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ABSTRACT In this paper, a barrier Lyapunov function (BLF)-based backstepping control design is proposed
for uncertain rigid spacecraft with both input and output constraints. A modified BLF (MBLF) is constructed
to extend the application scope of the traditional logarithmic BLF. Through using the MBLFs in each step
of the backstepping design, an adaptive constrained control scheme is presented to guarantee the tracking
performance and the constraint requirement of spacecraft systems, and the differentiation of the virtual
control is avoided with the employment of the tracking differentiator. The uncertainty bounds are estimated
by designing adaptive update laws, such that no prior knowledge is required on the bound of the lumped
uncertainty including input saturation and faults. Numerical simulations demonstrate the effectiveness of
the proposed scheme.

INDEX TERMS Barrier Lyapunov function, rigid spacecraft, backstepping design, input and output
constraints.

I. INTRODUCTION
Spacecraft attitude tracking control is essential to rotate the
craft to a required attitude, and it is the key factor for the
success of the missions, such as formation flying, satellite
communication, rendezvous of a space shuttle with the inter-
national space station, etc [1]. However, due to the nonlinear
and highly coupled dynamics, it is a challenging work to
design an attitude tracking controller with high precision
and fast convergence for spacecraft systems with considering
external disturbance and physical limitations. The problem of
the spacecraft attitude control has been extensively investi-
gated since the 1960s [2]. As two of the major issues encoun-
tered in practical spacecraft systems, the input saturation and
actuator fault should be taken into account in the spacecraft
attitude tracking control. In [3] and [4], the adaptive slid-
ing mode control laws were presented for rigid spacecraft
with the input saturation to achieve the attitude stabilization
and tracking control, respectively. In [5], an inverse tangent-
based tracking function in the backstepping-based control
was designed to reduce the peak control torque for spacecraft
attitude maneuver. In [6], an adaptive control method was
proposed to deal with the input saturation in the spacecraft

attitude stabilization without using any prior knowledge on
the uncertainties. In [7], two actuator failure cases were con-
sidered for spacecraft systems, and the asymptotic stability
was guaranteed by employing the sliding mode controllers.
In [8], the thruster distributionmatrix was utilized to deal with
the actuator saturation and faults in the spacecraft system.
In [9], the fuzzy logic systems (FLSs) were employed to
approximate the actuator saturation and faults, and an adap-
tive control scheme was proposed to guarantee the satisfac-
tory attitude tracking performance.

Driven by the theoretical challenges and practical require-
ments, the controller design with the constrained states has
become an important research topic, and the widely used
output-constrained techniques mainly include prescribed per-
formance control (PPC) [10]–[18], barrier Lyapunov function
(BLF) [19]–[27], funnel control [28]–[30] and so on. The
BLF is a class of Lyapunov like function, and its value can
reach the infinity when the state approaches to the boundary,
such that the state is constrained within the boundary [19].
In [20] and [21], a constant logarithmic BLF and a time-
varying logarithmic BLF were proposed for a class of single-
input single-output (SISO) nonlinear systems to ensure the
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constant output constraints and time-varying output con-
straints, respectively. In [23], a tangential barrier Lyapunov
function (TBLF) was proposed and suitable for both the con-
straint and unconstraint situations, however, the introduction
of the tangent function might increase the complexity of the
controller design. In [24], a BLF based adaptive controller
was developed for nonlinear pure-feedback systems with all
the system states being constrained. In [25], a BLF based
Nussbaum gain controller was constructed for SISO nonlin-
ear systems with unknown control direction, such that all
the signal constraints were guaranteed. As for the spacecraft
attitude control, the constraint of angular velocity is usually
imposed due to the work scenarios or sensor limitation [31].
In [32], a robust adaptive control scheme was developed for
a flexible spacecraft by constructing a logarithmic BLF, and
the uniform ultimate boundedness of the attitude tracking
error was guaranteed as the time goes to infinity. In [33],
a robust nonlinear controller was designed for the space-
craft stabilization with input saturation, and the constraint
of velocity was guaranteed by using the logarithmic BLF.
In [34], a logarithmic BLF based adaptive backstepping con-
trol scheme was presented for spacecraft rendezvous and
proximity operations, such that the full-state constraint of the
relative pose motion was achieved. In [35], an adaptive fault-
tolerant controller combining the PPC and BLFwas proposed
to guarantee the transient and steady-state performance of the
spacecraft attitude tracking.

In practice, the actuator cannot provide boundless torque
and maintain health forever, hence, the input constraint
including actuator saturation and faults are two unavoidable
issues for spacecraft attitude control. Besides, the output con-
straint of the spacecraft is also a valuable practical problem
for security reasons or limited by work scenarios even sen-
sor limitation. However, the controller design of spacecraft
systems with both input and output constraints remains a
challenging work. On the one hand, the use of the output
constraint could force the system output to converge within
a prescribed bound, which is helpful to improve the system
transient performance. When the initial system state is far
away from the equilibrium state, the required control input
is usually set relatively large to guarantee the fast transient
response. But on the other hand, due to the effect of the input
saturation and actuator fault, it is a hard work to keep the
satisfactory transient response as usual. Consequently, it is
difficult and challenging to guarantee the satisfactory tran-
sient response in the attitude control design with considering
both input and output constraints.

Inspired by the aforementioned discussions, a barrier
Lyapunov function based adaptive constrained control prob-
lem is addressed for the rigid spacecraft system with iner-
tia uncertainty, external disturbance, input saturation and
actuator fault. The main contributions of this paper include
(i) A modified barrier Lyapunov function (MBLF) is con-
structed to extend the application scope of the traditional
logarithmic barrier Lyapunov function, and it is suitable for
both the constraint and unconstraint situations; (ii) Through

FIGURE 1. Definition of the orbit reference frame.

using the modified barrier Lyapunov functions in each step
of the backstepping design, an adaptive constrained control
scheme is presented to guarantee the tracking performance
and the constraint requirement of spacecraft systems with
input saturation and faults.

