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ABSTRACT In this paper, the evaluation of a spectrum sensing strategy based on the frequency domain
entropy applied to cognitive radio networks is presented. Entropy estimation is performed using Bartlett
periodogram. A tradeoff between variance and the spectral resolution for Bartlett periodogram is presented.
This tradeoff affects the probability of detection and false alarm of the spectrum sensing strategy in
environments with low signal-to-noise ratio and noise uncertainty. The Entropy detector is optimal when
the product of the number of segments and the number of points used is equal to the number of available
samples of the received signal.

INDEX TERMS Cognitive radio, signal detection, entropy, Bartlett’s periodogram, SNR wall.

I. INTRODUCTION
Nowadays, the widespread adoption of the idea that everyone
should be communicated anywhere, anytime and using differ-
ent wireless technologies has led to an exponential growth in
wireless data traffic. These trends in the use of wireless data
challenge the design and development of emerging applica-
tions and compromise the quality of service of current and
future wireless services, since the available spectral resources
may be insufficient to accommodate them all.

One approach to providing the spectral resources needed
is to modify the current spectrum allocation policies to make
more efficient use of the frequency bands. However, it may
take several years to reuse spectrum bands for another use due
to regulatory processes [1]. This motivates the development
of innovative ways to exploit the radio spectrum to identify
the spectral resources needed to meet future demands for
wireless and mobile traffic.

By integrating capabilities such as spectrum aware-
ness, spectrum allocation, and spectrum mobility, Cognitive
Radio (CR) is considered as the potential technology to
enable the so-called dynamic spectrum access by allowing
smart terminals (i.e., secondary users, SUs) take advantage
of unused spectrum resources of primary users (PUs) [2].

However, a real-time estimate of the presence of signals
to determine if spectral resources are available becomes
increasingly challenging as networks become denser and
more heterogeneous. Therefore, a great effort on the design
of spectrum sensing (SS) techniques that consider the hetero-
geneity of current and future networks is made.

To date, various SS techniques have been proposed and
studied, ranging from simple energy detection (ED), cyclo-
stationary feature detection (CFD) and the matched fil-
ter (MF) [3], to detection based on eigenvalues (EBD) [4]
and covariance-based detection (CBD) [5]. Each of the pro-
posed techniques presents a tradeoff of performance and
computational complexity. Among these techniques, ED is
the most implemented and studied due to its simplicity and
that an acceptable performance tradeoff can be reached [6].
Furthermore, ED is able to resolve about the availability of
the spectrum without prior knowledge of the primary signals,
which is an attractive feature for CR applications.

However, the random and non-avoidable variation of the
noise present in every wireless communication system, also
known as noise uncertainty, significantly reduces the perfor-
mance of ED, especially when the signal-to-noise ratio (SNR)
is low [7]. Therefore, it is necessary to investigate other SS
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techniques that provide better performance with low com-
plexity, without requiring knowledge of primary signals.

Entropy-based detection (EnBD) has recently been pro-
posed as an interesting option for SS. It is robust to noise
uncertainty and, its implementation complexity is compara-
ble to ED since it does not require any prior knowledge of the
primary signal waveform [8]–[14].

According to the information theory, entropy quantifies
the predictability (or the randomness) of an event. The less
predictable an event is, the higher its entropy. Therefore,
the entropy of a random variable depends on its distribution.
For any random variable, the maximum possible entropy
occurs when it shows a uniform distribution (i.e., all its values
have equal probability). Entropy, therefore, can be used as
a metric for SS to determine the presence of communica-
tion signals in a channel, considering an expected statistical
behavior of these signals and noise. An example of the use
of entropy for SS is shown in [9], where the output of a
Matched Filter is used to estimate the entropy of received
signals affected by noise. Here, for a given number of sample
points of the received signal, entropy reaches its maximum
when the signal is composed only by noise. On the other
hand, if a correlated signal is present, the entropy decreases
proportionally to the SNR level [9].

Several works have already studied Entropy-based Detec-
tion (EnBD) for spectrum sensing in CR.Nagaraj [9] combine
entropy detection in the time domain (EnBD-TD) with a
matched filter. The results reported demonstrate that if a
modulated signal is present the entropy of the received signal
is reduced. Therefore, it allows identifying its presence. How-
ever, the detector requires perfect knowledge of the primary
waveform and synchronization, so it is not suitable for CR
implementations.

