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ABSTRACT The seamless tube, being widely used in the automobile, aviation, petroleum, chemical,
building, boiler, and military industries, is called the ‘‘blood vessel of industry.’’ The demands for high-
quality seamless tubes are increasing continuously. Piercing is the first deformation process in seamless
tube production and has great influence on the quality of the product. This paper takes the Diescher piercer
as the object of study and builds the DEFORM finite-element model of piercing process. The DEFORM
model of piercing process can substitute for practical production and serve as a simulation platform of the
production process. The DEFORM model can be used for the optimization of the process parameters and
the prediction of quality, and it also greatly reduces the debugging time and the production cost. Therefore,
the model has great theoretical significance and is of great value in practical use. Finally, by combining the
DEFORMfinite-element model with the ensemble OSC-PLS-ELMmathematical model, we build the hybrid
model, which further increases the precision of the quality forecast. The ensemble OSC-PLS-ELM method
has the advantages of both the PLS and ELM, i.e., the characteristics of robustness and feature extraction of
the PLS method and the quick nonlinear processing capability of ELM.

INDEX TERMS Data models, ELM (extreme learning machine); seamless Tube, DEFORM-3D, hybrid
modeling.

I. INTRODUCTION
Seamless tubes are referred to as industrial blood vessels.
Seamless tubes are widely used in a variety of fields, such
as automobile, aviation, petroleum, chemical, architectural,
boiler and military industries. With the rapid development
of the economy, the requirements for product quality also
become increasingly high. At each phase, the production of
seamless tubes is tightly monitored and controlled. Waste
products or substandard products can be produced at any
phase if such deficiencies are not detected in time. As a
consequence, the process may result in energy waste and a
low utilization rate during production procedures [1]–[3].

The three deformation processes in the production of seam-
less tubes are piercing, tube rolling and reducing. Tube pierc-
ing is the first deformation process in the production process
of hot rolled seamless tubes. The Mannesmann piercing unit
consists of two barrel-shaped rolls, two guide discs and one
plug, as shown in Figure 1. The quality of the tube hol-
low and the process variables are more complicated for this

FIGURE 1. Drawing of Piercer.

process because it is a multistage, complex nonlinear, and
dynamic multivariable batch process. Furthermore, because
of the continuity of the production process and the limitations
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on monitoring instruments, it is quite difficult to measure the
quality of the tube hollow in a timely manner in practice. The
quality control is achieved by the staged random sampling
through the workers’ regulation of the processing parameters
based on their experience. Certain relations between the pro-
cessing parameters and the quality information, such as tube
hollow deformation, twist, inner and outer cracks and surplus
strain, have been determined by some scholars based on the
element method [4]–[6]; however, it was found to be difficult
to link the processing parameters and quality parameters one
by one. Based on the BP neural network method, the rela-
tion model between tube hollow qualities and the processing
parameters, e.g., roller shape, feed angle, and plug advance,
had been built by reference [7]; however, the accuracy of the
quality model was relatively low because of the limitations
on modeling method and processing parameters. The authors
of references [8]–[10] had built the relation model based on
the MPLS method; however, relatively low accuracy of the
quality model was obtained because of the limitations of the
linear method.

The shape of tube rolling tool is complicated, and the
movement of the deformation tool includes both rotation
movement and linear movement. The external force the tool
bears includes the front tension and the back tension besides
the external force of rolls, guide discs and plugs. There are
many factors that influence the piercing process, including
the roll, the plug, the guide disc, the feed angle, the toe angle,
the cone angle of the inlet, and the cone angle of the outlet.
These factors make the analysis of the geometry, the mechan-
ics and the kinematics of the deformation space of the tube
rolling process very complicated. Therefore, developing a
method to accurately determine the parameters during pierc-
ing is a crucial problem that remains to be solved in the design
and production of seamless tubes.

Obtaining appropriate process parameters of cross piercing
is crucial in smoothly completing the piercing process of a
seamless tube and guaranteeing the quality of shell to be
pierced. In the cross-piercing process of the tube, the metal
deformation is very complicated, and it is difficult to mea-
sure the metal flow. In practical production, engineers often
depend on their experience or draw on the experience of the
unit of the same type to select the parameters of the piercing
process; thus, it is difficult to guarantee the highest quality
of the shell. Using optimized parameters in the model for
simulation can avoid the need for debugging the optimized
parameters in the production site and reduce unnecessary
losses. Therefore, building a three-dimensional model of the
piercer to simulate the piercing process is of great theoretical
importance and practical significance. However, the preci-
sion of DEFORM-3D cannot satisfy the requirements of
production very well. To address this issue, the ensemble
OSC-ELM-PLS algorithm is proposed. Compared with sin-
gle PLS and single ELM, the proposed algorithm has the
advantages of both the specialties of robustness and spe-
cialty extraction of PLS method and the quick nonlinear
processing capability of ELM. Based on the DEFORM-3D

model, we utilize the ensemble OSC-ELM-PLS algorithm to
build the hybrid model using practical data. The precision
of the hybrid model is higher than that of the individual
DERORM-3D and data-driven models.