The rest of this paper is organized as follows. Section II
states the formulation of the spacecraft attitude tracking prob-
lem. In Section III, a novel modified barrier Lyapunov func-
tion (MBLF) is proposed and compared with existing barrier
Lyapunov functions, and an adaptive backstepping control
law is presented for the spacecraft with inertia uncertainty
and external disturbance. In Section IV, an adaptive fault-
tolerant control scheme is proposed for the uncertain space-
craft with the input saturation. Simulation results are provided
in Section V followed by the conclusion in Section VI.

II. PROBLEM FORMULATION
As shown in Fig.1, there are three main coordinate frames
for the rigid spacecraft system, i.e., the inertial axis frame
F (XI ,YI ,ZI ), the orbit reference frame F (XO,YO,ZO) and
the spacecraft’s axis frame F (XB,YB,ZB). In this paper,
due to the convenience of calculation without singularities,
the spacecraft’s attitude with respect to any reference frame
is defined by the unit quaternion, which is formulated as [2]

q =
[
n sin(ϕ2 )
cos(ϕ2 )

]
=

[
qv
q4

]
(1)

where ϕ is the rotation angle, n = [nx , ny, nz]T denotes the
Euler axis, qv = [q1, q2, q3]T and q4 are the vector and
scalar components of the unit quaternion, respectively, and
satisfy qTv qv + q

2
4 = 1.

Then, the kinematics equations of the rigid spacecraft in
terms of unit quaternion are given by

q̇v =
1
2
(q4I3 + q×v )ω

q̇4 = −
1
2
qTv ω (2)
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where I3 is the 3×3 identity matrix, andω ∈ R3 is the angular
velocity of the spacecraft. The character × denotes a skew-
symmetric matrix operator for any vector a = [a1, a2, a3]T :

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (3)

which has following properties: a×b = −b×a and a×a = 0,
where b = [b1, b2, b3]T is another vector.

The dynamics equation of spacecraft is

J ω̇ = −ω×Jω + u+ d (4)

where J ∈ R3×3 denotes the symmetric positive definite total
inertia matrix of the rigid spacecraft, u ∈ R3 is the control
torque, and d ∈ R3 is the external disturbance with unknown
upper bound.

Setting qd = [qTdv, qd4]
T (qdv := [qd1, qd2, qd3]T ) as

the unit quaternion of desired attitude motion, the ori-
entation error presented by quaternion is defined as
e = [eTv , e4]

T (ev = [e1, e2, e3]T ) in the form of

ev = qd4qv − q
×

dvqv − q4qdv (5)

e4 = qTdvqv + q4qd4 . (6)

Based on (5) and (6), the transformation from qd to q is
q1
q2
q3
q4

 =


e4 e3 −e2 e1
−e3 e4 e1 e2
e2 −e1 e4 e3
−e1 −e2 −e3 e4



qd1
qd2
qd3
qd4

 . (7)

From (7), it is clear that when the quaternion errors reach
ev = [0, 0, 0]T and e4 = 1, the accurate attitude tracking
is achieved, i.e. q = qd . Then, the angular velocity error is
defined as

ωe = ω − Cωd (8)

where ωd ∈ R3 denotes the bounded target angular velocity
with the corresponding bounded derivative, ωe ∈ R3 is the
angular velocity error, the orthogonal matrix C = (e24 −
2eTv ev)I3 + 2eveTv − 2e4e×v is the rotation matrix from the
target frame to the body frame, satisfying ‖C‖ = 1, and
Ċ = −ω×e C .

From (2)-(8), the attitude tracking error dynamics and
kinematics are obtained by

ė =
[
ėv
ė4

]
=

1
2

[
e4I3 + e×v
−eTv

]
ωe (9)

J ω̇e = −(ωe + Cωd )×J (ωe + Cωd )

+J (ω×e Cωd − Cω̇d )+ u+ d (10)

where J = J0 + 1J , J0 denotes the nonsingular known
nominal value of the inertia matrix, and 1J is the bounded
uncertainty. Substituting J = J0 +1J into (10) leads to

ω̇e = J−10

[
−1J ω̇e − (ωe + Cωd )×J (ωe + Cωd )

+J (ω×e Cωd − Cω̇d )+ u+ d
]
= F + J−10 u (11)

where

F : = [F1,F2,F3]T

= J−10

[
−1J ω̇e − (ωe + Cωd )×J (ωe + Cωd )

+J (ω×e Cωd − Cω̇d )+ d
]
. (12)

Due to the boundedness of 1J , ωd , ω̇d , d and the fact
‖C‖ = 1,

∥∥ω×e ∥∥ = ‖ωe‖, the following inequality
holds [36], [37]:

‖F‖ ≤
∥∥∥J−10

∥∥∥ ‖1J‖ ‖ω̇e‖ + ∥∥∥J−10

∥∥∥ ‖J‖ ‖ωe‖2
+

∥∥∥J−10

∥∥∥ ‖J‖ ‖ωd‖2 + ∥∥∥J−10

∥∥∥ ‖J‖ ‖ωd‖ ‖ωe‖
+

∥∥∥J−10

∥∥∥ ‖J‖ ‖ω̇d‖ + ∥∥∥J−10

∥∥∥ ‖d‖
≤ b1 + b2 ‖ωe‖ + b3 ‖ω̇e‖ + b4‖ωe‖2 = bT8 (13)

where b = [b1, b2, b3, b4]T with b1, b2, b3, b4 being un-
known positive constants, and8 =

[
1, ‖ωe‖ , ‖ω̇e‖ , ‖ωe‖2

]T
.

From (9) and (11), the attitude tracking error dynamics and
kinematics equations are formulated by{

ėv = Gωe
ω̇e = F + J−10 u

(14)

where G = 1
2

(
e4I3 + e×v

)
. To ensure G in (14) is invertible,

the condition det(G) = e4 6= 0,∀t ∈ [0,∞) should be
satisfied. It means that the initial value of e4 is set to be
nonzero, and the controller is designed to guarantee e4 6= 0
for all the time.

The control objective in this paper is to design an adaptive
attitude tracking controller for rigid spacecraft (4) subject to
inertia uncertainty, external disturbance, input constraint and
actuator fault, such that angular velocity ω of the system is
constrained, and the attitude tracking errorsωe and e converge
to a small region of the origin.