Zhang et al. [10] apply the Fourier Transform to the
received signal and partition the probability space into various
fixed dimensions, where the spectrum magnitude is the ran-
dom variable. They demonstrate that the entropy is constant
under fixed dimensions of the probability space and that
the EnBD is robust to the noise uncertainty. Furthermore,
the authors demonstrate that the EnBD in the frequency
domain (EnBD-FD) outperforms the EnBD in the time
domain (EnBD-TD). Entropy in the frequency domain is also
estimated in [11], where a comparative performance analysis
is carried out. The results demonstrate that the EnBD-FD
provides higher sensing reliability in low SNR scenarios
(below -15 dB) in comparison to traditional spectrum detec-
tors (i.e., Energy and Cyclostationary Feature detectors).

The proposal in [12] analyzes the performance of
EnBD-FD considering multipath fading channel. The
reported results demonstrate that the performance of
EnBD-FD over Rice and Rayleigh channel is comparable to
that over additive white Gaussian noise (AWGN) channel.
Therefore, the performance of EnDB-FD is not affected by
multipath fading. Similarly, in [13] the EnBD-FD is applied
for SS in cognitive radio for maritime environments. They
state that the entropy detector provides the best performance

for the particularly adverse characteristics of the maritime
environments, as compared to other basic SS techniques.

In [14] a two-stage EnBD-FD is proposed to improve
the performance of the detector reported in [11]. With this
strategy, the authors reduce the computational complexity of
the detector by applying the Fast Fourier Transform (FFT)
algorithm to estimate the amplitude spectrum. They also con-
clude that if the power spectrum of the received signal is con-
sidered instead of the amplitude spectrum, the performance
of the detector is improved. Nikonowicz et al. [15] proposed
a hybrid detection. It combines the decisions made from two
detectors, one based on ED and another one on EnBD-FD.
However, given that the proposed scheme also relies on ED,
it is still prone to the noise uncertainty effects.

According to the works analyzed above, two important
remarks arise: (i) the EnBD in the frequency domain provides
better performance than in the time domain and, (ii) the
estimation of the spectral entropy is better when considering
the power spectrum instead of the amplitude spectrum. From
these remarks, it is straightforward to think that a correct
estimation of the power spectrum is of paramount importance
in the performance of EnBD-FD.

The periodogram is the method proposed in [14] to esti-
mate the power spectral density (PSD). The periodogram is
an asymptotically unbiased but non-consistent estimate of
true PSD, as demonstrated in [16]. The lack of consistency
of the estimator leads to poor quality estimate. Having in
mind that the performance of the EnBD-FD depends on the
accurate representation of the PSD, in this work we propose
to estimate the PSD using Bartlett’s periodogram [17], which
is a non-parametric estimator, asymptotically unbiased and
consistent. The results obtained demonstrate that if the quality
of the PSD estimate is improved, the performance of the
EnBD-FD is also improved.

The Bartlett periodogram is a proposed method for reduc-
ing the variance of the PSD estimate. It consists of dividing
the N -point data sequence into K nonoverlapping segments,
in which each segment has a length of M points. According
to the analysis of the method, the reduction of the variance
occurs at the expense of a reduced resolution in the PSD
estimate. This is, for a given K , the variance and the spectral
resolution are reduced by a factor of K , as demonstrated
in [16]. This means that some of the spectral components of
the true power spectrum could not be resolved in the PSD
estimate.

In this work, we demonstrate that tradeoff between the vari-
ance and spectral resolution of Bartlett periodogram affects
the performance of EnBD-FD. On one side, reducing the
variance of PSD estimate achieves a consistent estimate of
the true power spectrum, which provides a better estimate of
the entropy of the received signal. On the other hand, the loss
of spectral resolution would result in the loss of significant
information regarding the composition of the received signal,
which could turn into a poor estimation of signal’s entropy.
Therefore, an optimal tradeoff must be figured out according
to the M and K parameters of Bartlett periodogram.
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To analyze the tradeoff mentioned above, a system-level
evaluation test-bed is implemented. After extensive evalu-
ations, the obtained results allow to conclude that the best
tradeoff between M and K is when M = K .

The rest of the article is structured as follows: In section 2,
the theoretical description of EnBD-FD is presented.
Section 3 briefly describes Bartlett’s periodogram. The eval-
uation test-bed is explained in section 4, and performance
results are presented in section 5. Finally, we present our
conclusion and future work in section 6.

II. ENTROPY-BASED SPECTRUM SENSING
Spectrum sensing can be modeled as a binary hypothesis test
problem. The hypotheses under test are:

H0 : x (n) = ω (n) (1)

H1 : x (n) = s (n)+ ω (n) (2)

For n = 0, 1, . . . ,N − 1. Hypotheses H0 and H1 stand for
idle and busy frequency band, respectively.

