is
denote by � = diag{a10, a20, . . . , an0}. Furthermore, for the
repetitive formation task, the reference and the deviation are
fixed at all iterations over k ∈ Z+.

B. MATHEMATICAL MODEL OF THE NONHOLONOMIC
MOBILE ROBOT
For i ∈ In, the kinematic motion of the ith differential-drive
mobile robot at the kth iteration is given by the following
state-space form:

xi,k (t+1) = xi,k (t)+1T cos θi,k (t)[vi,k (t)+Dvi,k (t)]

yi,k (t+1) = yi,k (t)+1T sin θi,k (t)[vi,k (t)+Dvi,k (t)]

θi,k (t + 1) = θi,k (t)+1T [ωi,k (t)+ Dωi,k (t)]

Yxi,k (t) = xi,k (t)+ Nxi,k (t)

Yyi,k (t) = yi,k (t)+ Nyi,k (t)

Y θi,k (t) = θi,k (t)+ Nθi,k (t)

xi,k (0) = xi,k0, yi,k (0) = yi,k0, θi,k (0) = θi,k0

(1)

where 1T is the sampling time, xi,k (t), yi,k (t), θi,k (t) are
the states of mobile robot which represent the Carte-
sian coordinates and heading direction in the world
frame respectively, vi,k (t), ωi,k (t) are the control inputs
which represent the linear and angular velocities respec-
tively, Yxi,k (t),Yyi,k (t),Y θi,k (t) are the system outputs, and
Dvi,k (t),Dωi,k (t),Nxi,k (t),Nyi,k (t),Nθi,k (t) are the distur-
bances and measurement noises.

From the above kinematic equation (1), the nonholonomic
constraint of the differential-drive mobile robot that the wheel

cannot slip in the lateral direction is given in the form as

xi,k (t + 1)− xi,k (t)
1T

sin θi,k (t)

−
yi,k (t + 1)− yi,k (t)

1T
cos θi,k (t) = 0 (2)

Let

ξi,k (t) =
[
xi,k (t) yi,k (t) θi,k (t)

]T
ui,k (t) =

[
vi,k (t) ωi,k (t)

]T
ηi,k (t)

=
[
Yxi,k (t) Yyi,k (t) Y θi,k (t)

]T
ςi,k (t) =

[
Dvi,k (t) Dωi,k (t)

]T
γi,k (t)

=
[
Nxi,k (t) Nyi,k (t) Nθi,k (t)

]T
B[ξi,k (t)] = 1T

 cos θi,k (t) 0
sin θi,k (t) 0

0 1

, C =

 1 0 0
0 1 0
0 0 1


Then (1) can be rewirrten as

ξi,k (t + 1) = ξi,k (t)+ B[ξi,k (t)]ui,k (t)
+B[ξi,k (t)]ςi,k (t)

ηi,k (t) = Cξi,k (t)+ γi,k (t), ξi,k (0) = ξi,k0

(3)

We first note that the robot motion equation (3) satisfies
the following properties.
Property 1: The matrix function B[ξi,k (t)] is globally Lip-

schitz in ξi,k (t) or ‖B[ξi,k (t)] − B[ξj,k (t)]‖ ≤ cB‖ξi,k (t) −
ξj,k (t)‖ for all k ≥ 0, t ∈ [0,T ], i ∈ {1, 2, . . . , n} and for
some positive constant cB.
Property 2: The matrix B[ξi,k (t)] is bounded as
‖B[ξi,k (t)]‖ ≤ bB, where bB is a positive constant. Further-
more, CB[ξi,k (t)] is a full-column rank matrix.
Remark 1: Note that the above properties are also given

in [37] for nonholonomic mobile robot. Further, we can
note that the matrix CB(k) has full-column rank rather than
full-row rank and the number of system inputs is less than the
number of system outputs, which leads to the dissatisfaction
as assumption A3 stated in [32].

C. FORMATION CONTROL OBJECTIVE
In this paper, the formation control objective is to develop
an appropriate algorithm such that a group of mobile robots
track a reference trajectory while maintaining a desired geo-
metric shape including positions and orientations. Specially,
as stated in Section I.A, each robot vi in the distributed
directed graph network G can keep a desired deviation di(t)
from the virtual robot v0 which creates the reference trajec-
tory r(t) for all time steps over a finite interval. That is, for
i ∈ In and t ∈ [0,T ]

lim
k→∞

ηi,k (t) = r(t)+ di(t) = ηdi (t) (4)

In developing the controller, we impose two assumptions
as follows:
Assumption 1: Suppose that the desired formation trajec-

tory is not influenced by the disturbances and measurement
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noises for t ∈ [0,T ]. The desired formation trajectory for
robot i at iterative learning algorithm design is given as ηdi (t),
there exists a unique controller udi (t) that can control the
mobile robot vi to track ηdi (t) exactly, which can be repre-
sented as {

ξdi (t + 1) = ξdi (t)+ B[ξ
d
i (t)]u

d
i (t)

ηdi (t) = Cξdi (t), ξ
d
i (0) = ξ

d
i0

(5)

and the desired input udi (t) satisfies ‖u
d
i (t)‖ ≤ bu.

Assumption 2: For all k ≥ 0, t ∈ [0,T ], the initial state
errors, disturbances and measurement noises are bounded as
‖ξi,k (0)−ξdi (0)‖ ≤ bξ0 ,‖ςi,k (t)‖ ≤ bς , ‖γi,k (t)‖ ≤ bγ where
bξ0 , bς and bγ are positive constants.
Remark 2: As in [37], we know that the desired formation

trajectory is usually not influenced by the disturbances and
measurement noises. Further, from [32] and [38], we know
that the initial state errors, disturbances and measurement
noises are bounded, so the Assumptions 1-2 are reasonable.