III. MBLF BASED ADAPTIVE BACKSTEPPING CONTROL
In this section, a novel modified barrier Lyapunov func-
tion is proposed for the backstepping control design of
rigid spacecraft systems with inertia uncertainty and external
disturbance.

A. MODIFIED BARRIER LYAPUNOV FUNCTION
Themodified barrier Lyapunov function (MBLF) is presented
in the form of

Vn(t) =
1
2
ln

k2be
z2

k2b − z
2

(15)

where ln(·) is the natural logarithm, e is Euler’s number, kb is
a positive constant, and the initial value of the state z is set to
satisfy |z(0)| < kb.
When kb tends to the infinity, the constraint is not required

and (15) becomes

lim
kb→∞

1
2
ln

k2be
z2

k2b − z
2
=

1
2
z2. (16)
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From (16), it is found that when kb tends to the infinity,
theMBLF turns into a traditional quadratic form of Lyapunov
function. Therefore, compared with the traditional logarith-

mic BLF in [20], i.e. Vb(t) = 1
2 ln

k2b
k2b−z

2 , the proposed

MBLF is suitable for both the constraint and unconstraint
situations, and thus extends the application scope of the
traditional logarithmic barrier Lyapunov function. In order
to guarantee kb > |z(0)|, the value of the parameter should
be selected slightly large, which may lead to unconstraint
situation. However, the proposed MBLF is suitable for both
the constraint and unconstraint situations, and thus the satis-
factory system performance could still be guaranteed with a
larger kb.
In [23], a tangential barrier Lyapunov function (TBLF) is

given by

Vt (t) =
k2b
π

tan

(
πz2

k2b

)
, |z(0)| < kb. (17)

When kb tends to the infinity, (17) has the similar property
with that of MBLF, i.e.,

lim
kb→∞

k2b
π

tan

(
πz2

k2b

)
=

1
2
z2.

However, differentiating (15) and (17) yields

V̇n =

(
1+

1

k2b − z
2

)
zż (18)

and

V̇t =
zż

cos2
(
πz2

2k2b

) . (19)

Compared with (18), the form of (19) is more complex due
to the existence of cosine function in the denominator, which
may hinder its application in the backstepping control design.
Lemma 1: For any positive constant kb, the following

inequality holds for the vector z = [z1, z2, z3]T in the interval
‖z‖ < kb: (

1+
1

k2b − z
T z

)
zT z ≥ ln

k2be
zT z

k2b − z
T z
. (20)

Proof of Lemma 1: For the proof convenience, denoting
K = k2b , xz = zT z, and defining F(xz) =

xz
K−xz

− ln K
K−xz

,
the derivative of F(xz) is given by

Ḟ(xz) =
xz

(K − xz)2
≥ 0. (21)

From (21), F(xz) is a monotonic increasing function, with
F(0) = 0, and it is concluded that F(xz) ≥ 0 for any
xz = zT z ≥ 0, i.e.,

zT z

k2b − z
T z
≥ ln

k2b
k2b − z

T z
. (22)

Adding zT z to both sides of (22), the following inequality
is easily obtained(

1+
1

k2b − z
T z

)
zT z ≥ ln

k2be
zT z

k2b − z
T z
. (23)

This completes the proof.

B. CONTROL DESIGN
The detailed design procedures of the adaptive controller are
given as follows.
Step 1: For the system (14), define two virtual states as{

z1 = ev
z2 = ωe − ωc

(24)

where ωc is the virtual control which is designed later.
Then, the following MBLF candidate is chosen as

V1 =
1
2
ln

k2b1e
zT1 z1

k2b1 − z
T
1 z1

(25)

where kb1 is the constraint on z1, satisfying ‖z1(0)‖ < kb1.
According to (14), the time derivate of V1 is given by

V̇1 = σ1zT1 ż1 = σ1z1Gωe (26)

where σ1 = 1+ 1
k2b1−z

T
1 z1

.

Considering ωe = ωc + z2, the virtual controller ωc is
designed as

ωc = −κ1G−1z1 (27)

where κ1 > 0 is the tunable parameter.
Substituting (27) into (26) yields

V̇1 = −κ1σ1zT1 z1 + σ1z
T
1Gz2 . (28)

Step 2:Under the condition of ‖z2(0)‖ < kb2, another BLF
V2 is given by

V2 = V1 +
1
2
ln

k2b2e
zT2 z2

k2b2 − z
T
2 z2
+

1
2η1

b̃T b̃ (29)

where η1 is a positive parameter, and b̃ = b− b̂ with b̂ being
the estimation of b.
Taking the time derivative of V2 yields

V̇2 = V̇1 + σ2zT2 ż2 −
1
η1
b̃T ˙̂b (30)

where σ2 = 1+ 1
k2b2−z

T
2 z2

.

Using (14) and (24), the time derivative of z2 is

ż2 = ω̇e − ω̇c = F + J−10 u− ω̇c . (31)

Employ the following tracking differentiator [38]{
ϑ̇1i = ϑ2i

ϑ̇2i = −r · sgn(ϑ1i − ωci +
ϑ2i|ϑ2i|

2r ), i = 1, 2, 3,
(32)

where r represents the acceleration limit of ωc.
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Then, the practical controller u in (31) is designed as

u=−J0

(
κ2z2+

z2
‖z2‖

b̂T8+
1
2
σ2z2 +

σ1e4ev
σ2
− ϑ2

)
(33)

and the update law of b̂ is given by

˙̂b = η1
(
σ2‖z2‖8− k1b̂

)
(34)

where κ2, η1, k1 > 0 are design parameters, 8 =[
1, ‖ωe‖ , ‖ω̇e‖ , ‖ωe‖2

]T
, and ϑ2 = [ϑ21, ϑ22, ϑ23]T is the

output of the TD (32).
Remark 1: In most of practical applications, the derivative

signal ω̇c in (31) is always difficult to obtain precisely due to
the inevitable noise amplification problem. To deal with this
problem, the tracking differentiator (TD) (32) is employed
to approximate ω̇c, which means that the TD applied in
this paper can be viewed as an observer of the deriva-
tive signal ωc = [ωc1, ωc2, ωc3]T . From the expressions
of (14), (24) and (27), it is concluded that the bounded-
ness of ω̇c is related to the boundedness of quaternion
variables qv, q4 and the angular velocity ω. For practical
spacecraft systems, the quaternion variables qv and q4 are
obviously bounded because of q2v + q24 = 1, and due to
the effect of input and output constraints, the angular veloc-
ity ω is reasonable to be considered as a bounded signal.
Therefore, it is feasible to employ TD (32) to estimate the
bounded signal ω̇c, and the rigorous proof of the TD’s con-
vergence is given in [39]. It means that there exist positive
constants µϑ i, i = 1, 2, 3, satisfying

|ϑ2i − ω̇ci| ≤ µϑ i, i = 1, 2, 3 (35)

for t ≥ Ttd , where Ttd is the settling time of the TD. It follows
from (35) that

