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ABSTRACT Network virtualization technology is generally envisaged as a promising technology to con-
sequently satisfy various types of service requirements. On the other hand, non-orthogonal multiple access
(NOMA) technology has the potential to significantly increase the spectral efficiency of the system.However,
previous works that jointly address these two issues have not considered the dynamic resource allocation
issue in this context. In this paper, we propose a slice-based virtual resources scheduling schemewith NOMA
technology to enhance the quality-of-service (QoS) of the system. We formulate the power granularity
allocation and subcarrier allocation strategies into a constrained Markov decision process problem, aiming
at the maximization of the total user rate. In order to further avoid the curse of dimensionality and the
expectation calculation in the optimal value function, we develop an adaptive resource allocation algorithm
based on approximate dynamic programming to solve the problem. Extensive simulation works have been
conducted under various system settings, and the results demonstrate that the proposed algorithm can
significantly reduce the outage probability and increase the user data rate.

INDEX TERMS 5G slice, adaptive virtual resource allocation, constrained Markov decision process,
approximate dynamic programming, NOMA.

I. INTRODUCTION
The fifth generation (5G) mobile cellular systems are meant
to create an all-encompassing and inter-connected environ-
ment and revolutionize the way of communication, in which
the tremendous growth in the number of users can be
natively supported while a certain level of quality-of-service
(QoS) is guaranteed [1]. The rising popularity of smart
phones and portable wireless devices result in a variety
of QoS requirements of 5G mobile network. The services
of 5G cellular networks are typically classified into three
main categories [2], namely Enhance Mobile Broadband
(eMBB), massiveMachine Type of Communication (mMTC)
and Ultra Reliable Low Latency Communication(uRLLC).
In order to satisfy various QoS requirements of different
services, the system architecture must be extremely flexible
and adaptive [3]. To support the aforementioned heteroge-

neous services, wireless network virtualization is considered
to be the key enabler to enhance wireless networks with
the desired flexibility to provide the required QoS for each
category of service [4]. The wireless network virtualization
enables the radio resources to be abstracted and sliced into
several virtual resources, so that the network infrastructure
can be shared by different services [5]. Therefore, network
slices, the most attractive and efficient solution to provide
the required QoS, is considered the key enabler to support
such functional and operational diversity. Specifically, 3GPP
defines the network slice as ‘‘A logical network that pro-
vides specific network capabilities and network character-
istics’’ [6]. A network slice consists of a radio access net-
work (RAN) and a core network (CN) [7]. In this paper,
we employ RAN slicing to partition different components
of the radio access resources. From a service perspective,
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the expected behavior of RAN is parameterized with a set
of QoS attribute [8]. During the past years, the 5G network
slicing concept has been thoroughly studied. In the context of
resource isolation for network slicing, Nojima et al. [9] intro-
duce two resource allocation methods, which are the con-
ventional ordinary packet scheduling algorithm with a slight
modification and dynamic resource block (RB) allocation.
Parsaeefard et al. [10] propose a joint BS assignment, sub-
carrier allocation, and power allocation algorithm to maxi-
mize the network sum rate, while satisfying the minimum
reserved traffic rate of each slice and considering the down-
link dynamic resource allocation in multi-cell virtualized
wireless networks (VWNs) through orthogonal frequency
division multiple access(OFDMA)system. Tang et al. [11]
investigate the joint sub-carrier allocation and caching place-
ment approach for two network slices, and an average delay
optimization problem for one slice with user data rate guar-
antee for the other slice is formulated. The work in [12]
establishes an analytical model for the admissibility region
of 5G networks based on the semi-Markov decision process,
and Q-learning was utilized to design an adaptive dynamic
resource allocation optimization scheme to improve system
performance.

Moreover, efficient spectrum exploitation is required in
response to a surge in network traffic volume and densifica-
tion of end devices [13]. However, the traditional technolo-
gies of slicing such as Spectrum Planning do not consider the
power domain of resources [14], as such, this paper adopts
NOMA system to improve the spectral efficiency. In NOMA,
multiple users can access the same system, the same code
domain, and the same frequency resources simultaneously.
By assigning different power levels to multiple users and
implementing Successive Interference Cancelation (SIC),
multi-user detection can be achieved [15]. The works in [16]
and [17] study virtual resource allocation in NOMA system.
In [18], users access different network slices according to
service types, and the system performs power allocation with
given channel assignment under average CSI for different
slices. This research proposes a method to jointly optimize
power allocation and channel assignment by incorporating
the matching algorithm with the optimal power allocation,
taking the max-min fairness into consideration. The scheme
outperforms the traditional multiple access schemes (MA)
resource scheduling method by significantly improving the
performance of the worst users.