Note that the mobile robot is influenced by the bounded
initial state shifts, disturbances, noises and communication
delays, which causes the formation control objective (4) may
not be accomplished accurately. Thus, we attempt to guaran-
tee the trajectory tracking errors ei,k (t) = ηdi (t) − ηi,k (t) of
each mobile robot to reach to a certain bound for i ∈ In and
t ∈ [1,T ]

lim sup
k→∞

‖ei,k (t)‖ ≤ be (6)

where be ≥ 0 depends on bξ0 , bς and/or bγ .
Denote the relative position and orientation formation

between the robot vi and robot vj at kth iteration as ηij,k (t) =
ηi,k (t) − ηj,k (t), and denote dij(t) = di(t) − dj(t) (ηdij(t) =
ηdi (t)− η

d
j (t) = dij(t)) as the desired relative formation from

vi to vj. Then, it is clearly that if (6) is achieved, the formation
tracking error also can be guaranteed. That is, for i ∈ In and
t ∈ [1,T ], the formation tracking error eij,k (t) = ηdij(t) −
ηij,k (t) satisfies

lim sup
k→∞

‖eij,k (t)‖ ≤ bη (7)

where bη is also a certain bound depending on bξ0 , bς
and/or bγ .

III. CONTROLLER DESIGN
A. CURRENT-ITERATION ITERATIVE LEARNING CONTROL
Incorporating current state feedback with open-loop ILC is
an useful method to prevent transient tracking errors from
increasing too large before convergence [22]. The general
current-iteration ILC algorithm is given by

uk+1(t) = uk (t)+ L1ek (t + 1)+ L2ek+1(t) (8)

for the k + 1th iteration and as shown in Fig.1. ek+1(t) =
yd (t) − yk+1(t) is the output tracking error, and L1 and L2
are the learning gain matrices. The control signal consisting
of both predictive learning term uk (t) + L1ek (t + 1) at time
step t + 1 that from the kth iteration information stored

FIGURE 1. Current-iteration ILC architecture.

in memory and current learning term L2ek+1(t) that boosts
system stability against unpredictable uncertainties.

B. ILC-BASED ALGORITHM DESIGN
In order to satisfy the formation control for the group of
differential-drive mobile robots with communication delays
under disturbances and noises environment, the distributed
algorithm based on current-ILC scheme is presented as shown
in Fig.2. Clearly, from this figure the algorithm is given by:

ui,k+1(t) = ui,k (t)+ 0i,k (t)

×

{∑
j∈Ni

aijeij,k (t + 1)+ ai0ei,k (t + 1)
}

+0′i,k+1(t)

×

{∑
j∈Ni

aijêij,k+1(t − τij,k+1(t))

+ ai0êi,k+1(t − τii,k+1(t))
}

(9)

FIGURE 2. A diagram of the algorithm (9) performed for the robot i ,
i ∈ In.
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where ui,0(t) is the initial input for the robot vi, and it can be
selected arbitrarily,0i,k (t) and0′i,k (t) ∈ R2×3 are the learning
gain matrixes that satisfy ‖0i,k (t)‖ ≤ b0 and ‖0′i,k (t)‖ ≤
b0′ , τij,k+1(t) and τii,k+1(t) are denote the communication
time-delays from robot vj to vi and from robot v0 to vi at time t
of k+1th iteration, respectively, êij,k+1(t) and êi,k+1(t) satisfy

êij,k+1(t) =

{
eij,k+1(t), if t ≥ 1
0, if t ≤ 0

êi,k+1(t) =

{
ei,k+1(t), if t ≥ 1
0, if t ≤ 0

(10)

In particular, we assume that the mobile robots in the
formation system have a synchronous clock. This assumption
is reasonable because the synchronization protocols [39] can
be used to synchronize the asynchronous clocks in the case
of local internal clocks drift. Then we add the time-label for
every communication information, and denote the sending
time and the receiving time for the robot vi receives informa-
tion from robot vj at time t of k + 1 iteration as Stji,k+1 and
Rtij,k+1, respectively, and we can calculate the delay τij,k+1(t)
as the number of sampling periods:

τij,k+1(t) = b
Rtij,k+1 − Stji,k+1 + 0.51T

1T
c (11)

It is worth noting that the delays only affect the current
learning term in controller (9) since the predictive learning
term can use the whole state information of its neighbor
through memory rather than communication. Furthermore,
it is reasonable to consider 0 ≤ τij,k+1(t) ≤ T due to
t ∈ [0,T ]. Hence, we can assume that τij,k+1(t) ∈ [0, τmax]
with τmax < N , and we can define

âdij =

{
aij, if τij,k+1(t) = d
0, otherwise

âdi0 =

{
ai0, if τij,k+1(t) = d
0, otherwise

(12)

for any d ∈ [0, τmax], and Âd
= [âdij], �̂

d
=

diag{âd10, â
d
20, . . . , â

d
n0}. Then, with these definitions,

we modify the controller (9):

ui,k+1(t)

= ui,k (t)+ 0i,k (t)

×

{∑
j∈Ni

aijeij,k (t + 1)+ ai0ei,k (t + 1)
}

+0′i,k+1(t)

×

{∑
j∈Ni

τmax∑
d=0

âdij êij,k+1(t − d)+ â
d
i0êi,k+1(t − d)

