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ABSTRACT This paper concerns the problem of designing a modified repetitive-control system based on
a generalized extended state observer (GESO) for a class of multi-input, multi-output systems in the form
of a nonintegral chain and with mismatched disturbances. A GESO is constructed to estimate a lumped
disturbance in a real-time fashion. Then, an improved repetitive control law is developed to attenuate the
influence of the lumped disturbance from the output channel. A correction to the amount of the delay of the
repetitive controller is introduced to further reduce the steady-state tracking error. A stability criterion and
a design algorithm are presented. Finally, simulations and comparisons with other methods demonstrate the
validity of this method.

INDEX TERMS Repetitive control, generalized extended state observer, disturbance rejection, mismatched
disturbance.

I. INTRODUCTION
In many engineering applications, reference inputs or distur-
bances are periodic signals, e.g., repeated tasks of a robotic
manipulator [1], disturbances in a track-following servo sys-
tem of optical disk drives [2], and position-dependent dis-
turbances in a mechatronic rotary system [3]. Based on the
internal model principle [4], repetitive control provides an
effective way to deal with periodic signals. A repetitive
controller contains a delay line in a positive-feedback loop,
which results in the infinite dimension of the system [5]. In a
repetitive-control system (RCS), self-learning is performed
by periodically updating of the control input through the pure-
delay line. However, since a RCS is a neutral-type delay
system, it is difficult to stabilize. To derive a relaxed stability
condition, a modified RCS (MRCS) was devised by inserting
a low-pass filter in the delay line [6]. During the last three
decades, numerous researches have been made on the analy-
sis and synthesis of anMRCS [7]–[10]. But most articles only
considered single-input, single-output (SISO) systems.

On the other hand, repetitive control cannot reject and
even may amplify aperiodic disturbances [11]. A number
of strategies have been proposed to deal with this problem,

such as adaptive repetitive control [12], sliding-mode-based
repetitive control [13], and H∞ repetitive control [14]. How-
ever, they mainly focus on the system stability. In general,
robustness is achieved at the price of sacrificing nominal
tracking performance [15]–[20].

One intuitive idea to deal with a disturbance is first to
estimate it from measurable variables, and then, taking a
control action by making use of the estimate to compensate
for the influence of the disturbance [21]. This motivated
the development of active disturbance rejection methods for
MRCS such as disturbance-observer-based repetitive control
(DOB-RC) [22], equivalent-input-disturbance (EID)-based
repetitive control (EID-RC) [11], [23]–[25], and extended-
state-observer-based repetitive control (ESOB-RC) [26].
Comparing with single-degree-of-freedom control methods,
such as extreme-learning-machine-based control [27] and
neuro-adaptive-observer-based control [28], the active distur-
bance rejectionmethods proactively estimate and compensate
for system disturbances. However, DOB-RC and ESOB-RC
require that disturbances satisfy amatching condition, i.e., the
disturbances can only be added on the same channel as that
of control input. In addition, ESOB-RC can only deal with
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a class of SISO integral chain systems. While the EID-RC
method can handle this kind of problems, the stability condi-
tion is strict and may fail in finding a feasible controller [11].

Mismatched disturbances and uncertainties widely exist
in practical applications. They make the design much more
challenging than the matched one. In this paper, an active
mismatched disturbance attenuation method is first presented
for anMRCS for a class of multi-input, multi-output (MIMO)
systems in the form of a nonintegral chain. It is based on a
generalized extended state observer (GESO) that estimates
both the system states and the lumped disturbance includ-
ing external disturbances and the unknown dynamics of the
system. An integrated control law is constructed by properly
choosing a disturbance compensation gain and incorporating
the GESO into the MRCS. It ensures the perfect rejection of
periodic disturbances and removes mismatched disturbances
from the output channel. First, the formulation of a GESO
is described and the configuration of a GESO-based MRCS
is presented. Next, an integrated control law that combines a
repetitive-control law and a disturbance-compensation feed-
back is devised to attenuate the influences of disturbances on
the output. Then, a stability criterion and a design algorithm
of the system are presented. Finally, a numerical example
exhibits the design procedure. The comparisons with conven-
tional MRCS and EID-based MRCS demonstrate the superi-
ority of this method.

II. PROBLEM DESCRIPTION
This section gives the model of an MIMO system with a
mismatched disturbance, the description of the GESO, and
the configuration of a GESO-based MRCS.