The main contributions in this paper are highlighted below.
1) We establish the DEFORM-3D model of the piercing

process based on the actual production.
2) We propose an ensemble OSC-ELM-PLS modeling

algorithm that has the characteristics of robustness and fea-
ture extraction of the PLS method and the quick nonlinear
processing capability of ELM.

3) We build the hybrid model by combining the
DEFORM-3D and ensemble OSC-ELM-PLS methods.

II. BUILDING OF FINITE ELEMENT MODEL
OF PIERCING PROCESS
The finite element method is an effective numerical comput-
ing method. DEFORM (Design Environment for Forming) is
a finite element analysis software suite that was developed by
the Battle Columbus Laboratory of America at the beginning
of the 1980s [11]–[14]. DEFORM is a set of Finite Element
Method (FEM) models based on the processing simulation
system that is applicable for hot, cold and warm forming
analog simulations and is specially designed and used for
analyzing the three-dimensional flow of materials and the
temperature during the production of all forms of metals.
The objects that DEFORM considers are complicated three-
dimensional parts, the die, etc., and the typical application of
DEFORM includes the forging, extruding, heading, rolling,
hammer forging, bending and other forming processes. The
practical production will benefit greatly from the process data

A. THE SELECTION OF TUBE BLANK SIZE AND MATERIAL
In consideration of the actual situation of the site, the comput-
ing power and the computing time of the computer used in the
practical production, the specification of the tube blank that is
selected and used for analog computation is the following: the
diameter Db=178 mm; the material is AISI-1045, which is
similar to 45# steel in Chinese grade steel. When determining
the length of the round tube blank, it is necessary to guarantee
that the rolled piece fills the deformation area. To reduce the
unevenness of the wall thickness, the centering hole is set at
the bitten end of the tube blank, the depth of centering hole is
h=10 mm, and the diameter is d=30 mm.

B. BUILDING OF GEOMETRIC MODEL
The helical groove of skew rolling of the solid tube blank
is formed by the rolls and the guide discs. The main size,
the rotating speed and the adjustment parameters of the
deformation tool are as follows: the diameter of the roll
Dg=1000 mm; the cone angle of the inlet β = 2.75◦; the
rotational speed ng=120 r/min; the diameter of the guide
disc Dp=1800 mm; the rotational speed np=26 r/min; the
feed angle α = 12◦; the toe angle 8 = 0◦; the distance
between the rolls Bck=154.6 mm; the distance between the
guide discs Lck=173 mm.
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FIGURE 2. Drawing of parts of Piercer.

The roll, the guide disc and the plug are regarded as the
dies in the simulation. The geometric models of the roll,
the guide disc and the plug are built according to the size
and specifications used in the production of the seamless tube
factory of BAOSTEEL. Their three-dimensional graphics are
shown in Figure 2.

To obtain an almost identical situation of the production
site during the course of simulation, the pushing bar (its
function is approximately equal to the function of the pusher
in the production) is adopted to push the tube blank into the
cavity bore in the bitten stage of the tube blank. A pushing bar
is also installed at the tail end of the plug; the main function of
the pushing bar in the stimulation is to put the rolled shell on
it to avoid bending of the shell caused by the rotation when it
is rolled. Because the deformations of the roll, the guide disc
and the plug are extremely small compared to the tube blank
in the piercing process, they can be ignored and set as the
rigid body in the simulation. However, to consider the heat
exchange between the roll, guide disc and plug and the tube
blank in the temperature simulation, the necessary grids are
also divided in those dies. Because Deform-3D software does
not have the appropriate functionality to build the die, Pro/E,
the three-dimensional modeling software, is adopted to build
the real dies. According to the schematic diagram of piercing
shown in Fig. 1, we build the three-dimensional model shown
in Figure 3.