}
(13)

C. CONVERGENCE ANALYSIS
With the help of the 2-D analysis approach and graph theory,
the dynamic evolution and formation error convergence of the

multi-robot system under the proposed algorithm (13) will
be analyzed in this part. At first, we introduce the state error
between kth iteration and desired values at time t + 1:

1ξi,k (t + 1) = ξdi (t + 1)− ξi,k (t + 1)

and introduce the output error between k + 1th iteration and
desired values at time t + 1:

1ηi,k (t + 1) = ηdi (t + 1)− ηi,k+1(t + 1)

And input error between k + 1th iteration and desired values
at time t:

1ui,k+1(t) = udi (t)− ui,k+1(t)

Then by noting the assumption 1, deduce from (3), (5)
and (13), we can get the error equations (14)–(16), as shown
at the top of the next page, where f (1ξi,k (t)) = 1ξi,k (t) +
[B[ξdi (t)] − B[ξi,k (t)]]udi (t) and g(1ηi,k (t)) = 1ηi,k (t) +
[B[ηdi (t)]− B[ηi,k+1(t)− γi,k+1(t)]]u

d
i (t).

It can be easily seen that the equations (14), (15) and (16)
describe the dynamic evolution along both a finite time axis
and an infinite iteration axis of state error, output error and
input error, respectively. This reflects the fundamental 2-D
dynamic process and makes the 2-D analysis approach (for
a 2-D Roesser system) suitable for the convergence analysis.
Motivated by this observation, we denote

1ξk (t) = [1ξT1,k (t),1ξ
T
2,k (t), . . . ,1ξ

T
n,k (t)]

T

1uk (t) = [1uT1,k (t),1u
T
2,k (t), . . . ,1u

T
n,k (t)]

T

1ηk (t) = [1ηT1,k (t),1η
T
2,k (t), . . . ,1η

T
n,k (t)]

T

1η̂k (t) = [1η̂T1,k (t),1η̂
T
2,k (t), . . . ,1η̂

T
n,k (t)]

T

F(1ξk (t)) = [f T(1ξ1,k (t)), f (1ξ2,k (t))T,

. . . , f (1ξn,k (t))T]T

G(1ηk (t)) = [gT(1η1,k (t)), g(1η2,k (t))T,

. . . , g(1ηn,k (t))T]T

ςk (t) = [ςT1,k (t), ς
T
2,k (t), . . . , ς

T
n,k (t)]

T

γk (t) = [γ T
1,k (t), γ

T
2,k (t), . . . , γ

T
n,k (t)]

T

Bk (t) = diag{B[ξ1,k (t)],B[ξ2,k (t)], · · · ,B[ξn,k (t)]}

0k (t) = diag{0[ξ1,k (t)], 0[ξ2,k (t)], · · · , 0[ξn,k (t)]}

and then we can rewrite (14), (15) and (16) in a compact form
of

1ξk (t + 1) = F(1ξk (t))+ Bk (t)1uk (t)− Bk (t)ςk (t)

1uk+1(t) = 1uk (t)

−

τmax∑
d=0

[(LÂd + �̂
d )⊗ I2]0′k+1(t)1η̂k (t − d)

− [(LA +�)⊗ I2]0k (t)1ξk (t + 1)

+ [(LA +�)⊗ I2]0k (t)γk (t + 1)

1ηk (t + 1) = G(1ηk (t))+ Bk+1(t)1uk+1(t)

−Bk+1(t)ςk (t)− γk+1(t + 1)+ γk+1(t)

(17)
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1ξi,k (t + 1) = ξdi (t + 1)− ξi,k (t + 1)

= f (1ξi,k (t))+ B[ξi,k (t)]1ui,k (t)− B[ξi,k (t)]ςi,k (t) (14)

1ui,k+1(t) = udi (t)− ui,k+1(t)

= 1ui,k (t)− 0′i,k+1(t)
{∑
j∈Ni

τmax∑
d=0

âdij[1η̂i,k (t − d)−1η̂j,k (t − d)]+ â
d
i0[1η̂i,k (t − d)]

}

−0i,k (t)
{∑
j∈Ni

aij[1ξi,k (t + 1)−1ξj,k (t + 1)]+ ai01ξi,k (t + 1)
}

−0i,k (t)
{∑
j∈Ni

aij[γj,k (t + 1)− γi,k (t + 1)]− ai0γi,k (t + 1)
}

(15)

1ηi,k (t + 1) = ηdi (t + 1)− ηi,k+1(t + 1)

= 1ηi,k (t)+ B[ηdi (t)]u
d
i (t)− B[ηi,k+1(t)− γi,k+1(t)]ui,k+1(t)

−{B[ξi,k+1(t)]ςi,k+1(t)+ γi,k+1(t + 1)− γi,k+1(t)}

= g(1ηi,k (t))+ B[ξi,k+1(t)]1ui,k+1(t)− {B[ξi,k+1(t)]ςi,k+1(t)+ γi,k+1(t + 1)− γi,k+1(t)} (16)

Consequently, for the equation (17), we substitute the first
line into the second line, the second line into the third line,
and denote,

4 = [(LA +�)⊗ I2]

4̂d
= [(LÂd + �̂

d )⊗ I2]

211,k (t) = F(1ξk (t))

212,k (t) = O3n×3n

213,k (t) = O3n×3n

214,k (t) = Bk (t)1uk (t)

221,k (t) = −Bk+1(t)40k (t)F(1ξk (t))

222,k (t) = G(1ηk (t))