In (1) and (2), x(n), s(n), and ω(n) correspond to the
received signal, the modulated (primary) signal, and the noise
samples, respectively, and N is the number of samples con-
sidered for spectrum sensing. ω(n) following a zero-mean
Gaussian distribution with variance σ 2

0 is assumed. s(n) can
be a deterministic signal if a Gaussian channel is considered,
or a stochastic signal with a mean µ1 and variance σ 2

1 if a
multipath fading channel is considered. It is assumed that s(n)
and ω(n) are independent.

Hypothesis testing is carried out by comparing a test statis-
tic, T (x), with a suitable threshold, λ, according to some rule
that provides the best tradeoff among the specificity and the
power of the test.

Shannon’s entropy, denoted by H , is a measure of the
uncertainty present in a random variable. It can be quantified
by the following equation [18]:

H (Y ) = −
L∑
i=1

pi log2(pi) (3)

whereY is regarded as the random variable, pi denotes the dis-
crete probability mass function of Y, and L is the dimension
of the probability space.

There exist several techniques for estimating the entropy of
a random variable based on a finite number of observations.
Given its reduced complexity, in this work, the histogram-
based entropy estimation is considered [19].

To obtain the histogram of a data setY={y0, y1, . . . , yN−1}
the range (ymax − ymin) of values in Y is divided into L bins
with constant width A. Let ni be the number of elements in Y
falling inside the i-th bin such that,

∑L
i=1 ni = N , the entropy

estimate, H (Y ), is obtained as [14]:

H (Y ) = −
L∑
i=1

ni
N
log2

ni
N

(4)

For EnBD, the detection strategy consists of testing the
entropy obtained by (4) as:

H (Y )

H0
>

≤

H1

λ (5)

where λ is the threshold determined as in [14] by:

λ = HL + Q−1
(
1− Pfa

)
σn (6)

where

HL = ln
(
2−1/2L

)
+ 2−1γ + 1 (7)

being the theoretical noise entropy, L is the number of bins,
γ is the Euler-Mascheroni constant, Q−1 (·) is the inverse
Q function, σn is the standard deviation of H under H0,
and Pfa is the expected probability of false alarm for the
Neyman-Pearson criterion.

As discussed in [9]–[13], [15], detection techniques based
on the entropy calculated from the amplitude spectrum of
the received signal provides acceptable performance and are
robust to the noise uncertainty. However, the performance
of EnBD-FD can still be improved if the entropy is cal-
culated from the power spectrum instead of the amplitude
spectrum, as reported in [14]. Differently from [14], in this
work, we propose to estimate the power density spectrum
using Bartlett periodogram, because it provides a higher
quality estimation of the PSD as compared to the simple
periodogram.

III. BARTLETT PERIODOGRAM
In order to obtain Bartlett periodogram, the N -point data
sequence x(n) is divided into K nonoverlapping segments of
length M . This result into the K data segments:

xi (n) = x (n+ iM) (8)

for i = 0, 1, . . . ,K − 1 and n = 0, 1, . . . ,M − 1.
Then, the periodogram for each of the K segments is

obtained as follow:

Pixx (f ) =
1
M

∣∣∣∣∣
M−1∑
n=0

xi(n)e(−j2π fn)
∣∣∣∣∣
2

, i = 0, 1, . . .K − 1

(9)

The Bartlett periodogram is calculated by averaging the set
of K periodograms obtained from (8), this is [16]:

PBxx (f ) =
1
K

K∑
i=1

Pixx (f ) (10)

The variance and the resolution are two parameters that define
the quality of the PSD estimate. The resolution for Bartlett
periodogram is defined as follows [20]:

Res
{
PBxx(f )

}
=

0.89 ∗ 2π
M

= 0.89
K ∗ 2π
N

(11)
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Meanwhile, the asymptotic variance is defined as:

lim
N→∞

[
Var

{
PBxx (f )

}]
≈ lim

N→∞

[
1
K
Var

{
Pixx (f )

}]
≈

1
K
P2xx (f ) (12)

From (12) it can be observed that by increasing the number of
averages K in the Bartlett method, reduce the variance of the
PSD estimate by the same factor. This results in a smoother
representation of the true PSD. However, as K increases,
the length of the data set considered for obtaining the peri-
odograms described by (9) is reduced as N/K , resulting in a
window whose spectral width has been increased by K . This,
in consequence, reduces the frequency resolution by the same
factor, as can be observed in (11).