C. DETERMINATION OF INITIAL AND
BOUNDARY CONDITION
1) SELECTION AND DIVISION OF TUBE BLANK UNIT
Three aspects should be considered for the selection of the
length of the tube blank and the quantity of division of grids:
a) the length of tube blank can guarantee that the tube blank
can fill the deformation zone and be rolled steadily; b) the
blank can be produced in actual production. Taking these
two aspects into account, after many tests and selections,
the following were determined: the final length of the tube
blank is 550mm, and the divided grids are 60,000 grids; these
results are shown in Figure 4.

FIGURE 3. Three-dimensional model of piercing.

FIGURE 4. Grid division drawing of tube blank.

2) MECHANICS BOUNDARY
The coefficients of friction between the tube blank and the die
are basically the same. The coefficient between the roll and
the tube blank is 0.4. The coefficient between the guide disc
and the tube blank is 0.3. The coefficient between the plug
and the tube blank is 0.3.

3) TEMPERATURE BOUNDARY
The blooming temperature of the tube blank is 1200◦C, and
the working temperature of the roll is 150◦C; the initial
temperature of the guide disc is set to 100◦C, and the initial
temperature of the plug is set to 100◦C.

4) CONDITION OF MOVEMENT
The rotating speed of the roll and the guide disc is set accord-
ing to the rotating speed of practical production. After the
tube blank is bitten, driven by the frictional force between
the roll and the guide disc, the tube blank is rolled to complete
the finite element simulation of the piercing process. Except
for the head and tail of rolled piece, the deformation of the
rolled piece in the whole piercing process can be regarded as
a steady-state deformation.

D. DETERMINATION OF INITIAL AND
BOUNDARY CONDITION
First, we utilize the front processor of DEFORM to set all the
necessary parameters according to the given actual param-
eters of the roll, the guide disc and the pushing bar of
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FIGURE 5. The tube blank in the piercing process.

FIGURE 6. The section view of piercing process.

the piercer. Second, DEFORM generates the database, simu-
lates the whole piercing process and finds its solution. Finally,
DEFORM simulates the piercing process in the postproces-
sor. Figures 5-6 show pictures of the simulation process and
the data monitoring in the piercing process.

III. HYBRID MODELING METHOD FOR THE
PIERCING QUALITY PREDICTION
To improve the quality prediction accuracy of the
DEFORM-3Dmodel, a hybrid modeling method is proposed.
The hybrid modeling method is conducted by combining
the DEFORM-3D modeling method with the Ensemble
OSC-PLS-ELM data modeling method. The DEFORM
model is the foundation of the entire hybrid model. When
conducting the DEFORM modeling, it is necessary to pro-
pose the rational simplifying hypothesis on the object; oth-
erwise, the modeling will become extremely complicated.
Those hypotheses generally lead to the inaccuracy of the
model. In addition, some actions of the external disturbance
of the process can also change continuously and are also
difficult to accurately describe. These factors result in the
certain deviation of the DEFORM model from the practical
model. To identify this deviation, it is necessary to utilize
the Ensemble OSC-PLS-ELM data model to modify the
DEFORMmodel. The Ensemble OSC-PLS-ELM data model

TABLE 1. Modeling variable table for the first unsteady piercing phase.

is superimposed on the DEFORM model via the compensa-
tion of the model error. The output of DEFORM modeling
and the output of the ELM network jointly form the final
output of the model [41]. The modeling process is shown
in Figure 7.

FIGURE 7. Structural drawing of hybrid Model.

A. ANALYSIS ON THE FACTORS THAT AFFECT
TUBE HOLLOW QUALITY
The billet piercing process could be primarily separated into
three phases: the first unsteady piercing phase, the steady
piercing phase and the second unsteady piercing phase.
By analyzing the technical feature, the variables at different
stages will exert different effects on the tube hollow quality.
The variables of each stage are shown in Table 1, Table 2
and Table 3.

For quality evaluation, quantitative index of the tube hol-
low quality is needed [15]. It can be obtained by off-line
measurement. The transversal thickness unevenness is the
ratio of the maximum thickness deviation to the nominal
thickness and can be calculated as formula (1).

1S% =
δmax − δmin

δHOM
× 100 (1)

Where,1S%—the relative transversal thickness unevenness;
δmax− the maximum tube wall thickness;
δmin− the minimum tube wall thickness;
δHOM− the nominal tube wall thickness.
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TABLE 2. Modeling variable table for the steady piercing phase.

TABLE 3. Modeling variable table for the second unsteady piercing phase.