‖ϑ2 − ω̇c‖ ≤ µϑ (36)

with ω̇c = [ω̇c1, ω̇c2, ω̇c3]T , and µϑ a positive but unknown
constant.
Remark 2: The controller (33) is discontinuous when z2i

crosses the equilibrium point, which may lead to undesirable
chattering and energy waste. This issue can be alleviated by
employing the boundary layer technique [40], in which the
function z2

‖z2‖
in (33) is replaced by

sigδ(z2) =
[

z21
‖z2‖ + δ

,
z22

‖z2‖ + δ
,

z23
‖z2‖ + δ

]
(37)

where δ > 0 is the bounded layer parameter and its value
should be chosen sufficiently small.

C. STABILITY ANALYSIS
The following theorem summarizes the stability results of the
closed-loop spacecraft system.
Theorem 1: For the spacecraft system (14) with the virtual

controller (27), the practical controller (33) and the update
law (34), the tracking errors ev and ωe can converge into an
arbitrarily small region of the origin when the time goes to
infinity.

Proof of Theorem 1: Substituting (25) into (29) yields

V2 =
1
2
ln

k2b1e
zT1 z1

k2b1 − z
T
1 z1
+

1
2
ln

k2b2e
zT2 z2

k2b2 − z
T
2 z2
+

1
2η1

b̃T b̃. (38)

Using (28) and (31), the time derivative of V2 is

V̇2 ≤ −κ1σ1zT1 z1 + σ1z
T
1Gz2

+σ2zT2
(
F + J−10 u− ω̇c

)
−

1
η1
b̃T ˙̂b. (39)

Substituting (33) and (34) into (39) leads to

V̇2 ≤ −κ1σ1zT1 z1 − κ2σ2z
T
2 z2 + σ1

(
zT1Gz2 − e4z

T
2 ev

)
+σ2zT2 (ϑ2 − ω̇c)+ σ2‖z2‖

(
‖F‖ − b̂T8− b̃T8

)
−
1
2
σ 2
2 ‖z2‖

2
+ k1b̃T b̂. (40)

Using the fact eTv e
×
v = [0, 0, 0], zT1Gz2 = eTv (e4I3 +

e×v )z2 = e4zT2 ev is derived. According to Young’s inequality
and (36), the following inequality hold:

σ2‖z2‖µϑ ≤
σ 2
2 ‖z2‖

2

2
+
µϑ

2

2
. (41)

Using (13) and (41), the time derivate of V2 is further
simplified as

V̇2 ≤ −κ1

(
1+

1

k2b1 − z
T
1 z1

)
zT1 z1

−κ2

(
1+

1

k2b2 − z
T
2 z2

)
zT2 z2

+k1b̃T b̂+
µϑ

2

2
. (42)

According to the Lemma1, (42) is rewritten as

V̇2 ≤ −2κ1

(
1
2
ln

k2b1e
zT1 z1

k2b1 − z
T
1 z1

)

−2κ2

(
1
2
ln

k2b2e
zT1 z1

k2b2 − z
T
2 z2

)

+k1b̃T b̂+
µϑ

2

2
. (43)

Using Young’s inequality, the following inequality is
obtained as

k1b̃T b̂ ≤
k1
2
bT b−

k1
2
b̃T b̃ . (44)

Substituting (44) into (43) yields

V̇2 ≤ −λ1V2 + µ1 (45)

where λ1 = min {2κ1, 2κ2} with η1 = 2κ1/k1 , and
µ1 =

k1
2 b

T b+ µϑ
2

2 .

From (45), it is clear that the uniformly ultimate bound-
edness of the system tracking errors are guaranteed, and the
V2 converges to the region V2 ≤

µ1
λ1
, i.e.,

1
2
ln

k2b1e
zT1 z1

k2b1 − z
T
1 z1
+

1
2
ln

k2b2e
zT1 z1

k2b2 − z
T
2 z2
+

1
2η1

b̃T b̃ ≤
µ1

λ1
. (46)
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By solving (46), the region of quaternion tracking error is
obtained as ‖ev‖ ≤ 1z11 , where 1z11 is

1z11 = min

{
kb1

√
1− e

−2µ1
λ1 ,

√
2µ1

λ1

}
, (47)

and the region of z2 is

‖z2‖ ≤ 1z21 = min

{
kb2

√
1− e

−2µ1
λ1 ,

√
2µ1

λ1

}
. (48)

From (47) and the property of BLF, the eTv ev is bounded
by kb1 for all the time. Therefore, with the proper selection of
kb1 < 1, e4 6= 0 can be easily obtained from the constraint
eTv ev + e24 = 1. Hence, the boundedness of the matrix G
is valid. According to the definition (27), the virtual control
ωc is also bounded, and there exists a positive constant 1ωc
satisfying ‖ωc‖ ≤ 1ωc1 . Therefore, considering that ωe =
ωc + z2, the angular velocity errors converge to the region
‖ωe‖ ≤ 1ωe1 = 1z12 +1ωc1 . Based on the property of BLF,
it is a fact that the z1 and z2 are constrained by kb1 and kb2,
respectively. Then, from the definition of ωe = ωc + z2,
ω = ωe+Cωd and the fact ‖C‖ = 1, it is concluded that the
angular velocity ω of the system (4) is always constrained.
This completes the proof.
Remark 3: As shown in (47), the tracking error z1 will con-

verge into a small region ‖z1‖ ≤min

{
kb1

√
1− e

−2µ1
λ1 ,

√
2µ1
λ1

}
with λ1 = min {2κ1, 2κ2} , which means that by choosing
sufficiently large parameters κ1 and κ2 , the tracking error z1
can converge into an arbitrarily small region when the time
goes to infinity. It is equivalent to mean that for any given
constant ε > 0, there exists a finite time t0 such that