Considering the tradeoff mentioned above, in this work we
propose to evaluate the EnBD-FD performance according to
the variance and resolution of the PSD estimate. With this,
we demonstrate that the quality of the PSD estimate directly
affects the performance of the EnBD-FD. The results ana-
lyzed in the following section provide insightful information
on this.

IV. ANALYSIS OF THE BARTLETT’S PERIODOGRAM
PARAMETERS IN ENTROPY ESTIMATION
In order to evaluate the impact of the resolution-variance
tradeoff of Bartlett’s periodogram in the performance of the
EnBD-FD, a simulation-based testbed was designed using
Numerical Simulation Software.

The structure of the testbed is depicted in the flowchart
presented in Figure 1. The parameters of the simulation are
summarized in Table 1. For the evaluation, several values
of only noise samples (simulating the hypothesis H0) and
several values of modulated signal plus noise (simulatingH1)
were generated to calculate H for each case. Each realiza-
tion considers specific values for M and K in the Bartlett
technique.

According to the histogram method with L = 15 bins, for
each realization, the entropy H is estimated. In addition, the
variance and the resolution of the PSD estimate are computed
for each case. Tables 2 and 3 summarize the average values
forH given each case ofH0 andH1, respectively, considering
different K and M values. Meanwhile, Table 4 presents the
numerical difference betweenH(H0) andH(H1) for each K -M
pair evaluated.

From Tables 2 and 3, we can observe that the variance
of the PSD estimate decreases as K increases. This obser-
vation is valid for both cases, H0 and H1. It is well known,
as the variance is reduced a smoothed estimate of the PSD is
achieved. Similarly, the resolution decreases as K increases.
Low resolution means that some of the spectral components
cannot be resolved, resulting in a loss of spectral information
of the received signal. These results demonstrate that there is
a tradeoff between the variance and the resolution of the PSD
estimate.

FIGURE 1. Process for estimating the variance, resolution and entropy
under hypotheses H0 and H1.

On the other hand, to demonstrate that the tradeoff (vari-
ance and resolution) has an impact on the entropy esti-
mate, Figure 2 presents the entropy calculated for each case
of H0 and H1 as a function of the Resolution-to-Variance
Ratio (RVR) for eachK–M pair considered in our evaluations.
The parameter RVR is computed as follows:

RVR (K ,M) = log2

(
R (K ,M)
V (K ,M)

)
(13)

where R(K,M) and V(K,M) correspond to the resolution and
variance, respectively, obtained for some K and M values.
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TABLE 1. Simulation parameters.

TABLE 2. Variance, resolution and H values using Bartlett’s periodogram
under H0.

TABLE 3. Variance, resolution and Hvalues, Using Bartlett’s Periodogram
Under H1.

TABLE 4. Numerical difference of entropy H, for H0 and H1.

From figure 2 it is possible to observe that H presents
an absolute maximum under H0 and an absolute minimum
under H1. Moreover, the absolute maximum and absolute
minimum are located at K = 32 and M = 128 (for H0) and
K = 64 and M = 64 (for H1), respectively. However, from
Table 4 it is observable that the largest numerical difference
between H(H0) and H(H1) is when K = M . Therefore,
it is possible to conclude that the most favorable case for
differentiating among H0 and H1 is for K = M .

FIGURE 2. Entropy (H) as a function of the resolution-to-variance ratio
under H0 (top) and H1 (bottom).

V. PERFORMANCE EVALUATION OF
THE PROPOSED DETECTOR
In order to evaluate the impact of Bartlett’s periodogram
parameters on the EnBD performance, a system level testbed
simulation was designed using numeric simulation software.
The description of the testbed components is depicted in
Figure 3.

The performance of EnBD-FD is evaluated by twometrics:
the probability of detection Pd and the probability of false
alarm Pfa. The Pd quantifies the ability of correctly detecting
the presence of a primary signal. Meanwhile, the Pfa mea-
sures the possibility of erroneously detecting the presence of
a primary signal when only noise is present.

The simulation parameters regarding the signals involved
in the detection process have the same consideration
in Table 1. Although, in this case, a factor of noise uncertainty
to the noise process is added to verify that the detector is
still robust to the noise uncertainty. According to the model
proposed in [7], noise uncertainty is generated. The results
were obtained through Monte Carlo simulations considering
10,000 realizations for each metric.