A. PLANT MODEL
Consider an MIMO system affected by a mismatched distur-
bance:

{
ẋp(t) = Apxp(t)+ Buu(t)+ Bd f (xp(t),w(t), t)
y(t) = Cpxp(t)

(1)

where xp(t) (∈ Rn) is the state, u(t) (∈ Rm) is the input,
w(t) (∈ Rl) is an external disturbance, y(t) (∈ Rp) is the
output, and f (xp(t),w(t), t) (∈ Rs) is a lumped disturbance
that is an unknown nonlinear function of xp(t) and w(t).
This term contains external disturbances, parameter variation,
unmodeled dynamics, and unknown nonlinearities. Ap is the
systemmatrix, Bu and Bd are the input matrices, and Cp is the
output matrix. They are of appropriate dimensions.
Remark 1: The model (1) represents a general class of

systems that is not limited to the form of an integral chain
and is subject to a mismatch disturbance [29]. The matching
condition implies that Bu = Bd , or more precisely Bu =
Bd0 for some invertible matrix 0 [21], which means that the
disturbances can be transformed to the control input channel
by coordinate transformation [21], [30].

Take the following second-order system as an example{
ẋ1(t) = x1(t)− x2(t)+ u(t)
ẋ2(t) = 2x1(t)+ x2(t)+ f (x1, x2,w, t).

(2)

In (2), the disturbance, f (x1, x2,w, t), enters the system via
a different channel from the one of the control input, u(t).
Therefore, the matching condition is not satisfied.
Remark 2: The standard extended-state-observer based

control (ESOBC) method cannot be applied to the system (1)
because it requires that the system has the form of an integral
chain and satisfies the matching condition [29]. The sliding-
mode observer technique cannot be adapted as well due to
the requirement for the observer matching condition [31].
Thus, it is imperative to develop a new control method for
system (1). Motivated by this situation, this study devises a
GESO-based control method.

B. GESO
Choose a new state as{

xn+1(t) = d(t) = f (xp(t),w(t), t)
h(t) = ḟ (xp(t),w(t), t).

(3)

System (1) can be formulated in an augmented state space
form {

ẋ(t) = Ax(t)+ Bu(t)+ Eh(x,w(t), t)
y(t) = Cx(t)

(4)

where x(t) =
[
xTp (t) x

T
n+1(t)

]T
and

A =
[
Ap Bd
0s×n 0s×s

]
, B =

[
Bu
0s×m

]
E =

[
0n×1
1s×1

]
, C =

[
Cp 0p×s

]
.

The following assumptions are made.
Assumption 1: (Ap, Bu) is controllable and (A, B) is

observable.
Assumption 2: BuBTu is invertible.
Assumption 3: The lumped disturbance d(t) is bounded

and satisfies the following conditions: 1) d(t) = f (xp,w, t) ≈
f̄ (w, t); 2) it is constant in steady state, i.e., lim

t→∞
ḋ(t) =

lim
t→∞

h(t) = 0.
Regarding Assumption 1, a necessary condition of (A, B)

observable is that (Ap, Bu) is observable [29]. Assumption 2
is used to design the disturbance-compensation gain, and
it holds for many practical control systems. Assumption 3
is used for stability analysis. The lumped disturbance may
contain some state uncertainties and it is difficult to prove
the stability for this case. Meanwhile, in many practical engi-
neering systems, such state uncertainties are relatively weak
and will not affect the system stability, i.e., the dominated
dynamics can be stabilized by the feedback control [29]. The
effectiveness of our proposed method in such a case has been
demonstrated by numerical examples in Section IV.
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FIGURE 1. Configuration of GESO-based MRCS.

A GESO{
˙̂x(t) = Ax̂(t)+ Bu(t)+ L(y− ŷ)
ŷ(t) = Cx̂(t)

(5)

reproduces the state variables for system (4), where

x̂(t) =
[
x̂Tp (t) x̂

T
n+1(t)

]T
x̂p(t) and x̂n+1(t) estimate xp(t) and xn+1(t), respectively; and
L is the observer gain to be determined.
Remark 3: In the presence of mismatched disturbances,

the conventional ESOBC law [u(t) = uf (t) − d̂(t)] in [32]
cannot effectively compensate for the lumped disturbance
in (1), where d̂(t) represents the estimate of the lumped
disturbance, and uf (t) is a feedback control law.