‖z1‖ ≤ min

{
kb1

√
1− e

−2µ1
λ1 ,

√
2µ1
λ1

}
+ ε holds for t > t0

. Therefore, the tracking error z1 will enter the specified

bound min

{
kb1

√
1− e

−2µ1
λ1 ,

√
2µ1
λ1

}
+ ε within a finite

time.
Remark 4: The values of the parameters kb1, kb2 should

be chosen to satisfy kb1 > ‖z1 (0)‖ , kb2 > ‖z2 (0)‖. The
smaller kb1, kb2 may lead to stronger constraint, and the
overshoot and steady state errors could be reduced. However,
too small kb1, kb2 usually lead to the energy waste. There-
fore, the tradeoff between the transient performance and
energy saving must be weighed carefully when choosing the
parameters.

IV. ASYMMETRIC MBLF BASED CONTROL
As a more general case of symmetric MBLF, the asymmetric
MBLF is more applicable to practical systems. By adding
an additional parameter to the symmetric MBLF, the upper
and lower bounds of the asymmetric MBLF could be
defined separately. In this section, an asymmetric MBLF
is further developed for the backstepping control design

of rigid spacecraft with inertia uncertainty and external
disturbance.

A. CONTROL DESIGN
Step 1: For the system (24), the following asymmetric
MBLF is proposed and given by

W1=
1
2

3∑
i=1

[
q (z1i) ln

k2a1ie
z21i

k2a1i − z
2
1i

+(1−q (z1i)) ln
k2b1ie

z21i

k2b1i − z
2
1i

]
(49)

where ka1i > z1i(0) > −kb1i, i = 1, 2, 3 are the designed
upper and lower bounds of the states, and q(x) is satisfied

q (x) =
{
1, if x > 0
0, if x ≤ 0

. (50)

As pointed out in [20], W1 is piecewise smooth within
each of the two intervals z1i ∈ (−kb1i, 0] and z1i ∈
(0, ka1i). Together with the fact that lim

z1→0+
dW1/dz1 =

lim
z1→0−

dW1/dz1 = 0, the conclusion is that the first derivative

of W1 is continuous.
Taking the time derivative ofW1 along (14) yields

Ẇ1 =

3∑
i=1

(
1+

q (z1i)

k2a1i − z
2
1i

+
1− q (z1i)

k2b1i − z
2
1i

)
z1iż1i

= zT1 01ż1 = zT1 01Gωe

(51)

where 01 = diag {011, 012, 013} with 01i = 1+ q(z1i)
k2a1i−z

2
1i
+

1−q(z1i)
k2b1i−z

2
1i
, i = 1, 2, 3.

The virtual controller ωe is designed as

ωc = −κ1G−1z1 (52)

where κ1 > 0 is a design parameter.
Substituting (52) into (51) leads to

Ẇ1 = −κ1zT1 01z1 + z
T
1 01Gz2 . (53)

Step 2: Under the condition of ka2i > z2i(0) > −kb2i,
i = 1, 2, 3, another asymmetric MBLF is chosen as

W2 = W1 +
1
2

3∑
i=1

[
q (z2i) ln

k2a2ie
z22i

k2a2i − z
2
2i

+ (1− q (z2i)) ln
k2b2ie

z22i

k2b2i − z
2
2i

]
+

1
2η1

b̃T b̃ (54)

where η1 is a positive parameter, and b̃ = b− b̂.
The time derivative ofW2 is

Ẇ2 ≤ Ẇ1 + zT2 02
(
F + J−10 u− ω̇c

)
−

1
η1
b̃T ˙̂b (55)

where 02 = diag {021, 022, 023} with 02i = 1 + q(z2i)
k2a2i−z

2
2i
+

1−q(z2i)
k2b2i−z

2
2i
, i = 1, 2, 3.
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The practical controller u in (55) and update law of b̂ are
designed as

u = −J0

(
κ2z2 +

0−12 z2
‖z2‖

‖02‖ b̂T8

+
‖02‖

2 0−12

2
z2 + 0

−1
2 01e4ev − ϑ2

)
(56)

˙̂b = η1
(
‖02‖‖z2‖8− k1b̂

)
(57)

where κ2, η1, k1 > 0 are positive parameters, 8 =[
1, ‖ωe‖ , ‖ω̇e‖ , ‖ωe‖2

]T
, and ϑ2 = [ϑ21, ϑ22, ϑ23]T is the

output of the TD (32).

B. STABILITY ANALYSIS
Theorem 2: For the spacecraft system (14) with the virtual

controller (52), the practical controller (56) and the update
law (57), the tracking errors ev and ωe can converge into an
arbitrarily small region of the origin when the time goes to
infinity.

Substituting (53) into (55) yields

Ẇ2 ≤ −κ1zT1 01z1 + z
T
1 01Gz2

+zT2 02
(
F + J−10 u− ω̇c

)
−

1
η1
b̃T ˙̂b (58)

Using the control law (56) and update law (57), the time
derivative ofW2 is

Ẇ2 ≤ −κ1zT1 01z1 − κ2z
T
2 02z2 + z

T
1 01Gz2 − e4z

T
2 01ev

+zT2 02(ϑ2 − ω̇c)+ ‖02‖ ‖z2‖
(
‖F‖ − b̂T8− b̃T8

)
−
1
2
‖z2‖2 ‖02‖2 + k1b̃T b̂. (59)

According to Young’s inequality, the following inequality
holds:

‖z2‖ ‖02‖µϑ ≤
‖02‖

2
‖z2‖2

2
+
µϑ

2

2
. (60)

From (13), (44) and (60) and using the fact zT1Gz2 =
e4zT2 ev, it is obtained that

Ẇ2 ≤ −κ1

3∑
i=1

01iz21i − κ2
3∑
i=1

02iz22i −
k1
2
b̃T b̃

+
k1
2
bT b+

µϑ
2

2
. (61)