Figure 4 shows the sensibility curves for the EnBD-FD
considering Bartlett periodogram. Sensitivity curves describe
Pd as a function of the SNR of the received signal. Therefore,
they allow identifying theminimum SNR necessary to comply
with a specific Pd . The curves in Figure 4 are determined for
different K and M values.

In accordance to the analysis provided in Section IV,
the best performance is observed when K = M . This sup-
ports the initial assumption that the best performance of the
EnBD-FD is achieved when the optimal tradeoff between
K and M is reached.

The scheme proposed in [14] estimates H from the peri-
odogram of the received samples. Then, H is compared to
two thresholds, λ1 and λ2, to solve the state of the channel

64832 VOLUME 6, 2018



G. Prieto et al.: On the Evaluation of an Entropy-Based SS Strategy Applied to CR Networks

FIGURE 3. EnBD-FD with Bartlett periodogram incorporated.

of interest. The thresholds are in function of an adjustment
factor 10 given by λ1 = λ−10 and λ2 = λ+10, from (6)
λ is calculated. IfH < λ1, the channel is busy, and ifH > λ2,
the channel is considered free. However, if λ1 < H < λ2
the last two estimates of H are averaged and compared to λ,
and in this way, the condition of the channel is decided.

FIGURE 4. Sensitivity curves for different values of M, for a Pfa = 0.1.

FIGURE 5. Comparison of sensitivity curves for Pfa = 0.1.

This scheme provides a better performance than that of single
threshold strategies.

To validate that the scheme detection proposed in this
paper is an improvement with respect to the scheme reported
in [14], sensitivity curves for EnBD-FD based on the single
periodogram (EnBD− FDP) and EnBD-FD based on the
Bartlett periodogram (EnBD− FDB) are obtained (consider-
ing the simulation parameters from Table 1), the results are
presented in Figure 5.

In Figure 5 it is observed that the EnBD− FDB for
K = 64 presents a better performance as compared to the
EnBD− FDP. Moreover, the EnBD− FDB achieves the best
performance when the double threshold strategy is applied
and 10 = 0.4, this validates the assumptions made in
Section IV. Figure 6 shows the ROC curves of the results
shown in figure 5 for an SNR of −17 dB.
In order to verify the robustness of the EnBD− FDB to the

noise uncertainty, the curvesPfa(desired)−Pfa(obtained) are com-
puted and presented in Figure 7. These curves describe the
Pfa obtained by simulation as a function of the Pfa expected
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FIGURE 6. Comparison of ROC curves for SNR = −17 dB.

FIGURE 7. Evaluation of the Pfa under UNC = 5 dB.

or desired by the Neyman-Pearson criteria as defined in (6).
For these results, we consider a noise uncertainty factor
UNC = 5 dB.
For each EnBD-FD strategy analyzed, robustness can be

observed. This is, even under the presence of uncertainty in
the noise power, thePfa obtained in simulations is comparable
to that expected from the analytical model.

VI. CONCLUSION
In this work, the Entropy Based Detector-Frequency Domain
with Bartlett’s periodogram incorporated (EnBD− FDB),
was proposed. The tradeoff between variance and spec-
tral resolution of Bartlett periodogram has an impact on
the performance of entropy detector. It was observed that
the estimation of the power spectrum of the samples of
the received signal is critical depending on periodogram
used, impacting the estimation of H and therefore perfor-
mance EnBD− FDP, when choosing between hypotheses
H0 and H1. With Bartlett’s periodogram, the variance in the
estimation of the power spectrum decreases as its spectral

resolution increases, it can be observed that the tradeoff
between variance and resolution is optimized as K tends
to
√
N , which considerably improves the detection perfor-

mance, in terms of Pfa and Pd , under conditions of UNC
in low SNR environments. The improvement observed in
the performance of the EnBD− FDB as the variance and
resolution tend to its optimal tradeoff is due to the fact that
the statistical distribution of the samples received is modified,
differentiating correctly between H0 and H1 as the SNR
decreases. As a future work, we consider to evaluate the
EnBD-FD applying the Welch’s periodogram as a strategy
to improve the estimation of the power spectrum. Welch’s
periodogram divides into K blocks the segment of data from
the sample of the received signal; unlike the Bartlett peri-
odogram, Welch’s periodogram overlapping between blocks
is allowed. In this way, the length of the sequence does not
vary, as Bartlett method does, but by increasing the number
of averaged periodograms, the variance is reduced. Therefore,
we would expect to improve the resolution bymaintaining the
same variance as the Bartlett periodogram.
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