The longitudinal thickness unevenness is the differential
value between the mean value of the front-end tube wall
thickness and the back-end tube wall thickness. It can be
calculated as formula (2).

1Snp =

n∑
i=1
δnep

n
−

n∑
i=1
δ3an

n
(2)

Where,
n∑

i=1
δnep and

n∑
i=1
δ3an are the measured sum of tube

wall thickness. n is the sum of points measured [16].

B. ORTHOGONAL SIGNAL CORRECTION (OSC)
ALGORITHM
Many high-frequency noises are sandwiched into collecting
production data. It will reduce the modeling accuracy. So the
original data preprocessing is very necessary. Based on the
introduction of Wold’s OSC method [17]–[21], several other
OSC algorithms have been proposed and we also use this
algorithm in this paper. The basic idea is filtering irrelevant
information about Y by letting X is a vector in the direction
orthogonal to Y before the establishment of model. We sum-
marized them below in our own words:

(1) Center and scale the data to give the raw matrices
X and Y ;

(2) Compute the first principal component (PC1) from a
PCA of X and let t0 be the PC1;
(3) Orthogonalize t0 to Y : tnew = (I -Y (Y TY )−1Y T)t0;
(4) Compute the PLS weight vector, w, that satisfies

Xw = tnew;
(5) Compute a new score vector t0 from X and w: t0 = Xw;
(6) Repeat steps (3), (4), and (5) until t0 has converged;
(7) Compute a loading vector p0: p0 = XTt0/ tT0 t0;
(8) Subtract the correction form X to obtain the residuals

XOSC: XOSC = X − t0pT0 .

C. NONLINEAR PLS
Wold et al. extended the PLS method to the nonlinear
field [22], [23]

(1) External Relation Model:

X = TPT + E =
A∑
a=1

tapTa + E

Y = UQT + F =
A∑
a=1

uaqTa + F (3)

(2) Internal Relation Model:

ûa = f (ta)+ ε (4)

where f (·) is the nonlinear function, and ε is the residual.
The nonlinear PLS method, in which the internal model

adopts the neural network, has gained extensive application
because the neural network has the capability of fitting non-
linear behavior [24].

D. ELM ALGORITHM
In supervised batch learning, a finite number of input-output
samples for training are used [25]–[29]. For N arbitrary
distinct samples (xi, ti) ∈ Rn × Rm (where xi is an n × 1
input vector, and ti is an m × 1 target vector), if a with Ñ
hidden nodes SLFN (single-hidden layer feed forward neural
network [30]–[34]) can approximate theseN samples with no
error, it then signifies that there exist βi, ai and bi such that

fÑ
(
xj
)
=

Ñ∑
i=1

βiG
(
ai, bi, xj

)
+ εj = tj (5)

where j = 1, . . . ,N , ai and bi are the learning parameters of
the hidden nodes that are randomly selected on the basis of
the proof given by Huang et al.;βi is the weight linking the
ith hidden node to the output node;G (ai, bi, x) is the output
of the ith hidden node with respect to the input x; and Ñ is the
number of hidden nodes [35]–[40]. Thus, equation (5) can be
written compactly as

Hβ = T (6)

Equation (6) then becomes a linear system, and the output
weights β are estimated by

β̃ = H+T (7)
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E. ENSEMBLE OF OSC-PLS-ELM ALGORITHM
Ensemble OSC-PLS-ELM contains many OSC-PLS-ELM
networks with the same number of hidden nodes, and each
network has the same activation function for each hid-
den node. P networks are constructed in the ensemble of
OSC-PLS-ELM. All P OSC-PLS-ELM networks are trained
with new data in each incremental step. The input parameters
for each OSC-PLS-ELM networks are randomly generated,
and the output weights are obtained analytically on the basis
of the sequentially arrived input data. By calculating the
average of the outputs of each OSC-PLS-ELM network,
the final output of the OSC-PLS-ELM network is obtained.
Assume the output of each OSC-PLS-ELM network is gj(xi),
j = 1, 2, . . .P. Hence, we have

g(xi) =
1
P

P∑
i=1

gj(xi) (8)

F. ENSEMBLE OF OSC-PLS-ELM MODELING STEPS
The difference between the nonlinear PLS modeling method
based on ELM and the linear PLS method is that the former
one uses ELM to establish the internal nonlinear model and
update the internal and external models at the same time. The
linear external model is reserved, the attributive information
of process through PLS is extracted, the collinearity of data
is eliminated, and the dimension of input variable reduced by
using this method; moreover, it introduces ELM to build non-
linear internal model between input score vector matrix and
output score vector, and improves the nonlinear processing
capability of internal model. Therefore, compared with single
PLS and single ELM, OSC-PLS-ELM has the advantages of
both—the specialties of robustness and specialty extraction of
the PLSmethod and the quick nonlinear processing capability
of ELM.