Generally speaking, the system needs to allocate resources
dynamically according to different services demands. How-
ever, most of the existing research works only investigate
one type of service requirement on the same time slot for
resource allocation. For the issues above, this paper proposes
a CMDP-based network slice adaptive virtual resource allo-
cation algorithm. Moreover, most studies cannot guarantee
the efficiency of resource allocationwhen the number of users
takes large, which may lead to the curse of dimensionality.
Therefore, we adopt the approximate dynamic programming
to avoid this problem. The main contributions of this paper

are summarized as follows.
• This paper focuses on the dynamic virtual resource allo-
cation problem in 5G slicing network with the downlink
NOMA system, considering the user outage probability
and the queue caching in slice to guarantee the Qos of
slices. So as that, this paper formulates this problem as a
CMDP to establish a dynamic optimization model using
the total rate of slices as a reward.

• For the purpose of avoiding calculating the expectation
in the optimal value function, the post-decision state
is defined. Based on the post-decision state, this paper
defines the basis functions of the allocation actions,
which are defined as action of adjusting power allo-
cation granularity and action of subcarrier allocation,
using the approximate dynamic programming (ADP)
theory. Therefore, the post-decision state space could
be replaced and the computation complexity could be
reduced, which means that the curse of dimensionality
problem is avoided.

• An adaptive virtual resource allocation algorithm based
on ADP is proposed. In this algorithm, the resource
allocation strategy, which aims to allocate power and
subcarrier, is dynamically adjusted through constant
interaction with the external environment. The numer-
ical results demonstrate that the system performance is
optimized.

The rest of the paper is organized as follows. In section II,
the systemmodel is briefly described. In Section III, we intro-
duce the slice scheduling model and the user rate of NOMA
system. In section IV, the virtual resource adaptive allocation
algorithm based on ADP is described in detail. Simulation
results are shown in Section V. Finally, conclusions are drawn
in Section VI.

II. SYSTEM MODEL
This section describes the systemmodel adopted in this paper.
As shown in figure 1, at first, users access different service
slices, and then slices allocate users to different resource
blocks (RB), meanwhile, the resource scheduler allocates
resources in real time based on the monitored information
of slices during the period. This paper considers downlink of
the NOMA system, and users who access the same subcarrier
with different channel gains. Due to the diversity of services,
the resource manager will customizes the allocation strategy
for each slice according to its demands. For the sake of the
dynamic changing characteristics of slice load, the resource
manager adjusts the allocation strategy for each slice in real
time on the basis of the resource utilization and the slice
queue.

In addition, the resource manager can adaptively learns
and adjusts power and subcarrier allocation strategy based
on the monitored rate and queue information of slices. If the
current queue of slices is too long, the resource manager will
determine the power allocation strategy for slices. At the same
time, it must be considered that if too many users use the
same subcarrier, it will causes a lot of interference, which
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FIGURE 1. System scenario

will leads to an increase in the user’s outage probability.
Therefore, in order to guarantee the quality of service of
slices, the resource manager also needs to adjust the subcar-
rier allocation strategy of slices.

III. NETWORK MODEL
A. SCHEDULING MODEL FOR SLICES
In this system, the network will determine the service types
of users at first, and then users will be connected to the
corresponding network slices according to users’ different
demands. Each slice serves the same service type of user,
so each slice has its specific virtual resource requirements,
including bandwidth and power requirements. This article
develops a special resource allocation policy for each slice.

Assume that there are L network slices that support L dif-
ferent types of services, and there are kl, l = {1, 2, . . . . . . ,L}
users per slice. The user arrivals at time slot t is A (t),
A (t) ∈ A, whereA represents the maximum number of users

in the physical region. At time slot t , the user arrival amount
is equal to the sum of user arrivals for all slices:

A(t) =
L∑
l=1

Al (t) (1)

where Al (t) represents the number of users arriving on the
slice l at time slot t .

As shown in figure 2, the request queue of slice l is QFl (t),
QFl (t) <∞,∀l ∈ L. At first, users access the corresponding
network slices according to different services requirements at
time t , and then the slice manager allocates all slice users to
different resource blocks (RBs) according to the opportunity
scheduling policy [13]. Successive interference cancelation
(SIC) is applied at the receivers to enable multiple users
multiplexed on the same subchannel with different power
levels under NOMA system. According to protocol, the mul-
tiplexed users with higher channel gain can correctly decode
and remove the interference from users with lower channel
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FIGURE 2. Scheduling model for slices.

gains on the same subchannel [21]. Generally, users with
low channel gain are allocated higher power, and users with
high channel gain are allocated lower power [20]. Therefore,
the scheduling strategy ensures that the channel gains of
users accessing the same subcarrier are different. The request
queues of users accessing the Resource Block(RB) n of slice
l is defined as QSl,n(t), Q

S
l,n(t) <∞. Define Pl n as the prob-

ability that the user of slice l is processed on RB n, n ∈ N ,
where N represents the set of RBs, and |N | = N . The total
probability that the user of slice l is processed at time slot t
can be expressed as ∑

n∈Nl

Pln = 1 (2)