223,k (t) = −Bk+1(t)
τmax∑
d=0

4̂d0′k (t)1η̂k (t − d)

224,k (t) = Bk+1(t)[I2n −40k (t)Bk (t)]1uk (t)

231,k (t) = −40k (t)F(1ξk (t))

232,k (t) = O3n×3n

233,k (t) = −
τmax∑
d=0

4̂d0′k (t)1η̂k (t − d)

234,k (t) = (I2n −40k (t)Bk (t))1uk (t)

ϒ1,k (t) = −Bk (t)ςk (t)

ϒ2,k (t)=Bk+1(t)40k (t)Bk (t)ςk (t)+Bk+1(t)40k (t)γk (t+1)

−Bk+1(t)ςk (t)− γk+1(t + 1)+ γk+1(t)

ϒ3,k (t) = 40k (t)Bk (t)ςk (t)+40k (T )γk (t + 1)

we can gain a 2D Roesser system as

1ξk (t + 1) = 211,k (t)+212,k (t)+213,k (t)

+214,k (t)+ ϒ1,k (t)

1ηk (t + 1) = 221,k (t)+222,k (t)+223,k (t)

+224,k (t)+ ϒ2,k (t)

1uk+1(t) = 231,k (t)+232,k (t)+233,k (t)

+234,k (t)+ ϒ3,k (t) (18)

Then, in order to obtain the the ultimately bounded conver-
gence result for the 2-D Roesser system (18), we first propose
the following convergence result.
Lemma 1: Given 1ξk (t), 1ηk (t) and 1uk (t) over t ∈

[0,T ] and k ∈ Z+, if there exist nonnegative scalars b1 ≥ 0,
b2 ≥ 0, b3 ≥ 0, b4 ≥ 0, b5 ≥ 0, b6 ≥ 0, θ11 ≥ 0, θ12 ≥ 0,
θ13 ≥ 0, θ14 ≥ 0, θ21 ≥ 0, θ22 ≥ 0, θ23 ≥ 0, θ24 ≥ 0,
θ31 ≥ 0, θ32 ≥ 0, θ33 ≥ 0, and 0 ≤ θ34 < 1, such that

‖1ξk (t + 1)‖ ≤ θ11‖1ξk (t)‖ + θ12‖1ηk (t)‖

+ θ13

τmax∑
d=0

‖1η̂k (t − d)‖

+ θ14‖1uk (t)‖ + b1
‖1ηk (t + 1)‖ ≤ θ21‖1ξk (t)‖ + θ22‖1ηk (t)‖

+ θ23

τmax∑
d=0

‖1η̂k (t − d)‖

+ θ24‖1uk (t)‖ + b2
‖1uk+1(t)‖ ≤ θ31‖1ξk (t)‖ + θ32‖1ηk (t)‖

+ θ33

τmax∑
d=0

‖1η̂k (t − d)‖

+ θ34‖1uk (t)‖ + b3
‖1ξk (0)‖ ≤ b4, ‖1ηk (0)‖ ≤ b5, ‖1u0(t)‖ ≤ b6

(19)

where

1η̂k (t) =

{
1ηk (t), if t ≥ 1
0, if t ≤ 0

,
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then lim sup
k→∞

‖1ξk (t)‖ ≤ b7, lim sup
k→∞

‖1ηk (t)‖ ≤ b8 and

lim sup
k→∞

‖1uk (t)‖ ≤ b9 for t ∈ [1,T ], where b7 ≥ 0, b8 ≥ 0

and b9 ≥ 0 are a certain bound depending on b1, b2, b3, b4
and/or b5

In Appendix A, we give the proof of Lemma 1. It is
observable that (19) sets up a 2-D Rosser system regarding
ξk (t), ηk (t) as well as uk (t). It suggests that the ultimately
bounded convergence is attained in respect of 2-D Roesser
systems using time-changing as well as iteration-changing
matrix parameters. In addition to that, using Lemma 1, we are
capable of proposing the following performance associated
development outcome regarding multi-robot systems.
Theorem 1: For the multi-robot system (3) linked to the

directed graph G, in a case that the distributed algorithm (9)
is put to application with the gain matrix 0k (t) providing
satisfaction, in respect of all t ∈ [0,T ] and k ∈ Z+

‖I2n − [(LA +�)⊗ I2]× 0k (t)Bk (t)‖ ≤ bc < 1 (20)

thereafter, the development aim (7) is able to be attained.
Proof: Based on the Property 1 and Assumption 2,

we can yield:

‖F(1ξk (t))‖ ≤ (1+ cBbu)‖1ξk (t)‖

‖G(1ηk (t))‖ ≤ (1+ cBbu)‖1ηk (t)‖ + cBbubγ

Note also that � is the weight matrix associated with the
accessibility of virtue leader for the robots in G, Thus, the uni-
form boundedness of (LA+�)⊗I2 and (LÂd+�̂

d )⊗I2 can be
guaranteed, which denotes as ‖4‖ = ‖(LA+�)⊗I2‖ ≤ b41
and ‖4̂d

‖ = ‖(LÂd + �̂
d )⊗ I2 ⊗ I2‖ ≤ b42 .