The modeling and testing steps of the Ensemble
OSC-PLS-ELM are given below:

(1) Distribute two standardized data matrix, X ∈ Rn×m

and Y ∈ Rn×p, Y is the model errors between the DEFORM
model and the actual quality value X is

X = [x1, x2, · · · xp] (9)

(2) Process the data using the OSC algorithm.
(3) Configure the batch data of the batch process, use the

cross-validation method to determine the number of latent
variables, and use the linear PLSmethod to compute the score
vector matrix T and U and load vector matrix P and Q for
modeling sample X and Y .

X = TPT + E =
A∑
a=1

tapTa + E

Y = UQT + F =
A∑
a=1

uaqTa + F (10)

(4) Distribute the node number of the ELM hidden layer
and activation function, use ELM to establish the non-
linear model between internal models T , U , and obtain

U = fELM (T ), where fELM (·) is the nonlinear function indi-
cated by ELM.

(5) After new batch data X1, Y1 are obtained, first perform
PLS decomposition, and then obtain the score vectors and the
load vectors T1,U1,P1,Q1.

X1 = T1PT1 + E

Y1 = U1QT1 + F (11)

(6) Check the accuracy of the model by using test data.
Conduct PLS decomposition on the test data X2 and obtain
score vector T2.

X2 = T2PT + E (12)

Introduce T2 into the Ensemble OSC-PLS-ELM model,
calculate U2 = fOSC−PLS−ELM (T2), and then obtain the
model prediction through Ŷ = UQT . The modeling process
is shown in Figure 8.

FIGURE 8. Frame chart of ensemble OSC-PLS-ELM algorithm.

IV. SIMULATION AND EXPERIMENT
To verify the accuracy of the method, 30 piercing tubes of the
Diescher Mannesmann piercer from the seamless tube fac-
tory of the Baosteel Company produced in January 2014 are
selected in this paper. The modeling variables are shown
in Table 1. The first 20 shells are used to establish the
quality prediction model. The prediction results are shown
in Figure 9. Utilize the same process parameters to establish
the DEFORMmodel of the piercing process. A hybrid model
is built on the strength of the data of the actual process
and of the DEFORM model. The last 10 shells are used
for testing the hybrid model. The generalization results are
shown in Figure 10.

As shown in Figure 9, the prediction accuracy of the
transverse wall thickness of the piercing quality model of the
hybrid model, Deform model and MPLS model are 93.51%,
91.81 and 91.93%, respectively. As shown in Figure 10, the
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FIGURE 9. Prediction result of transverse wall thickness of quality model.

FIGURE 10. Generalization result of transverse wall thickness of quality
model.

FIGURE 11. Prediction result of longitudinal wall thickness of quality
model.

generalization accuracy of transverse wall thickness of the
piercing quality model of the hybrid model, Deform model
and MPLS model are 92.63%, 91.15 and 91.21%, respec-
tively. As shown in Figure 11, the prediction accuracy of
the longitudinal wall thickness of the piercing quality model
of the hybrid model, Deform model and MPLS model are
93.37%, 90.93 and 91.03%, respectively.

As shown in Figure 12, the generalization accuracy of
the longitudinal wall thickness of the piercing quality model
of the hybrid model, Deform model and MPLS model are
92.82%, 90.32 and 90.51%, respectively. The comparison

FIGURE 12. Generalization result of longitudinal wall thickness of quality
model.

FIGURE 13. Comparison of different models.

TABLE 4. Comparison of the piercing quality models.

results among the three different piercing quality models are
displayed in Table 4 and Figure 13.

V. CONCLUSION
This paper presented a study of the quality modeling of
piercing. First, the DEFORM-3D model was built to opti-
mize the process parameters and the prediction of piercing
quality. Next, to improve the accuracy of quality predic-
tion, the ensemble OSC-PLS-ELMmethod was proposed for
correcting the DEFORM-3D model. Finally, the feasibility
and validity of the modeling method based on the hybrid
model was proved via the simulation and experiment results;
the proposed hybrid model was found to be more accurate
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than the individual DEFORM-3D and data-driven models.
Moreover, the hybrid model can be extended to the quality
prediction of other batch processes.
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