Among them, Nl represents a set of RBs allocated to slice l.
According to equation (2), the system will provide services
for all users scheduled to the RB. Defined QS (t) = (QSl,n(t))
as the user queue length of slice l on RB n within time slot t .
The queue caching at time t can be expressed as

Q(t) =
∑
l∈L

∑
n∈N

QSl,n(t) (3)

From equation (3), further define the average queue caching
Q̄ as:

Q̄ = lim sup
T→∞

1
T

∑
t∈T

E {Q(t)} (4)

B. USER RATE OF NOMA SYSTEM
The slice manager considers the channel conditions of each
user and allocates users to different RBs. In this paper, all
channels in the system are independent and identically dis-
tributed Rayleigh fading channels, and the channel noise is
additive white Gaussian noise. We assume that the bandwidth
B is divided into a set of subcarriersM = {1, 2, . . . . . . ,M},
and there are kl,m users of slice l are multiplexed on
the subcarrier m. Define the total transmit power of sub-
carrier m as Pm, i.e.Pm =

∑kl,m
i=1 pi,m. This paper consid-

ers the downlink transmission, and all users are indexed
based on their channel gains in an increasing order such as∣∣h1,m∣∣2 < · · · < ∣∣hi−1,m∣∣2 < ∣∣hi,m∣∣2 < · · · < ∣∣hl,m∣∣2, where i

represents the index of users in the subcarrierm. According to
the user’s channel gain, different users can be distinguished
by power level. In the downlink of NOMA, the superimposed
signal on the transmit terminal through subcarrier m is Sm,
which can be expressed as:

Sm =
kl,m∑
i=1

√
pi,mxi,m (5)

Here, xi,m denotes the transmission signal of user i on sub-
carrier m. and pi,m denotes the power allocated to user i on
subcarrier m. At the receiver, the received signal according to
NOMA system of user i on subcarrierm can be expressed as::

yi,m = hi,mSm + ωi,m (6)

In (6), hi,m is the realistic Rayleigh fading channel coefficient
between the BS to the ith user on subcarrier m, and ωi,m is a
zero-mean complex additive white Gaussian noise (AWGN)
random variable with variance σ 2

m.
According to Shannon’s capacity formula, by utilizing the

SIC technique at the receivers, the maximum achievable date
rate of the ith user on subcarrier m can be written as

ri,m = Bmlog2

1+
pi,m0i,m

1+
kl,m∑
j=i+1

pj,m0i,m

 (7)

From (7), it can be seen that for each user, the power allocated
for other users will have a great influence on its rate. Here,
Bm is the bandwidth of subcarrier m, and 0i,m is the carrier-
to-interference and noise ratio (CINR) of ith user, which can
be expressed as:

0i,m =
∣∣hi,m∣∣2/σ 2

m (8)

We assumed that the number of subcarriers accessed by the
slice l is M , so the total rate of slice l can be written as:

RMl =
M∑
m=1

kl,m∑
k=1

rk,m

=

M∑
m=1

kl,m∑
k=1

Bmlog2(1+
pi,m0i,m

1+
kl,m∑
j=i+1

pj,m0i,m

) (9)

The global outage probability of subcarrier m in the NOMA
system is defined as:

Pmtotal = 1− Pr {∀ri,m > Rmin
l },

i = {1, 2, · · · , kl,m}, l = {1, 2, · · · ,L} (10)

IV. PROBLEM FORMULATION AND ALGORITHM DESIGN
Using the user rate and scheduling model for slices presented
in the above, we formulate the virtual resource allocation
problem in slice-based network of NOMA system by apply-
ing the CMDP, and then propose a resource adaptive alloca-
tion algorithm based on ADP in this section.
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A. VIRTUAL RESOURCE ALLOCATION MODELING BASED
ON CMDP
In previous researches, thework on [22] investigates a scheme
to improves the power efficiency of NOMA by 45 to 54 per-
cent through maintaining each required minimum capacity
with the aim that minimize the total transmit power in VWN.
In [23], a joint power and subcarrier allocation scheme based
on successive convex approximation (SCA) and comple-
mentary geometric programming (CGP) was proposed with
the constrains of rate and subcarrier reservations. However,
in order to meet the delay requirements and the outage prob-
ability demands, only this paper works on the constrained
Markov decision process (CMDP) method for the resource
allocation problem of the slice network under the NOMA
system. In this section, we first define the state, action spaces,
state transition equation and reward function. At last, the opti-
mization problem based on the CMDP are defined.