Then, by noting the notation in (18) and convergence con-
dition (20), we can derive

‖211,k (t)‖ ≤ θ11‖1ξk (t)‖

‖212,k (t)‖ ≤ θ12‖1ηk (t)‖

‖213,k (t)‖ ≤ θ13
τmax∑
d=0

‖1η̂k (t − d)‖

‖214,k (t)‖ ≤ θ14‖1uk (t)‖

‖221,k (t)‖ ≤ θ21‖1ξk (t)‖

‖222,k (t)‖ ≤ θ22‖1ηk (t)‖

‖223,k (t)‖ ≤ θ23
τmax∑
d=0

‖1η̂k (t − d)‖

‖224,k (t)‖ ≤ θ24‖1uk (t)‖

‖231,k (t)‖ ≤ θ31‖1ξk (t)‖

‖232,k (t)‖ ≤ θ32‖1ηk (t)‖

‖233,k (t)‖ ≤ θ33
τmax∑
d=0

‖1η̂k (t − d)‖

‖234,k (t)‖ ≤ θ34‖1uk (t)‖

‖ϒ1,k (t)‖ ≤ b1
‖ϒ2,k (t)‖ ≤ b2
‖ϒ3,k (t)‖ ≤ b3

where θ34 = ‖I2n − [(LA + �) ⊗ I2] × 0k (t)Bk (t)‖ and
0 ≤ θ34 < 1, moreover, θ11 = 1 + cBbu, θ12 = 0, θ13 = 0,
θ14 = bB, θ21 = bBb41b0(1 + cBbu), θ22 = 1 + cBbu,
θ23 = bBb42b0′ , θ24 = bBθ34, θ31 = b41b0(1 + cBbu),
θ32 = 0, θ33 = b42b0′ , θ34 = 1 + b41b0bB, b1 = bBbς ,
b2 = bBb41b0(bBbς + bγ ) + bBbς + 2bγ + cBbubγ , b3 =
b41b0(bBbς + bγ ) b4 = bξ0 , b5 = bξ0 + bγ .
Furthermore, according to the assumptions 1 and 2, and

choosing a bounded initial input ui,0(t) likes ui,0(t) =
0, we can have ‖1ξk (0)‖ ≤ bξ0 , ‖1ηk (0)‖ ≤ bξ0 +
bγ , ‖1u0(t)‖ ≤ bu. Then according to lemma 1,
lim sup
k→∞

‖1ξk (t)‖, lim sup
k→∞

‖1ηk (t)‖ and lim sup
k→∞

‖1uk (t)‖

will be ultimately bounded with bounds that are functions of
bξ0 , bς , and bγ at t ∈ [1,T ], which means the formation
objective (7) can be achieved.
Remark 3: Theorem (1) shows that the differential-drive

mobile robots formation can be realized in the realistic situ-
ation involving initial state shifts, disturbances, noises, and
communication time-delays. Furthermore, the convergence
condition is only depend on the learning gain matrix 0i,k (t),
which means the learning gain matrix is mainly affected
the transient tracking errors rather than the ultimate tracking
errors. The simulation results in Section IV show this conclu-
sion.

As presented by the Theorem 1, it is evident to us that
the matrix norm condition (20) performs a quintessential
function in getting their convergence findings in respect of
multi-robot development jobs. In addition, convergence state
is dependent on the network topology information of the
contact between the robots. As a result, whether the condi-
tion (20) can be met or not is essentially needed to be taken
into consideration. It provides us with motivation for the
establishment of an essential prerequisite in the subsequent
theorem for attaining the convergence state (20).
Theorem 2: Provided t ∈ [0,T ] and k ∈ Z+, there can be

discovered a gain matrix0k (t) that satisfies the condition (20)
only if the directed graph G̃ contains a spanning tree.

Proof: We develop this proof by using the proof by
contradiction.

Suppose that the directed graph G̃ does not contain a span-
ning tree, subsequently, we can obtain a conclusion from [40,
Lemma 3.3] that [LA +�]⊗ I2 contains a minimum of one
zero eigenvalue.

Hence, I2n − [(LA + �) ⊗ I2 has at least one eigenvalue
that is equal to one. This can lead to

‖I2n − [(LA +�)⊗ I2‖

≥ ρ(I2n − [(LA +�)⊗ I2) = 1 (21)

which is a contradiction with (20) can be obtained.

IV. SIMULATION AND EXPERIMENT STUDIES
A. SIMULATION
In this section, a numerical example is provided to verify the
proposed algorithm. The multi-robot system considered in
this part is a six-robot system, and the reference trajectory
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is set as

r(t) =

 xr (t)yr (t)
θr (t)

 =


7.5 sin(2π t1T/45)
10 sin(4π t1T/45)

arctan
(
8 cos(4π t1T/45)
3 cos(2π t1T/45)

)


for t ∈ [0, 300] and 1T = 0.1s, it takes 30s to complete
one iteration. The simulation objective is to enable these six
mobile robots to track the reference trajectory while main-
taining the regular hexagon formation as Fig. 3. The distance
between the robot vi and virtue robot v0 is denoted by s(t),
which is varies dynamically with respect to the time step.
In this example, we consider s(t) = 1+ 0.5 sin(4π t1T/45),
and then the desired formation trajectory of these six robots
system is shown in Fig. 4, where the red arrow is the moving
direction.

FIGURE 3. The desired geometric formation shape of the six-robot system
in the Euclidean plane.

FIGURE 4. Desired formation trajectory of the six-robot system in the
Euclidean plane.