If z1i > 0, q(z1i) = 1, then 01i = 1 + 1
k2a1i−z

2
1i
. According

to Lemma 1, it has
(
1+ 1

k2a1i−z
2
1i

)
z21i ≥ ln

k2a1ie
z21i

k2a1i−z
2
1i
, and if

z1i < 0,
(
1+ 1

k2b1i−z
2
1i

)
z21i ≥ ln

k2b1ie
z21i

k2b1i−z
2
1i
holds. Consequently,

the following inequalities hold with a similar deduction
for z2

−

3∑
i=1

01iz21i ≤ −
3∑
i=1

[
q (z1i) ln

k2a1ie
z21i

k2a1i − z
2
1i

+ (1− q (z1i)) ln
k2b1ie

z21i

k2b1i − z
2
1i

]
(62)

−

3∑
i=1

02iz22i ≤ −
3∑
i=1

[
q (z2i) ln

k2a2ie
z22i

k2a2i − z
2
2i

+ (1− q (z2i)) ln
k2b2ie

z22i

k2b2i − z
2
2i

]
. (63)

With the help of (62) and (63), the time derivative ofW2 is
simplified as

Ẇ2 ≤ −λ1W2 + µ1 (64)

where λ1 = min {2κ1, 2κ2} with η1 = 2κ1/k1 , and
µ1 =

k1
2 b

T b+ µϑ
2

2 .

By solving W2 ≤
µ1
λ1
, the final region of quaternion track-

ing errors are ei = zi ≤ min

{
K1i

√
1− e

−2µ1
λ1 ,

√
2µ1
λ1

}
, i =

1, 2, 3, where K1i = max {ka1i, kb1i}. The final region of z2

is z2i ≤ min

{
K2i

√
1− e

−2µ1
λ1 ,

√
2µ1
λ1

}
, i = 1, 2, 3, where

K2i = max {ka2i, kb2i}. Considering ωc = −κ1G−1z1 and
ωe = ωc + z2, ωe can converge into an arbitrarily small
region of the origin when the time goes to infinity. According
to [20], the signals z1i and z2i, i = 1, 2, 3 remain in the
compact (−kb1i, ka1i) and (−kb2i, ka2i), respectively. Hence,
all the states of the system are bounded, and the transient and
steady-state performance of the output ω can be improved
by tuning the asymmetric MBLF parameters. As pointed
out in Remark 3, if the parameters κ1 and κ2 are chosen
sufficiently large, 2µ1/λ1 leads to 0, which implies that ωe
can converge into an arbitrarily small region 1ωe2 in infinite
time. It is equivalent to mean that for any given constant
ε > 0, the tracking error ωe will enter the specific bound
‖ωe‖ ≤ 1ωe2 + ε within a finite time. This completes the
proof.

V. FAULT-TOLERANT CONTROL WITH INPUT
SATURATION
In this section, the input constraint and actuator fault are both
taken into account. By incorporating MBLF in the adaptive
backstepping design, the adaptive fault-tolerant controller is
developed to ensure that the tracking errors are driven into a
small region of the origin in the presence of angular velocity
constraint.

A. CONTROL DESIGN
Considering the input saturation and actuator fault, the equa-
tion (4) is re-expressed as

J ω̇ = −ω×Jω + Dsat(u)+ d (65)
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where D = diag {D1,D2,D3} is the actuator effectiveness,
Di(t) = 1 means that the ith actuator is totally health, 0 <
Di(t) ≤ 1 represents that the ith actuator has lost its effec-
tiveness partially, and sat(u) = [sat(u1), sat(u2), sat(u3)]T is
the saturated control given by

sat(ui) =

 umi, if ui > umi
ui, if − umi ≤ ui ≤ umi
−umi, if ui < −umi

(66)

where umi and −umi are the maximum and minimum torque
that ith axis provides, respectively.
For the convenience of the controller design, the saturation

function sat(u) is expressed as

sat(u) = χ (u(t)) · u(t) (67)

where χ (u(t)) = diag {χ1(u1(t)), χ2(u2(t)), χ3(u3(t))} and

χi(ui(t)) =

 umi/ui, if ui > umi
1, if − umi ≤ ui ≤ umi
−umi/ui, if ui < −umi

. (68)

The coefficient 0 < χi(ui(t)) ≤ 1 reflects the saturation
degree of the ith axis of the control torque. Since 0 < Di(t) ≤
1 and 0 < χi(ui(t)) ≤ 1, it is reasonable to assume that there
exists a constant ξ satisfying

0 < ξ ≤ min {Di(t)χi(ui(t)), i = 1, 2, 3} ≤ 1. (69)

From (9), (65) and (67), the rigid spacecraft attitude track-
ing dynamics and kinematics equations with input saturation
and actuator fault are obtained by{

ėv = Gωe
ω̇e = F + J−10 Dχ (u(t)) · u(t)

(70)

Following the similar backstepping procedures of the for-
mer sections, the virtual controller and the practical controller
based on the MBLF (15) are designed as

ωc = −κ1G−1z1, (71)

and

u = −J0

[
κ2z2 +

z2
‖z2‖

γ̂

(
σ1

σ2
|e4| ‖ev‖ + um

)]
, (72)

where κ1, κ2 are tunable parameters, γ̂ is the estimation of
ξ−1, σ1 = 1+ 1

k2b1−z
T
1 z1

, σ2 = 1+ 1
k2b2−z

T
2 z2

, the function um is

um = b̂T8+ ‖ϑ2‖ +
1
2
σ2‖z2‖, (73)

where b̂ is the estimation of b,8 =
[
1, ‖ωe‖ , ‖ω̇e‖ , ‖ωe‖2

]T
,

and ϑ2 = [ϑ21, ϑ22, ϑ23]T is the output of the TD (32). The
update laws of b̂ and γ̂ are

˙̂b = η1
(
σ2‖z2‖8− k1b̂

)
, (74)

˙̂γ = η2

[
γ̂ 3 (σ1 |e4| ‖ev‖ ‖z2‖ + σ2‖z2‖um)+ k2γ̂

]
, (75)

where η1, η2, k1, k2 are positive parameters.