1) SYSTEM STATE
At each time slot, the system state is related to the state and
action of the previous time slot. In this paper, we denote
the system state at time slot t consists of internal state u (t)
and external state w (t). The composite state of the proposed
CMDP formulation for the resource allocation is defined as
follows

S(t) = {u(t), ω(t)} (11)

Among them, the internal state u (t) describes the subcarrier
and power allocation of the slice l on the RB nwithin the time
period [t, t + 1]. Thus, the internal state u (t)can be expressed
as

u(t) = (uln(t))l∈L,n∈N = (Nln(t),Pmln(t))l∈L,n∈N ,m∈M (12)

From (12), Nln(t) represents the number of subcarriers
assigned to slice l by resource block RB n, and Pmln(t) rep-
resents the power granularity of allocated subcarrier m.
We define the external state w (t) as the weight of service

slices. At each time slot t , after the resource allocation is
completed, the weight of each slice is updated according to
the external environment, and the allocation action at the next
time slot is affected by the current slices weights. In this
paper, the weight of each slice is determined by service
demands of slices and states of the slice queues, which can
be expressed as

w(t) = (wl(t))l∈L (13)

Wherein, ωl(t) is the weight of service slice l updated at time
slot t . Specifically, the real-time weight of slice l on each sub-
carrier is calculated by using (14).

ωl(t)= −
lg δl
τl
× DHOL,l ×

Rl(t)
Rl(t)

(14)

Among them, δl is a constant between 0 and 1, τl represents
the packet loss rate related to the quality of service (QoS),
which indicating the maximum delay threshold allowed by

the slice l. DHOL,l represents the delay of the head of the
queue, Rl(t) is the ideal instantaneous rate of slice l in the
current time slot, and Rl (t) is the actual rate of slice l in the
current time slot.

2) ALLOCATION ACTIONS
When slicing queue is too long, the power granularity may
be adjusted to provide services for more users, or users can
be assigned to other subcarriers for services. However, if too
many users are connected to the same subcarrier, the outage
probability will be increased, while if too many subcarriers
are allocated, the queue caching of slices will become larger,
so it is important to balance the outage probability and queue
caching. Define As as action space when the state is s:

As = {αln (t) , βln (t)} (15)

In (15), αln (t) is the adjustment action of power allocation
granularity of the slice l on RB n at time slot t , and βln (t) is
the adjustment action of subcarrier allocation of slice l at the
time slot t .
• Action of Adjusting Power Allocation Granularity
In this paper, we put the power discretization into power
granularity, which can control the number of users in
each sub-carrier to meet the slicing queue requirements.
When the queue length of slices exceeds the maximum
value, the power allocation granularity of subcarrier m
will be reduced, so that more users are accessed within
subcarrier m. Otherwise, the power allocation granular-
ity of the subcarrier m may be increased, and this action
can improve the QoS of slices. The action of adjusting
power allocation granularity is defined as αln (t), so that
Pmln(t+1) = Pmln(t)± αln (t). Assuming that the number
of service users on subcarrier m of resource block n is k ,
the total power of the resource block n satisfies the
following conditions:

k∑
i=1

i
(
Pmln(t)± αln (t)

)
≤ Pmax (16)

After the power allocation granularity is determined at
time slot t , the maximum number of serving users on
subcarrier m at time slot t defined as kmmax(t):

kmmax(t) =

[
−
1
2
+

√
1
4
+

2Pmax

Pmln(t)± αln (t)

]
(17)

According to the power allocation granularity, the queue
of slice l at time slot t can be expressed as:

QSln(t) = QSln(t − 1)−
M∑
m=1

kmmax(t)+ Al (t) (18)

• Action of Subcarrier Allocation
Another allocation action is subcarriers allocation which
means adjustment of subcarrier number of slices.
According to formula (7), when power allocation gran-
ularity reduced, user noise and outage probability will
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be increased, and the rate will be decreased, which
seriously affects the QoS of slices. For this problem,
when the queue length of slice l exceeds the maximum
threshold value, and the power allocation granularity has
reached the minimum value, the systemwill considers to
allocate additional subcarriers for users of slice l. In this
paper, the adjustment action of subcarrier allocation is
defined as βln (t), which is expressed as

βln (t) = {−1,+1} (19)

It should be noted that the power granularity will not
changed after perform this action.

3) STATE TRANSITION EQUATION
According to the above, the state transition equation of the
system can be expressed as:

s(t + 1) = s(s(t), as(t),w(t + 1)) (20)

From equation (20), the state of the system at time slot t + 1
is obtained by the state and action at time slot t and the system
external state w(t + 1) at t + 1. In (20), as (t) represents the
resource allocation action for each slice at time slot t, i.e.
adjusting the power allocation granularity and adjusting the
number of subcarriers. In addition, the action as (t) is affected
by the global system states at the previous time slot, that is,
the internal state u (t) and the external state w (t).

The transfer relation equation (21) of the internal state u (t)
is shown in the bottom of the next page.

Among (21), 9N and 9P represent the transfer equations
of Nln(t) and Pmln(t), respectively. It is clear that, when the
power allocated to one subcarrier satisfies the constraint, and
the QoS and queue delay of slices can be satisfied by adjust-
ing the power allocation granularity, the system will only
chooses the action of adjusting power allocation granularity.
If the action of adjusting power allocation granularity cannot
satisfy these requirements, or the power cannot satisfy the
constrain, the system will selects the action of adjusting sub-
carriers numbers. So the internal state u (t) of the system will
be definitely changed, that is, the internal transition probabil-
ity of the system can be expressed as P(u(t), u(t + 1)) = 1.
The external state w (t) of the system depends on the user’s

arrival process and the slice state after performing actions,
so the external state w (t) is constantly updated during inter-
active learning with external environment.