C. CONFIGURATION OF GESO-BASED MRCS
The configuration of the GESO-basedMRCS is shown in Fig.
1. The external disturbance contains a periodic signal with
the period of Tr . The fundamental angular frequency of the
periodic signal is

ω0 = 2π/Tr . (6)

e(t) = r(t) − y(t) is the error to be suppressed. The transfer
function of the repetitive controller is

CMR(s) =
1

1− q(s)e−Ts
. (7)

q(s) is a low-pass filter. It is chosen to be a first-order one in
this study

q(s) =
ωc

s+ ωc
(8)

where ωc is the cutoff angular frequency of the filter, which
satisfies the following frequency characteristics [6]:{

|q(jω)| ≈ 1, ω ≤ ωr

|q(jω)| < 1, ω > ωr
(9)

where [0, ωr ] (⊂ [0, ∞)) is a selected frequency band for
tracking and/or rejecting periodic signals. Thus, the state-

space model of the repetitive controller is
v̇(t) = −ωcv(t)+ ωcv(t − T )+ ωce(t)+ ė(t)
yr (t) = v(t)
v(t) = 0, −T ≤ t ≤ 0

(10)

where v(t) is the output variable. The delay time T was set
to be the period of the external periodic signal, Tr , in many
articles on repetitive control. However, a slight adjustment of
the amount of the delay

T = Tr − 1/ωc (11)

leads to a higher control precision. The details is given in
Appendix A.

In this paper, an integrated control law is designed as

u(t) = ur (t)− Kd d̂(t) (12)

ur (t) = L−1{K (s)V (s)} (13)

where

d̂(t) = x̂n+1(t) (14)

and K (s) is the matrix-valued transfer function of the com-
pensator that stabilizes the feedback system and V (s) is the
Laplace transform of v(t). In (12), Kd is the disturbance
compensation gain, designed as

Kd = B+u Bd (15)

where

B+u := BTu
(
BuBTu

)−1
. (16)

Remark 4: In (12), ur (t) focuses on system stability and
dynamic performance, and the compensation loop focuses
on disturbance rejection and robustness against the lumped
disturbance. The calculation formula (15) for the disturbance
compensation gain Kd is adaptable for both matching and
mismatching cases. For the matching case, i.e., Bu = Bd0,
it can be obtained from (15) that Kd = 0−1, which is the
same as that for ESOBC [32].

For the GESO-based MRCS in Fig. 1, we aim to design a
modified repetitive controller CMR(s), a GESO, and a com-
pensator K (s) so that both the bounded stability and the
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disturbance-rejection performance can be guaranteed. In this
paper, we only consider the disturbance attenuation problem
for the MIMO system (1) and we let r(t) = 0.
Substituting the composite control law (12) into system (1)

and considering (15) and (16), the compensated plant (1) can
be formulated as

ẋp(t) = Apxp(t)+Buur (t)+Bd [f (xp(t),w(t), t)−d̂(t)]. (17)

It can be observed from (17) that the effects of the lumped
disturbance can be removed from the output channel in steady
state provided that the lumped disturbance has been ade-
quately estimated.
Remark 5: As pointed out in [21], [29], [33], the influ-

ence of the mismatched disturbance cannot be eliminated
completely on the system state no matter what controller is
designed. The main objective of the proposed GESO-based
MRCS in this paper is to attenuate the influence of the lumped
disturbance on the output.

III. STABILITY ANALYSIS AND DESIGN OF
GESO-BASED MRCS
The estimation error is defined as

xe(t) = x̂(t)− x(t) (18)

Combining (4), (5), and (18) yields

ẋe(t) = (A− LC)xe(t)− Eh(t). (19)

In Fig. 1, the transfer function matrix from ur (t) to y(t) is

P(s) =
[
C 0

]
(sI − Ā)−1

[
BT 0

]T
= C(sI − A+ BK̃d )−1B (20)

where the matrices

Ā =
[
A− BK̃d BK̃d

0 A− LC

]
, K̃d =

[
0m×n Kd

]
.

Remark 6: Since the transfer function matrix, P(s), in (20)
from ur (t) to y(t) does not contain the observer gain, L,
the GESO can be designed independent of the originalMRCS
and the compensator, as long as stability is the only concern.