B. STABILITY ANALYSIS
Theorem 3: For the spacecraft system (70) subject

to input saturation and actuator fault, with the virtual
controller (71), the practical controller (72), and the update
laws (74) and (75), the tracking errors ev and ωe can converge
into an arbitrarily small region of the origin when the time
goes to infinity.
Proof of Theorem 3: Define a positive MBLF as

V3 =
1
2
ln

k2b1e
zT1 z1

k2b1 − z
T
1 z1
+

1
2
ln

k2b2e
zT2 z2

k2b2 − z
T
2 z2

+
1
2η1

b̃T b̃+
1
2η2

γ̃ 2 (76)

where z1 = ev, z2 = ωe − ωc, b̃ = b− b̂, and γ̃ = ξ − γ̂−1.
Using (70) and (71), the time derivative of V3 is

V̇3 ≤ −κ1σ1zT1 z1 + σ1z
T
1Gz2 −

1
η1
b̃T ˙̂b+

1
η2
γ̃ γ̂−2 ˙̂γ

+σ2zT2
(
F + J−10 Dsat(u)− ω̇c

)
. (77)

Substituting (72)-(75) into (77) and using the property (69)
lead to

V̇3 ≤ −κ1σ1zT1 z1 − κ2σ2ξz
T
2 z2

+σ1

[
z1TGz2 − (ξ − γ̃ )γ̂ |e4| ‖ev‖ ‖z2‖

]
+σ2‖z2‖

[
‖F‖ − (ξ − γ̃ )γ̂ b̂T8− b̃T8

]
+σ2‖z2‖

[
‖ω̇c‖ − (ξ − γ̃ )γ̂ ‖ϑ2‖

]
−
1
2
σ 2
2 ‖z2‖

2 (ξ − γ̃ )γ̂ + k1b̃T b̂+ k2γ̃ γ̂−1. (78)

From (36), (41) and using the fact zT1Gz2 = e4zT2 ev,
ξ − γ̃ = γ̂−1, the time derivate of V3 is further simplified
as

V̇3 ≤ −κ1

(
1+

1

k2b1 − z
T
1 z1

)
zT1 z1

−κ2

(
1+

1

k2b2 − z
T
2 z2

)
ξzT2 z2

+k1b̃T b̂+ k2γ̃ γ̂−1 +
µϑ

2

2
. (79)

According to Lemmas 1, (79) is rewritten as

V̇3 ≤ −2κ1

(
1
2
ln

k2b1e
zT1 z1

k2b1 − z
T
1 z1

)

−2κ2ξ

(
1
2
ln

k2b2e
zT2 z2

k2b2 − z
T
2 z2

)

+k1b̃T b̂+ k2γ̃ γ̂−1 +
µϑ

2

2
. (80)

Using Young’s inequality, the following inequality is
obtained as

k2γ̃ γ̂−1 = k2γ̃ (ξ − γ̃ ) ≤
k2
2
ξ2 −

k2
2
γ̃ 2 . (81)
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Substituting (44) and (81) into (80) yields

V̇3 ≤ −λ2V3 + µ2 (82)

where λ2 = min {2κ1, 2ξκ2} with η1 = 2κ1/k1, η2 = 2κ1/k2
, and µ2 =

k1
2 b

T b+ k2
2 ξ

2
+

µϑ
2

2 .

From (82), it is concluded thatV3 ≤
µ2
λ2

when the time goes
to infinity, and the uniformly ultimate boundedness of the sys-
tem tracking errors are guaranteed. Furthermore, the quater-
nion tracking error ev and angular velocity error ωe converge

to the region ‖ev‖ ≤ 1z21 = min

{
kb1

√
1− e

−2µ2
λ2 ,

√
2µ2
λ2

}
and ‖ωe‖ ≤ 1ωe3 = 1z22 + 1ωc2 , respectively. 1z22 =

min

{
kb2

√
1− e

−2µ2
λ2 ,

√
2µ2
λ2

}
is region of z2 and 1ωc2 is the

region of ωc. Using the property of MBLF, it is obtained
that z1 and z2 are constrained by kb1 and kb2. Therefore,
considering the definition of ω, the constraint of the angular
velocity ω in the system (65) is guaranteed. This completes
the proof.

VI. NUMERICAL SIMULATIONS
In order to illustrate the effectiveness of the proposed adaptive
controllers, the simulations and corresponding discussions
are presented in this section. The spacecraft model is given
by (14), where the initial state values are set as

q(0) = [−0.1, 0.5,−0.2,
√
0.7]T ,

ω(0) = [0.01,−0.01, 0.01]T rad/s.

The desired attitude motion is given by

qd = [0, 0, 0, 1]T ,

ωd = 0.1[cos(t/40),− sin(t/50),− cos(t/60)]T rad/s.

The nominal inertia matrix J0 = diag {45, 42, 37.5}, and
the uncertainty 1J is

1J = diag {4, 3.5, 2} (1+ e−0.1t )− 21J1 kg · m2

where

1J1 =
{
0, t < 5
I3, t ≥ 5

.

The external disturbance is

d = 0.5 ‖ω‖ [sin(0.8t), cos(0.5t), sin(0.3t)]T N · m.

A. ATTITUDE TRACKING FOR SPACECRAFT WITH INERTIA
UNCERTAINTY AND EXTERNAL DISTURBANCE
In this subsection, the attitude tracking control perfor-
mance with inertia uncertainty and external disturbance is
shown to illustrate the effectiveness of the proposed control
scheme (27), (33)-(32) in Section III. The parameters of the
controllers and update laws are set as κ1 = 0.2, κ2 = 0.4,
kb1 = 0.8, k1 = 0.2, η1 = 2, r = 0.5, and the initial
values of b̂ is set as [0.01, 0.01, 0.01, 0.01]T . In order to
verify the effect of the MBLF parameter kb2 on the tracking

FIGURE 2. Virtual state z2.

FIGURE 3. Angular velocity tracking errors ωe.

performance, the compared simulations are conducted with
different selection of kb2, i.e., kb2 = 0.6, 0.9, and 1.2.