4) REWARD FUNCTION
After the system takes allocation actions at each time slot t ,
it will get a reward value, and system will perform correlation
action according to the reward value at next time slot. At time
slot t , the resource manager observes internal state u (t) of the
system and the external state w (t) of each slice at first, and
then selects the feasible action as (t) according to the resource
allocation policy πs (t). The strategy π ∈ 5s measured by the

value function V π (s), which can be expressed as

V π (s) = Eπ
{
∞∑
t=0

γ t�a(s, s′) |s(t) = s, as(t) = a

}
(22)

Where γ is discount factor to guarantee the convergence of
value function and �a

(
s, s′

)
is the reward function. Obvi-

ously, the value function of formula (22) needs to calculate
the expectation, which is related to the reward value at each
epoch, thus, this paper adopt the iterative to obtain the optimal
value function for the state s. The expression is:

V ∗(s)

= max
as(t)∈As

Eπ
{
�a(s, s′)+ γV ∗(s′) |s(t) = s, as(t) = a

}
(23)

Correspondingly, the optimal policy for state s can be
expressed as:

π∗(s) = argmaxV ∗(s)

= argmaxE
{
�a(s, s′)+γV ∗(s′) |s(t) = s, as(t) = a

}
(24)

Defined reward function as �a
(
s, s′

)
, which is related to

rate and weight of the slice l. The reward function can be
expressed as (25), shown in the bottom of the next page.
The objective of the resource manager is to maximize the

reward function under the constraints of the average queue
caching and outage probability, which can be expressed as

maxEπ
{
∞∑
t=0

�a(s, s′)

}
(26)

s.t. C1 : Q̄(t) < Qmax

C2 :
1
L

∑
l∈L

P̄outl (t) < Poutmax (27)

From C1, Q̄(t) is the average queue caching of the system at
time slot t, Qmax is the maximum queue caching allowed by
the system. From another constraintC2, P̄outl (t) is the average
outage probability of slice l at time slot t , and 1

L

∑
l∈L

P̄outl (t) is

the average outage probability of the system, Poutmax represents
the maximum allowable outage probability.This optimization
objective function ensures that the queue delay of slices does
not exceed the maximum and the QoS of slices simultane-
ously.

B. ADAPTIVE VIRTUAL RESOURCE ALLOCATION
ALGORITHM DESIGN
The traditional method updates the value function iteratively,
and for each state, state transition probability are needed.
However, the system transition probability cannot be obtained
in this paper. In addition, when the state space scale is too
large, it is easy to encounter the curse of dimensionality. For
the above problems, this paper adopts Approximate Dynamic
Programming (ADP) theory, which can not only avoid calcu-
lating the expectation caused by the transition probability, but
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also overcoming the curse of dimensionality and improve the
efficiency of the algorithm because of the post-decision state.
In this paper, the self-adaptive resource allocation algorithm
based on ADP is proposed. Different from the order of tradi-
tional dynamic programming iterations, this method iterates
the Bellman equations along the time sequence.

1) POST-DECISION STATES
The post-decision state Sa (t) is defined to avoid calculate
the expectation of the optimal value function in e.q.(23). The
system state transition equation is equivalently split into the
following two steps [21]:

Sa (t) = ualn(t) = (N a
ln(t),P

a
ln,m(t))l∈L,n∈N ,m∈n

= uln(t + 1) = (Nln(t + 1),Pmln(t + 1))l∈L,n∈N ,m∈n
= Sa (S(t), as(t)) (28)

S (t + 1) = (u(t + 1),w(t + 1))

= Sw(Sa (t) ,w(t + 1)) (29)

The states Sa (t) and S (t + 1) in equations (28) and (29)
represent the post-decision state at time slot t for slice l on
RB n and the pre-decision state at time slot t + 1, respectively.
The transition of the system state is shown in figure 3. It can
be seen that Sa (t) is the system state after the implementation
of the allocation action as(t) and before the external state

FIGURE 3. State transition.

w(t + 1) transfer, which describes allocation of resources.
The pre-decision state S (t + 1) is the system state before
the implementation of the action as(t + 1) at time slot t + 1,
which reflects the QoS of the slices including rate and delay.
According to the definition of the post-decision state, the opti-
mal value function equation in (23) can be rewritten as

∗

V (s) = max
as(t)∈As

{
�a(Sa (t))+ γ V̄ a(Sa (t))

}
(30)

According to (30), V̄ a(Sa (t)) is an estimate value of the
value function, which can reflects the statistics information
of the external state. Therefore, it is no need to calculate the
expectation in equation (30).�a(Sa (t)) is the utility function

uln(t + 1) = (Nln(t + 1),Pmln(t + 1))l∈L,n∈N ,m∈n
= (9N (uln(t), βln (t)), 9P(uln(t), αln (t)),