The communication directed graph of this six-robot system
is shown in Fig.5, It can be validated that G̃ has a spanning
tree. The delays are assumed to be evenly distributed from 0
to 31T (0 ∼ 0.3s), i.e. τij,k ∈ {1, 2, 3, 4}. To simulate the
dynamic changing of the communication delay along time
axis and iteration axis, we define κ(t, k) as a function of

FIGURE 5. Directed graph G̃ with six controlled robots and a virtual robot,
and the weight of this directed graphs is 1.

both time variable t and iteration variable k , and set this
signal varying over the interval [0, 1] by using the MATLAB
command ‘rand’. The delay is distributed as follows:

1) If κ(t, k) ∈ [0, 0.15) and κ(t, k) = 1, then τij,k = 1.
2) If κ(t, k) ∈ [0.15, 0.45) then τij,k = 2.
3) If κ(t, k) ∈ [0.45, 0.8) then τij,k = 3.
4) If κ(t, k) ∈ [0.8, 1) then τij,k = 4.
The initial states, disturbances and measurement noises of

the ith differential driving mobile robot at the kth iteration
take the form of

ξi,k (0) = ξdi (0)+ δξi,k
ςi,k (t) = ς (t)+ δςi,k (t)

γi,k (t) = γ (t)+ δγi,k (t)

where ξdi (0) is the desired initial states according to the
formation task, δξi,k = [δxi,k , δyi,k , δθi,k ]

T is the initial state
error varying along iteration axis, its elements δxi,k and δyi,k
varying over the interval [−0.05, 0.05], δθi,k varying over the
interval [−(0.05/180)π, (0.05/180)π]. ς (t) and γ (t) are the
iteration independent disturbances and measurements noises:

ς (t) = [0.01 sin(0.02t), (0.05/180)π cos(0.02t)]T

γ (t) = [0.025 sin(0.03t), 0.025 sin(0.03t),

× (0.1/180)π cos(0.05t)]T

δςi,k (t) = [δDvi,k (t), δDωi,k (t)]
T and δγi,k (t) = [δNxi,k (t),

δNyi,k (t), δNθi,k (t)]
T are the iteration varying disturbances and

measurements noises, and the elements δDvi,k (t) varying over
the interval [−0.01, 0.01], δDωi,k (t) varying over the inter-
val [−(0.1/180)π, (0.1/180)π], δNxi,k (t) and δNyi,k (t) varying
over the interval [−0.025, 0.025], δNθi,k (t) varying over the
interval [−(0.1/180)π, (0.1/180)π]. These varying functions
are simulated using the MATLAB command ’rand’. In addi-
tion, we set the initial input of robot vi is ui,0(t) ≡ 0 for
all t .
From Theorem 1, the algorithm (9) with the gain matrix

0i,k (t) is chosen as

0i,k (t) = 0.08
[
cos(θi,k (t)) sin(θi,k (t)) 0

0 0 1

]
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FIGURE 6. Tracking performance of robots at 1th, 100th, 200th, 300th and
1000th iteration.

And check the matrix norm condition (20):

‖I2n − [(LA +�)⊗ I2]× 0k (t)Bk (t)‖ ≤ 0.9783 < 1

for all t ∈ [0,T ] and k ∈ Z+. Moreover, we chosen 0′i,k (t) =
0i,k (t) for convenience.

Fig.6 shows the simulation results about the output trajec-
tories of the six mobile robots after the k = 1, k = 200,
k = 800 and k = 2000 iterations. It can be observed from
Fig.6 that the formation tracking performance is improved as
iteration increases.

To illustrate the importance of the current learning term and
delay compensation in (9), we repeated the same simulation
tests but with the control schemes:

ui,k+1(t) = ui,k (t)+ 0i,k (t)

×

{∑
j∈Ni

aijeij,k (t + 1)+ ai0ei,k (t + 1)
}

(22)

ui,k+1(t) = ui,k (t)+ 0i,k (t)

×

{∑
j∈Ni

aij[ηdij(t + 1)− ηij,k (t + 1)]

+ ai0[r(t + 1)+ di(t + 1)− ηi,k (t + 1)]
}

+0′i,k+1(t)

×

{∑
j∈Ni

aij[ηdij(t)− (ηi,k+1(t)

− ηi,k+1(t − τij,k+1(t)))]

+ ai0[ηdi (t − τii,k+1(t))− ηi,k+1(t)]
}

(23)

where controller (22) contains only predictive learning terms
and controller (23) ignores the affect of time delay.
The max position and orientation errors of the formation

system under controller (9), (22) and (23) over the 2000 iter-
ations are shown in Fig.7. It can be observed from this

FIGURE 7. The maximum absolute position and orientation error of the
six mobile robots system along iteration axis, black line(controller(9)),
blue line(controller(22)) and red line(controller(23)).

figure that the controller (23) is useless since time delay
is ignored, and the controller (22) has the same conver-
gence results as controller (9) after 1600th iterations, but
with larger transient tracking errors and slower convergence
speed. Furthermore, we can observe that the tracking errors
of controller (9) and controller (22) are both decreased to
vary within a small bound because of the initial state shifts,
disturbances and measurements noises, which is equivalent
to the conclusion of the theorem 1.

B. EXPERIMENT
To further verify the effectiveness of applying the proposed
distributed learning algorithm (9) to real formation task,
we conduct a experiment using three actual mobile robots.

The experimental platform consists of three Pioneer 3-DX
differential-drive mobile robots as shown in Fig.8. These
robots are manufactured by Adept Inc, and can directly
respond to linear and angular velocity commands. The forma-
tion task involves four application programs, one is the center
server running on the base station personal computer (PC)
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FIGURE 8. Poineer 3-DX mobile robots experimental platform.

FIGURE 9. Application program interfaces of center server and robot
controller.