Let

G(s) = P(s)K (s)

‖G‖∞ := sup
0≤ω<∞

σmax[G(jω)] (21)

where σmax[·] is the maximum singular value.
In Fig. 1, the transfer function matrix of the basic closed-

loop system (the one without the delay loop) is

G̃(s) = G0(s)G(s) (22)

where

G0(s) = (I + G(s))−1. (23)

Definition 1 ( [34]): For a vector-valued function u
defined on [0, ∞), we denote by Pτu its restriction to [0, τ ].
The system 6 is called well-posed, if on any finite time

interval [0, τ ], the operators from the initial state x(0) and
the input function Pτu to the final state x(τ ) and the output
function Pτ y are bounded.
Lemma 1 ( [32]): If A − LC in (19) is Hurwitz, then

the estimation error xe for the GESO is bounded for any
bounded h(t).
Lemma 2 ( [29]): The following single-input linear sys-

tem

ẋ(t) = Mx(t)+ gu(t) (24)

is asymptotically stable ifM is a Hurwitzmatrix, u is bounded
and satisfies lim

t→∞
u(t) = 0.

Proof. Since lim
t→∞

u(t) = 0, all poles of sU (s) lie in the left

half s plane. Also, all poles of (sI −M )−1 lie in the left half s
plane sinceM is Hurwitz. From the final value theorem [35],
all poles of sX (s) lie in the left half s plane and

lim
t→∞

x(t) = lim
s→0

sX (s) = lim
s→0

(sI −M )−1 · g lim
s→0

sU (s)

= lim
s→0

(sI −M )−1 · g lim
t→∞

u(t) = 0.

We obtain the following theorem from the above definition
and lemma.
Theorem 1: Suppose that Assumptions 1-3 are satisfied

and K (s) and P(s) are proper rational matrix-valued transfer
functions. The bounded stability of the MIMO system (1)
under the integrated GESO-based repetitive-control law (12)
with (15) is guaranteed if the following conditions are satis-
fied:
(a) A− LC is Hurwitz;
(b) there are no unstable pole-zero cancelations in

P(s)K (s);
(c) G̃(s) ∈ H∞ and G̃(s) is well posed;
(d) ‖qG0‖∞ < 1

whereH∞ is the Hardy space, which consists of all complex-
valued functions G̃(s) of a complex variable s, and G̃(s) is
analytic and bounded in the open right half-plane, Re(s) > 0.
Proof. Since the GESO (5) can be designed independently

of the original MRCS, the stability of the whole system is
equivalent to that of these two subsystems.

Applying Lemmas 1 and 2 to (19), Condition (a) ensures
that system (19) is stable and lim

t→∞
xe(t) = 0 especially for

single-input case. Meanwhile, as explained in [6], if the basic
closed-loop system G̃(s) in (22) is stable and ‖qG0‖∞ < 1,
then the originalMRCSwithout disturbance is bounded-input
bounded-output (BIBO) stable. In other words, Conditions
(b), (c), and (d) imply that the original MRCS is BIBO stable.

So, it can be concluded that if L and K (s) are selected such
that A−LC is Hurwitz and the original MRCS is stable, then
the GESO-based MRCS is BIBO stable for any bounded h(t)
and d(t). �
Summarizing the above results yields the following design

algorithm for the GESO-based MRCS in Fig. 1.
Algorithm for designing the GESO-based MRCS:
Step 1 Design a low-pass filter, q(s), satisfying the fre-

quency characteristic (9).
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Step 2 Design the observer gain, L, using the pole place-
ment method hence to ensure A− LC is Hurwitz.

Step 3 Calculate Kd from (15).
Step 4 Design the feedback compensator, K (s), so that

Conditions (b) and (c) in Theorem 1 hold. A
PID or a lead-lag compensator is usually feasible
[2], [11].

Step 5 Check if Condition (d) in Theorem 1 holds. If not,
go to Step 2, and redesign L and K (s).

IV. NUMERICAL EXAMPLE
In this section, we use a numerical example to explain the
design procedure and demonstrate the superiority of the pro-
posed GESO-based MRCS through comparisons with con-
ventional PID-based repetitive control and EID-RC.

A second-order nonlinear system with mismatched distur-
bances is considered

ẋ1(t) = x2(t)+ u2(t)+ f (x(t),w(t), t)
ẋ2(t) = −x1(t)− 2x2(t)+ u1(t)
y(t) = x1(t)

(25)

where u2(t) = wr (t) = sin(2π t) is a known periodic external
disturbance to be rejected. Thus, Tr = 1 s.
By denoting

u(t) =
[
u1(t) u2(t)

]T
f (x(t),w(t), t) = 3ex1 + w(t)

w(t) =

{
1.5 arctan t, t ≥ 5
0, t < 5

Ap =

[
0 1
−1 −2

]
, Bu =

[
0 1
1 0

]

Bd =

[
1
0

]
, Cp =

[
1 0

]
(26)

it can be observed that system (25) has the expression of (1).