=



(Nln(t),Pmln(t)± αln (t)) Pmin ≤

k∑
i=1

i
(
Pmln(t)± αln (t)

)
≤ Pmax

(Nln(t)± βln (t) ,Pmln(t)± αln (t)) Pmin >

k∑
i=1

i
(
Pmln(t)± αln (t)

)
or

k∑
i=1

i
(
Pmln(t)± αln (t)

)
> Pmax

(21)

�a(s, s′) =
L∑
l=1

ωl(t)Rl(t) =
L∑
l=1

ωl(t)
M∑
m=1

kl,m∑
k=1

rk,m(t)

=



N∑
n=1

Nln(t)∑
m=1

kn,m∑
k=1

Bmlog2(1+
k(Pmln(t)± αln(t))0i,m

1+
kl,m∑
j=1

j(Pmln(t)± αln(t))0j,m

),Pmin ≤

k∑
i=1

i(Pmln(t)± αln(t)) ≤ Pmax

N∑
n=1

Nln(t)±1∑
m=1

kn,m∑
k=1

Bmlog2(1+
k(Pmln(t)± αln(t))0i,m

1+
kl,m∑
j=1

j(Pmln(t)± αln(t))0j,m

),

Pmin >

k∑
i=1

i(Pmln(t)± αln(t))

or
k∑
i=1

i(Pmln(t)± αln(t)) > Pmax

(25)
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which is redefined with the post-decision state, as shown in
the formula (31):

�a(Sa(t)) = E{�a(s, s′)} =
L∑
l=1

ωl(t + 1)Ral (S
a(t)) (31)

Within (31), the Ral (S
a(t)) can be expressed as (32), shown in

the bottom of this page.
The queue information and the outage probability with the
post-decision state are defined as follows:

Qa(Sa (t)) = Q̄(t) = lim
T→∞

1
T
Q(t) (33)

Pa(Sa (t)) = lim
T→∞

1
T

1
N

∑
i∈A

Pouti (Sa (t)) =
1
N

∑
i∈A

P̄outi (t)

(34)

2) ADAPTIVE VIRTUAL RESOURCE ALLOCATION
ALGORITHM DESIGN
This section designs an adaptive virtual resources allocation
algorithm based on post-decision state. The post-decision
state can avoid expectation calculation, and the estimation
value V̄ a(Sa (t)) is imported into the objective function, so the
system can obtain the optimal policy at each period in the
process of the continuous update of the estimation value. For
the optimizationmodel (i.e. equation (26)), this paper uses the
Lagrange algorithm to bring the constraint into the objective
function, which is expressed as (35), shown in the bottom of
this page.

In (35), λ1 and λ2 represent the Lagrangian multipliers,
and the optimization problem model can be transformed into
equation (36):

(π∗, λ∗1, λ
∗

2) = argmax
λ1≥0,λ2≥0,π

L(π, λ1, λ2) (36)

We update the Lagrangianmultipliers at each time slot, which
can be expressed as:

λt+11 = λt1 + ς1(Q̄
π∗λ1,λ2 (t)− Qmin) (37)

λt+12 = λt2 + ς2(
1
N

∑
i∈A

P̄
π∗λ1,λ2
i (t)− Poutmax) (38)

TABLE 1. Basis Function Definition.

Bring the Lagrangian function into the optimal value func-
tion, and the optimal value function is transformed to the
formula (39).

∗

V (s) = max
as(t)∈As

{
La(Sa (t))+ γ V̄ a(Sa(t))

}
(39)

The traditional method to obtain estimates value uses the
look-up table method, but this method has poor scalabil-
ity and is not suitable for large-scale state spaces. There-
fore, this paper uses ADP to solve this problem. ADP, also
known as forward dynamic programming (FDP), overcomes
the problem of "the curse of dimensionality" in large-scale
CMDP [20].

In the CMDP model of this paper, both the state transition
and the reward function are related to the action of resource
allocation. Different actions will determine the state of the
next time slot and the value of reward function. Accord-
ing to the action that the system will choose, we defined
the basis function as shown in Table 1. According to the
basis function in Table 1, we introduce the parameter vector
ηT= {η1, η2, η3, · · · , ηh̄}, h ∈ h̄ represents the feature of the
resource allocation action. Define the basis function vec-
tor χ = {χ1(Sa), χ2(Sa), · · · , χh̄(Sa)}, an approximate func-
tion can be obtained using the linear function which is
expressed as

V̄ a(Sa(t)) = ηTχ =
∑
h∈h̄

ηhχh(Sa (t)) (40)

Ral (S
a(t)) =

N∑
n=1

Nln(Sa(t))∑
m=1

kn,m∑
k=1

Bmlog2(1+
k
[
pmln(S

a(t))± αln(Sa(t))
]
0i,m

1+
kl,m∑

j=k+1
j
[
pmln(S

a(t))± αln(Sa(t))
]
0j,m

) (32)

L(π, λ1, λ2) =
∞∑
t=0

�a(s, s′)− λ1(Q̄(t)− Qmin)− λ2(
1
N

∑
i∈A

P̄outi (t)− Poutmax)

= lim
T→∞

1
T

[
∞∑
t=0

γ t�a(s, s′)− λ1(Q(t)− TQmin)− λ2(
1
N

∑
i∈A

Pouti (t)− TPoutmax)

]
= �a(Sa(t))− λ1(Qa(Saln(t))− Qmin)− λ2(Pa(Saln(t))− P

out
max) (35)
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Based on the approximation value function of equation (40),
the optimal value function (39) can be converted to for-
mula (41).