FIGURE 10. Directed graph G̃ with three controlled robots and a virtual
robot, and the weight of this directed graphs is 1.

which acts as the virtual robot, and the other three are running
on the mobile robots which control the motion of the robot,
the sample time 1T of these programs is set as 0.2s. In spe-
cial, with the optical encoders installed on the driving motor
axes and the camera mounted on the robot, self-localization
for mobile robots in experimental environment can be real-
ized by using the ceiling vision and the odometry method (see
more detail in [29]), which is used to provide the position
and orientation of the robot in the ground. These programs

communication with each other via TCP/IP protocol over
a WiFi network, and the interfaces of these programs are
shown in Fig.9, and the communication directed graph of this
three-robots system is shown in Fig.10. The total time of one
iteration is set as 28s, i.e. t ∈ [0, 140] because 1T = 0.2s.
and the linear and angular velocity of the virtual robot are
set as

v0(t) =


0.35

16− (t ∗ 0.2− 4)2

16
, if 0 ≤ t ≤ 20

0.35 if 20 < t < 120

0.35
16− (t ∗ 0.3− 24)2

16
, if 120 ≤ t ≤ 140

w0(t) = v0(t)/1.5

which means the motion trajectory of virtual robot is a circle
of radius 1.5m, and the start velocity and stop velocity are set
as zero to gain a good dynamic performance.

The desired geometric formation shape of the three-robot
system in the form of a isosceles triangle in the virtual robot
body coordinate is shown in Fig.11, where the time-varying
distances between the robot vi and virtual robot v0 are denoted
by D1(t) and D2(t), and

D1(t) = 1+ 0.2 cos(t ∗ 2π/28)

D2(t) = 0.6+ 0.1 cos(t ∗ 2π/28)

With these setting, the desired formation trajectory of these
three robots system is shown in Fig.12.

FIGURE 11. The desired geometric formation shape of the three-robot
system.

At the initial stage of experimental tests, we performed the
simulation tests for the first 300 iterations to generate the
initial controller for the real robot, and we do not take the
initial state shifts, disturbances, measurements noises and
time-delays into account at this stage. Then the controller
trained from simulation is applied to the real robots and
Fig.13 shows the flow chart of the programs:
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FIGURE 12. Desired formation trajectory of the three-robot system in the
Euclidean plane.

FIGURE 13. Flow chart of the programs.

1) Set TCP/IP Network according to the communication
topology;

2) Each robot move to the initial position via a point
stabilization controller [30];

3) Start formation task, the controller (9) is applied to
generate the control input for the mobile robot at each sample
period;

4) Record the running data, and restart again the processor
from 2-4;

Fig.14 shows the maximum absolute position and orienta-
tion errors of the six mobile robots system along iteration axis
in simulation and experimental results, where the simulation
results for the first 300 iterations and the experimental results
for the following 25 iterations. We can see that the max posi-
tion and orientation errors almost decrease to zero for the first
300 iterations, and have a sudden spike at the 301th iteration
as the results come from real robot at this point. Because of
the initial state shifts, disturbances and measurements noises
in real experimental environment, the experimental error also
decreases to a small bound as the same as simulation example
in Section IV.A. The output trajectories of the three mobile
robots after the k = 1, k = 3, k = 10 and k = 25 iter-
ations (the iteration is recount start from real experiment)
are shown in Fig.15, It can be observed from Fig.15 that
the formation tracking performance is improved as iteration
increases.

FIGURE 14. The maximum absolute position and orientation errors.

FIGURE 15. Experimental results for tracking performance of robots at
1th, 3th, 10th, 25th.

V. CONCLUSION
In this paper, the robust formation control issue of a group
of differential-drive mobile robots in face of the initial state
shifts, disturbances, measurement noises and communication
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time-delays has been considered. A distribute algorithm is
proposed to generate the linear and angular velocity for each
mobile robot, which utilizes both the information obtained
from previous trial as experience and current formation error
to refine the control input. By using the 2-D analysis approach
and graph theory, the convergence analysis of the learning
processes is addressed. It shows that we can obtain the
convergence result of formation error under a matrix norm
condition, which provides the guidance on chosen learning
gain matrix. The advantage of proposed algorithm compared
with the controller only contains the predictive learning term
and the controller ignores the affect of time delay is illustrated
by simulation. The effectiveness of applying the proposed
algorithm to real formation task has been demonstrated via
the experiment test. The results show that the multi-robot
system performs well for formation tracking after multiple
repetition. Further study will focus on how to extend the
proposed algorithm to solve robust formation control issue
of multiple differential-drive mobile robots under switching
topology.

APPENDIX A
PROOF OF LEMMA 1

Proof: The proof process is divided into three steps by
using the inductive analysis approach:
Step 1: Let t = 0, and we prove that lim sup

k→∞
‖1ξk (1)‖ ≤

b7(1), lim sup
k→∞

‖1ηk (1)‖ ≤ b8(1) and lim sup
k→∞

‖1uk (1)‖ ≤

b9(1), where b7(1) ≥ 0, b8(1) ≥ 0 and b9(1) ≥ 0 are a certain
bound depending on b1, b2, b3, b4 and/or b5.
According inequation (19), we can direct obtain that:

lim sup
k→∞

‖1ξk (1)‖ ≤ θ11b4 + θ12b5 + θ13 × 0+ θ14b6 + b1

≤ b7(1) lim sup
k→∞

‖1ηk (1)‖

≤ θ21b4 + θ22b5 + θ23 × 0+ θ24b6 + b2
≤ b8(1)