Fig.2 and Fig.3 depict virtual state z2 and angular veloc-
ity errors ωe of the spacecraft system, respectively. From
Figs.2 and 3, it is seen that the satisfactory attitude tracking
performance is achieved, and the overshoot is smaller when
the parameter kb2 is set to be 0.6. It means that the constraint
effect is better with the smaller kb2. The control torque u is
shown in Fig.4, which states that the undesirable chatter-
ing is eliminated in the controller by using the boundary
layer technique (37). Fig.5 shows that the for kb2 = 0.6
quaternion errors e = [e1, e2, e3, e4]T converge to the small
neighborhoods of zero and e4 6= 0, which is consistent
with the theoretical analysis. Fig.6 depicts the performance
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FIGURE 4. Control torque u.

FIGURE 5. Quaternion tracking errors e with kb2 = 0.6.

of the tracking differentiator, which shows that the TD is
capable of approximating ω̇c within 3 seconds. The conver-
gence performance of the estimated parameter b̂ is shown
in Fig.7, and it is clear that the parameter b̂ converges to
the positive constant. The uncertainty estimation is depicted
in Fig.8, which shows that the inequality (13) is reasonable
and the update law accomplishes the scheduled purpose.
From Figs.2-8, it is concluded that the proposed controller
can achieve precise attitude tracking in the presence of the
external disturbance and inertia uncertainty, and the smaller
kb2 reduces the overshoot of the constrained angular velocity.

B. ATTITUDE TRACKING FOR SPACECRAFT WITH
ASYMMETRIC MBLF
In this subsection, two schemes including the asymmetric
MSLF (AMBLF) based control in Section IV and symmetric
MBLF (SMBLF) based control in Section III are provided for
the comparison.

FIGURE 6. Tracking differentiator approximation with kb2 = 0.6.

FIGURE 7. Estimated parameter b̂ with kb2 = 0.6.

TABLE 1. Constraint parameters for z2.

Most parameters in both schemes are set the same,
i.e., κ1 = 0.2, κ2 = 0.4, k1 = 0.2, η1 = 2, r = 0.5,
ka1i = kb1i = kb1 = 0.8, i = 1, 2, 3, and the initial values
of b̂ is set as [0.01, 0.01, 0.01, 0.01]T . The different con-
straint parameters are set and shown in Table 1.

The comparative simulation results of AMBLF and
SMBLF are shown in Figs.9 and 10, which depict virtual
state z2 and angular velocity errors ωe of the spacecraft
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FIGURE 8. Estimated uncertainty with kb2 = 0.6.

FIGURE 9. Virtual state z2.

system, respectively. From Figs.9 and 10, it is seen that
compared with SMBLF method, the AMBLF has the better
convergence rate and less overshoot, which means that the
AMBLF based control can achieve the improved transient
performance by tuning parameters.

C. ATTITUDE TRACKING FOR SPACECRAFT WITH INPUT
SATURATION AND ACTUATOR FAULTS
In this subsection, the attitude tracking control performance
for the spacecraft with input saturation and actuator faults
is provided, and to show the good property of the proposed
MBLF, the conventional logarithmic BLF [20] based control
scheme is employed for the comparison.

For the notation convenience, the two control schemes are
given as follows.

C1: The proposed control scheme based on the MBLF,
including virtual control law (71), control law (72), update
laws (74) and (75).

C2: The control scheme based on the logarithmic BLF [20].

FIGURE 10. Angular velocity tracking errors ωe.

FIGURE 11. Angular velocity errors ωe with C1.

The constraint of the input is |ui| ≤ 5 N · m, i = 1, 2, 3
and the actuator fault condition D = diag {D1,D2,D3}

is

Di(t) =
{
1, if t < 10s
0.75+ 0.1 sin(0.5t + iπ/3), if t ≥ 10s

.

The control parameters in C1 and C2 are set the same,
i.e., κ1 = 0.25, κ2 = 0.4, k1 = 0.01, k2 = 0.15, η1 = 50,
η2 = 1/3, r = 0.2. The initial values of b̂ and γ̂ are set
as [0.01, 0.01, 0.01, 0.01]T and 0.15, respectively. In order
to express the unconstraint situation, kb1 and kb2 are set
sufficiently large, i.e., kb1 = 10, kb2 = 10.

The comparative simulation results of C1 and C2 are
shown in Figs.11-14. The attitude tracking angular velocity
errors of C1 and C2 are depicted in Figs.11 and 12, and the
average angular velocity errors after 20s are 3.347 × 10−4

and 0.013, respectively. As shown in Figs.11 and 12, the pro-
posed C1 scheme can still achieve the satisfying attitude
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FIGURE 12. Angular velocity errors ωe with C2.

FIGURE 13. Quaternion tracking errors e with C1.

FIGURE 14. Quaternion tracking errors e with C2.

tracking performance with larger kb1 and kb2, but the
performance of C2 scheme becomes worse with the same
parameters. The quaternion errors of C1 and C2 are shown
in Figs.13 and 14, and the average quaternion errors after 20s
are 0.013 and 0.056, respectively. Fig.13 shows that the

FIGURE 15. Estimated parameters b̂ and γ̂ with C1.

quaternion errors of C1 converge to the small neighborhood
of zero. However, as shown in Fig.14, the static quaternion
errors of C2 are larger than those of C1. The convergence
performance of the estimated parameters b̂ and γ̂ of C1 is
shown in Fig.15. From Figs.11-15, it is concluded that the
proposed C1 scheme can achieve the precise tracking per-
formance in the presence of the external disturbance, inertia
uncertainty, actuator fault, as well as input and output con-
straints. Furthermore, it is verified that the novel MBLF can
be effective for both constraint and unconstraint situa-
tions, which is consistent with the theoretical analysis given
in Section III.

VII. CONCLUSION
The attitude tracking problem has been investigated in this
paper for spacecraft systems with both input and output
constraints. The application scope of the traditional logarith-
mic barrier Lyapunov function is extended by constructing a
novel modified barrier Lyapunov function (MBLF) suitable
for constraint and unconstraint situations. Then, the adap-
tive controller is proposed through the backstepping design
with MBLF, and the derivative signal of the virtual controller
is estimated by using the tracking differentiator. With the
proposed control scheme, the knowledge on the bound of the
lumped uncertainty is not required in prior, and simulation
examples are provided to verify the effectiveness of the pro-
posed scheme.
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