A. INTEGRATED CONTROL LAW DESIGN
The algorithm in Section III is used to design the GESO-
based MRCS in Fig. 1.

For the repetitive controller, the cutoff angular frequency
in (8) is chosen to be

ωc = 100 rad/s. (27)

From (11), we choose the delay of the repetitive controller to
be

T = Tr − 1/ωc = 0.99. (28)

The observer gain vector in (5) is chosen as

L =
[
28 −257 500

]T (29)

and the related GESO poles are

pgeso =
[
−10 −10 −10

]T
. (30)

According to (15), the disturbance compensation gain is cal-
culated, giving as

Kd =
[
0 1

]T
. (31)

From (20), (26), and (31) yields

P(s) =
[

1
s2 + 2s+ 1

s+ 2
s2 + 2s+ 1

]
. (32)

The compensator, K (s), is designed as

K (s) =
[
0 500× (1+

180
s
+

s
s+ 1

)

]T
. (33)

Combining (21), (22), and (32), with (33), and using
MATLAB Robust Control Toolbox, the transfer function of
the basic closed-loop system (the one with CMR(s) = 1) in
(22) is given by

G̃(s) =
1000s3 + 92500s2+271000s+180000

s4+1003s3+92503s2+271001s+ 180000
∈ H∞0 .

(34)

Moreover,

‖q(s)G0(s)‖∞ = 5.5556× 10−6. (35)

Then, from Theorem 1 in Section III, it can be concluded
from (30), (34), and (35) that the closed-loop GESO-based
MRCS is stable.

B. SIMULATIONS
The time responses of the actual and estimated states and their
estimation errors (Fig. 2) show that the GESO (5) is very
effective in tracking the system (4) for not only the states,
x1 and x2, but also the extended state (lumped disturbance)
x3. The estimation errors of GESO converge to zero for all
states in the presence of mismatched disturbances.

The control objective is to attenuate the lumped distur-
bances from the output channel. Here the setpoint of the
output is zero. The simulation results (Figs. 2-3) show that the
GESO-basedMRCS attenuates the disturbances f (xp,w(t), t)
and wr (t); and suppresses the transient tracking error caused
by w(t). Clearly, the GESO-based MRCS is robustly stable
and produces both satisfactory disturbance-rejection and con-
trol performance.

In practical applications, nonlinearities, such as a dead
zone, seriously degrade control performance and may desta-
bilize the control system. To verify the effectiveness of the
method, a dead zone in the range of [−0.2 s 0.2 s] was added
to the input. The simulation result (Fig. 4) shows that the
resulting system remains stable and the largest peak-to-peak
(PTP) steady-state error is as small as 7.8950 × 10−5. This
implies that the GESO-based MRCS satisfactorily compen-
sates for the dead zone.
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FIGURE 2. Time responses of the actual and estimated states, and their
estimate errors.

C. COMPARISONS
The steady-state errors of the GESO-based MRCS and the
conventional PID-based MRCS with the parameter (33) are
compared (Fig. 5). The largest PTP steady-state error caused
by the disturbances is 2.5681 × 10−3 for the PID-based
MRCS, but it was only 3.4891 × 10−5 for the GESO-based
MRCS. Clearly, the GESO automatically produced an off-
set as an estimate of the total disturbance, d(t), and the
effect of the disturbances on the output is 98.64% smaller
for the GESO-based MRCS than for the conventional PID-
based MRCS. This demonstrates that the incorporation of
the GESO into an MRCS enhances the disturbance-rejection
performance.

We also verify that the correction in (11) leads to a smaller
steady-state error by redoing the simulation with the compen-
sator (33) but with T = Tr = 1 s. Simulation results (Fig. 6)
show that at the beginning, the result is similar to that with
the correction in the time-delay; but the largest steady-state
PTP error increases by 6.0654% than our method.

FIGURE 3. Simulation results for f (xp, w(t), t) and wr (t).

FIGURE 4. Simulation result with dead zone (range: [−0.2 s 0.2 s]) in the
input.

To better assess the performance of the GESO-based
MRCS, we design an EID-based MRCS (Fig. 7, [11]) and
compare the disturbance rejection performance of the system
with ours. Denoting

d̄(t) = wr (t)+ f (x,w(t), t), Bp =
[
0 1

]T (36)

and reformulating the system (25) gives the following SISO
plant: {

ẋp(t) = Apxp(t)+ Bpu(t)+ Bd d̄(t),
y(t) = Cpxp(t).