and

‖1uk+1(1)‖ ≤ [θ31b7(1)+ θ32b8(1)+ θ33 × 0+ b3]
+ θ34‖1uk (1)‖

≤ [θ31b7(1)+ θ32b8(1)+ b3]
k∑
i=0

θ i34

+ θk+134 ‖1u0(1)‖

By noting the condition that 0 ≤ θ34 < 1 and ‖1u0(0)‖ ≤ b6,
we can obtain

lim sup
k→∞

‖1uk+1(1)‖ ≤ [θ31b7(1)+ θ32b8(1)+ b3](1− θ34)−1

≤ b9(1)

where b7(1), b8(1), b9(1) are denote as

b7(1) = θ11b4 + θ12b5 + θ14b6 + b1
b8(1) = θ21b4 + θ22b5 + θ24b6 + b2
b9(1) = [θ31b7(1)+ θ32b8(1)+ b3](1− θ34)−1

Step 2: Given any time step t ≥ 0, we assume that for all
time steps l = 0, 1, . . . , t , we have lim sup

k→∞
‖1ξk (l)‖ ≤ b7(l),

lim sup
k→∞

‖1ηk (l)‖ ≤ b8(l) and lim sup
k→∞

‖1uk (l)‖ ≤ b9(l) hold

where b7(l) ≥ 0, b8(l) ≥ 0 and b9(l) ≥ 0 are certain bounded
depending on b1, b2, b3, b4 and/or b5. Then we will prove that
we can find b7(t+1) ≥ 0, b8(t+1) ≥ 0 and b9(t+1) ≥ 0 to
guarantee lim sup

k→∞
‖1ξk (t+1)‖ ≤ b7(t+1), lim sup

k→∞
‖1ηk (t+

1)‖ ≤ b8(t+1) and lim sup
k→∞

‖1uk (t+1)‖ ≤ b9(t+1), where

b7(t + 1) ≥ 0, b8(t + 1) ≥ 0 and b9(t + 1) ≥ 0 are certain
bounded depending on b1, b2, b3, b4 and/or b5.
At first, take the limit of k → ∞ at both sides of the

inequations at the first two lines of (19), we deduce that:

lim sup
k→∞

‖1ξk (t + 1)‖ ≤ θ11 lim sup
k→∞

‖1ξk (t)‖

+ θ12 lim sup
k→∞

‖1ηk (t)‖

+ θ13

min(τmax,t)∑
d=0

lim sup
k→∞

‖1ηk (t−d)‖

+ θ14 lim sup
k→∞

‖1uk (t)‖ + b1

≤ θ11b7(t)+ θ12b8(t)

+ θ13

min(τmax,t)∑
d=0

b8(t − d)

+ θ14b9(t)+ b1

≤ b7(t + 1)

lim sup
k→∞

‖1ηk (t + 1)‖ ≤ θ21 lim sup
k→∞

‖1ξk (t)‖

+ θ22 lim sup
k→∞

‖1ηk (t)‖

+ θ23

min(τmax,t)∑
d=0

lim sup
k→∞

‖1ηk (t−d)‖

+ θ24 lim sup
k→∞

‖1uk (t)‖ + b1

≤ θ21b7(t)+ θ22b8(t)

+ θ23

min(τmax,t)∑
d=0

b8(t − d)

+ θ24b9(t)+ b2
≤ b8(t + 1)

Then consider the time t + 1 and k + 1th iteration for the
third line of (19), we have:

‖1uk+1(t + 1)‖

≤

[
θ31‖1ξk (t + 1)‖ + θ32‖1ηk (t + 1)‖

+ θ33

min(τmax,t)∑
d=0

‖1ηk (t − d)‖ + b3
]

+ θ34‖1uk (t + 1)‖
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≤

[
θ31‖1ξk (t + 1)‖ + θ32‖1ηk (t + 1)‖

+ θ33

min(τmax,t)∑
d=0

‖1ηk (t − d)‖ + b3
] k∑
i=0

θ i34

+ θk+134 ‖1u0(t + 1)‖

Take the limit of k →∞ at both sides of the inequality above,
and combine with the condition that 0 ≤ θ33 < 1, we can
deduce that:

lim sup
k→∞

‖1uk+1(t + 1)‖

≤

[
θ31b7(t + 1)+ θ32b8(t + 1)

+ θ33

min(τmax,t)∑
d=0

b8(t − d)+ b3
]
(1− θ34)−1

≤ b9(t + 1)

where b7(t + 1), b8(t + 1), b9(t + 1) are denoted as

b7(t + 1) = θ11b7(t)+ θ12b8(t)+ θ13

min(τmax,t)∑
d=0

b8(t − d)

+ θ14b9(t)+ b1

b8(t + 1) = θ21b7(t)+ θ22b8(t)+ θ23

min(τmax,t)∑
d=0

b8(t − d)

+ θ24b9(t)+ b2

b9(t + 1) =
[
θ31b7(t + 1)+ θ32b8(t + 1)

+ θ33

min(τmax,t)∑
d=0

b8(t − d)+ b3
]
(1− θ34)−1

Step 3: Let b7 = maxt∈[1,T ]b7(t), b8 = maxt∈[1,T ]b8(t)
and b9 = maxt∈[1,T ]b9(t), Based on the previous two steps,
we can gain that lim sup

k→∞
‖1ξk (t)‖ ≤ b7, lim sup

k→∞
‖1ηk (t)‖ ≤

b8 and lim sup
k→∞

‖1uk (t)‖ ≤ b9. Thus this lemma can be

proofed completely.
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