∗

V (s) = max
as(t)∈As

La(Sa (t))+ γ∑
h∈h̄

ηhχh(Sa (t))

 (41)

For equation (41), the system only need to update the param-
eter vector η to get the estimated value. This paper uses
a gradient algorithm to update the parameter vector η, and
the objective is to minimize the mean square error between
the estimated value and the sample function, as shown in
equation (42):

η∗ = argminE{
1
2

[
V̄ a(η)− V̂

]2
} (42)

Where V̄ a(η) is the estimated value and V̂ is the sample
value. The random gradient expression of approximate value
function V̄ a(η) with parameter vector η can be expressed as:

∇ηV̄ a(Sa (t) |η ) = (
∂V̄ a(Sa (t) |η )

∂η1
, · · · ,

∂V̄ a(Sa (t) |η )
∂η|h̄|

)
T

= (χ1(Sa (t)), · · · , χ|h̄|(Sa (t)))
T

= χ (Sa (t)) (43)

The parameter vector η is updated along the gradient direction
and the update expression is expressed as:

η← η − µt−1(V̄ a(Sa (t − 1) |η )− V̂ (S (t)))χ (Sa (t − 1))

(44)

Where µ is the step size, with the following constrains:
∞∑
t=1

µt−1 = ∞

∞∑
t=1

(µt−1)
2 <∞

(45)

The sample value function can be expressed as

V̂ (S (t)) = max
as(t)∈As

{
La(Sa (t))+ γV a(Sa (t))

}
(46)

Bring the constantly updated parameter vector into the opti-
mal value function, i.e. equation (39). The current optimal
policy can be rewritten as:

π∗(s) = argmax

La(Sa (t))+γ∑
h∈h̄

ηhχh(Sa (t))

 (47)

The resource adaptation allocation algorithm is summarized
in Algorithm 1.

From this algorithm, the execution process of the proposed
resource adaptive allocation algorithm is online, and the com-
putational complexity is O (|h̄| · T ), where |h̄| denotes the
feature number of the resource allocation action and T repre-
sents the length of time period. Since |h̄| is much smaller than
the size of the post-decision state space, the value function
approximation strategy can significantly reduce the storage
and computational overhead of the algorithmwhen compared

Algorithm 1 Adaptive Virtual Resource Allocation Algo-
rithm Based on ADP.
Input:. xh (Sa (t)): Basis function, γ : Discount factor
Output:. η: Parameter vector, λ1, λ2 : Lagrange multi-
plier
1: Initialization: t ← 0, η← 0, λ1, λ2← 0
2: for (t = 1; t <= T ; t ++) do
3: while Vt − Vt−1 > ε1
4: while V̄ a(η)− V̂ > ε2
5: Update V̂ according to (46)
6: if t > 0 then
7: Update: η according to (44)
8: end if
9: Sampling external random variables ω(t + 1)
10: Update V̄ a(Sa(t)) according to (40) based on η
11: end while
12: Calculate objective function based on π∗ (s)
13: Update λ1, λ2 according to (37) and (38)
14: endwhile
15: end for

to the lookup table update method. Hence, the computational
complexity is not a challenge to system and the algorithm is
applicable for practical application.

V. SIMULATION RESULTS
In this section, we evaluate the performance of our pro-
posed Power Granularity Uncertain - Approximate Dynamic
Programming (PGU-ADP) algorithm with reference to
[22] and [23] and compare our solution with PGC-F (Power
Granularity Certain - Fairness) and PGU-QL (Power Gran-
ularity Uncertain - Q-Learning), which have been presented
in [12] and [18]. In order to verify the performance of the
algorithm, the simulation experiment is divided into two
phases, which are the learning phase and the testing phase.
The simulation time lasted 600 periods, including 400 periods
for the learning phase and 200 periods for the testing phase.
A longer learning time allows the system to have enough time
to learn the parameter vector β in the approximation value
function during the learning phase. Additionally, we consider

TABLE 2. Simulation parameters.
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FIGURE 4. Value function.

3 types of slices having different demands. Simulation param-
eters are shown in Table 2.