(37)
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FIGURE 5. Tracking errors with and without GESO.

FIGURE 6. Comparisons between T = Tr −
1

ωc and T = Tr as
in [11], [23], [24].

Combining (8) and (33) and using the algorithms in [11],
we obtain the parameters of the EID-based MRCS:


T = 1 s, F(s) =

200
s+ 200

B+ = (BTp Bp)
−1BTp =

[
0 1

]
L = [18 63]T .

(38)

FIGURE 7. Configuration of EID-based MRCS.

FIGURE 8. Bode magnitude plots of Gre(s) without nonlinear part.

The related poles of the EID estimator are peid =[
−10 −10

]T .
From (25), (37), and (38) yields

G1(s) = 1− B+LCp[sI − (Ap − LCp)]−1Bp

=
200s2 + 400s+ 7400

s3 + 220s2 + 4100s+ 20000

P(s) = Cp(sI − Ap)−1Bp =
1

s2 + 3s+ 1

G(s) = P(s)K (s) =
1000s2 + 9.05× 104s+ 9× 104

s4 + 4s3 + 4s2 + s
.

(39)

Since ‖q(s)[1 + G(s)]−1‖ = 1.0647 > 1 and two poles of
[1 + G(s)]−1G(s) are located in right half plane, the EID-
based MRCS (FIG. 7) is not stable. Therefore, the EID-RC
method in [11] is not available for system (25). So, the pro-
posed GESO-based repetitive-control method broadens the
practical scope.

Moreover, the Bode magnitude of the transfer function
from the reference input r(t) to the tracking error, Gre(s),
(i.e., the sensitivity function) (Fig. 8) interprets the simu-
lation results. Clearly, Gre(jω) is higher for the EID-based
MRCS in [11] than for the proposed GESO-based MRCS
over almost the whole frequency band. Therefore, the GESO-
based MRCS exhibits better disturbance-rejection perfor-
mance than the EID-based MRCS in [11] and thus broadens
the applications of repetitive control.

In addition, for SISO plant (37), since CpBp = 0,
P(s) = Cp(sI − Ap)−1Bp has no zeros and the resulting EID-
based MRCS are difficult to be stabilized using the methods
in [23]–[25]. So, the proposedGESO-based repetitive-control
method provides a better solution for this problem.
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V. CONCLUSION
In this paper, a GESO-based repetitive-control method is first
presented for a class of MIMO systems with mismatched
disturbances and nonintegral-chain form. It involves real-time
estimation and active compensation for the lumped distur-
bance. This method has significant advantages over other
repetitive control methods.

a) By appropriately choosing a disturbance compensa-
tion gain, the incorporating of the disturbance esti-
mate through GESO into the repetitive control law
enables the active rejection of any type of distur-
bance/uncertainty and provides better control perfor-
mance than a conventional MRCS does.

b) The GESO and the repetitive control law can be
designed independently and awell-designedGESO can
be plugged into a well-posed MRCS.

c) A slight correction for the delay of the repetitive con-
troller enhances the control performance for the peri-
odic signals.

d) The simplicity of the integrated control law makes the
system easy to be implemented.

Guidelines for the selection of the controller parameters
are given. Based on the examinations of simulation results,
the roles of the GESO and the integrated control law are
explained. In the future, we will explore the mechanism
of disturbance/uncertainty estimation in a general nonlinear
MRCS and the design of such a system.

APPENDIX
A. DETAIL INTERPRETATION FOR THE CHOICE OF T [34]
Let

e−Tsq(s) = e−Tr sq1(s) (40)

where q1(jω) should be as close as possible to 1 for
| ω |≤ ωr so as to get the poles of CMR(s) as
close as possible to ikω0, k = 1, 2, 3, · · · . From (40)
yields

q1(s) = e−(T−Tr )sq(s) =
e−(T−Tr )s

1/ωcs+ 1
= 1+ (Tr − T − 1/ωc)s+ o(| s |2).

Thus, a good way of getting CMR(s) ≈
1

1− e−Tr s
is to make

Tr − T − 1/ωc = 0. (41)

We choose the cutoff frequency ωc in (8) satisfying ω0 �

ωr � ωc. Eq. (11) can be understood as a slight correction
1/ωc subtracted from the value Tr used in conventional repet-
itive controller, which is the same as the period of the periodic
signals.
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