Figure 4 depicts the comparison of the approximate values
and sample values. As we can observe, the approximate value
and the sample value have a large gap during the first 400 peri-
ods, which is the learning phase. With the periods increases,
the gap between the approximate value and the sample value
gradually decreases and approaches coincidence around the
400th period. During the next 200 periods, which is the testing
phase, the approximate value and the sample value almost
coincide. As can be seen from Figure 4, the approximate val-
ues will converge to the sample value because of continuous
learning and updating of the parameter vector.

In Figure 5, we have compared the bandwidth resource
utilization when the power allocation granularity is 0.25, 0.5,
and 1, respectively. Among Figure5, we define the resource
utilization as R′/R, in which R represents the total resources,
and R

′

represents resources that have been allocated to the

FIGURE 5. Resource utilization under different allocation actions.

user without interruption. It is clear that, the resource utiliza-
tion rate increases fast when the number of users is small,
but if the number of users continues to increase, the out-
age probability would increases and the resource utilization
rate would decreases. When α = 0.5, the rate of increase in
resource utilization is not as fast as when α is equal to 1, but in
this action,system can serve for more users. When α is equal
to 0.25, the resource utilization and service users reached
the maximum value of 0.9483, but with the number of users
continues increase, resource utilization fall down rapidly,
even below the number when α is equal to 0.5. In summary,
when α = 1, resource utilization increases quickly when the
number of users is less than 95, and when α = 0.25, resource
utilization reaches the pick value when the number of users
in the range from 165 to 195, but the rate of decline is quickly
when the number of users exceeding this range. In addition,
when α = 0.5, the resource utilization rate can almost keep
stable after the number of users is greater than 100.

Figure 6 illustrates the variation trend in outage probability
with the number of users, and Pmax denotes the maximum
outage probability. In general, the number of service users
when Pmax = 0.3 is less than the number when Pmax = 0.6.
Under the condition that Pmax = 0.3, it can be seen that as
the allocation granularity α decreases, the outage probabil-
ity increases. It is clear that the outage probability increase
fastest when and when α = 0.25, however, when the number
of users reaches 190, the outage probability is stable at around
0.3. Under the condition of Pmax = 0.6, the outage proba-
bility increases rapidly, and the difference of rising trend of
different α is small.

FIGURE 6. Outage Probability with Different Allocation Actions and
Constrains.

In order to demonstrate the performance of the proposed
PGU-ADP algorithm, this paper compares the proposed
algorithm with these two algorithm which is proposed by
Bega et al. [12] and Zhu et al. [18].

Figure 7 is a comparison of the number of users in the
actual service slices when the power allocation granularity
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FIGURE 7. Number of Service Users under Different Schemes.

is 0.25, 0.5, and 1 respectively. In general, the number of
service users under different power allocation granularity is
different. It is clear that, when α = 1, the number of serve
users is the least. When α becomes 0.5, twice the number of
services when α = 1. With the decrease of α, the number of
service users has increased, but the increase is slow due to the
increase of the outage probability. It is clear that, the PGU-
ADP algorithm can serves more users than the other two
algorithms.

Figure 8 shows the comparison of total rates under dif-
ferent schemes with the number of users increases. As we
can be observed in Figure 8, the total rate of the PGC-F
algorithm increases steadily, and when the number of users
reaches around 100, the rate of increase becomes slow due to
the limitation of the number of service users. The PGU-QL
scheme cannot converge when the number of users is little,
the increase rate becomes faster once it has reached a certain
number of users, and almost equal to the rates when using
PGU-ADP scheme when the number of users is 200. From

FIGURE 8. Sum rates under Different Schemes.

FIGURE 9. Average queue caching under different schemes.

Figure 8, the proposed PGU-ADP algorithm has the fastest
convergence rate and has the maximum sum rate. However,
when the number of users reaches 180, the rate of increase
becomes slower.

Figure 9 shows the comparison of the average queue
caching under different algorithms with the number of users
increases. Setting the constraint condition of the queue
caching to Qmax = 30, it can be clearly seen that the queue
caching of the PGC-F scheme is the largest, and the PGU-
QL scheme gets slower as users increase. With PGU-ADP
scheme, when the number of users is greater than 140,
the queue caching will increases rapidly due to the increase
of the outage probability, but there is a obvious superiority
when the number of users is less than 140.

VI. CONCLUSION
In this paper, we proposed an adaptive virtual resources
allocation algorithm by using the approximate dynamic pro-
gramming (ADP) theory for downlink of NOMA system
under average delay constraint and average outage prob-
ability constraint. The algorithm analyzed slice state (i.e.
slice rate and slice queue length) for the diversity of slice
service requirements, and used CMDP theory to construct a
dynamic optimization model of resource adaptive allocation
problem. The system in this paper allocated virtual resources
by adjusting the power granularity and the number of allo-
cated subcarriers, and considered the total rate as a reward.
Additionally, in order to avoid the curse of dimensionality
and transfer probability, we defined the post-decision state
and basis function for allocation actions. Simulation results
demonstrated that the PGU-ADP algorithm can improve the
performance of the system and meet the QoS requirements.
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