
Received August 6, 2018, accepted September 26, 2018, date of publication October 16, 2018,
date of current version November 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2876359

Research on the Battery Charging Strategy
With Charging and Temperature Rising
Control Awareness
MIN YE1, HAORAN GONG1, RUI XIONG 2, (Senior Member, IEEE),
AND HAO MU2
1Key Laboratory of Road Construction Technology and Equipment, MOE, Chang’an University, Xi’an 710064, China
2National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Rui Xiong (rxiong@bit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51707011 and in part by the Key
Laboratory of Road Construction Technology and Equipment, Chang’an University, MOE, under Grants 310825171105 and
310825171133.

ABSTRACT Fast charging of lithium-ion batteries is an essential problem that constrains the large-scale
deployment of electric vehicles. To solve this problem, a new charging strategy is proposed in this paper.
Three original contributions are made in this paper: 1) development of a novel multistage constant heating
rates optimization method that reduces both the charging time and charging temperature increase, with the
tradeoff between the charging time and charging temperature increase analyzed using the genetic algorithm
(off-line strategy); 2) reduction of the charging time via ensuring a state of charge region by balancing the
charge capacity and charge time; and 3) demonstration that the proposed method can be used under different
temperatures by comparing the proposed method to the average constant current constant voltage (CCCV)
under different temperatures; the comparison results suggest that the charging time of proposed method
is reduced by 1.9%, 5.3%, 8.56%, and 9.54% compared to the average CCCV method under ambient
temperature, 10 ◦C, 25 ◦C, and 40 ◦C, respectively. Moreover, the proposed method temperature rise is
reduced by 48.6%, 28.3%, 67.3%, and 17.9% compared to the average CCCV method under ambient
temperature 10 ◦C, 25 ◦C, and 40 ◦C, respectively.

INDEX TERMS Temperature rise, charging time, constant heating rates, electric vehicle, lithium ion battery,
SOC region.

I. INTRODUCTION
Of the existing battery technologies, the lithium-ion battery
has the advantages of a high energy density, long cycle life,
low self-discharge and no memory effect [1]. These advan-
tages have enabled lithium ion batteries to be widely used
in electronic devices. Many countries have launched their
own battery projects [2]. However, Li-ion battery charging
has become the bottleneck of their use because of the slow
charging speed and uncertain effects on battery life. Opti-
mization of Li-ion battery charging has become an essential
and difficult issue.

To address these problems, a large number of researchers
have developed a series of improvements, such as state of
charge (SOC) estimation, state of healthy (SOH) estimation
and optimal charge. Xiong et al. [3] proposed a method of
monitoring battery health to predict the remaining battery

life and reviewed the battery SOC estimation methods. The
optimal charge methods can be divided into the following
types: constant current charging, constant voltage charging,
CCCV charging [4]–[8], multistage constant current charg-
ing [9]–[18], pulse charging [19]–[22] and variable current
charging [23]–[25]. The most widely used charging method
is CCCV, which involves charging at a constant current
and constant voltage. Chen et al. [4] and Hsieh et al. [5]
found that the CV stage of the CCCV mode prolongs the
charge time and applied the grey prediction or fuzzy control
to shorten the charging time. Notten et al. [6] proposed a
constant-voltage-constant-current-constant-voltage (CVCC-
CV)method that is able to charge batteries tomore than a 50%
capacity within 10 min. Wu et al. [7] proposed a multistage
constant current constant voltage charge method that can
charge to a higher capacity compared to the average CCCV
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charging at lower temperatures. Liu et al. [9] established
a triple-target function to consider the charge time, energy
loss and internal temperature increase and investigated and
compared several heuristic methods (e.g., teaching-learning-
based optimization (TLBO) and its variants and particle
swarm optimization (PSO) and its variants) to search for the
optimal battery charging current profile by minimizing the
triple-objective function. Multistage constant current charg-
ing (MCC) requires the value of each of the constant current
segments and number of the current stages to be preset.
On the one hand, with too many current stages, optimization
technology will lead to an increase of complexity; on the
other hand, with too few current stages, less capacity will be
charged in a shorter time. To determine the appropriate num-
ber of stages, two methods are used: integer linear program-
ming (ILP) and PSO [10], [11]. It has been found that there is
no obvious change when the number of stages is greater than
five. Multiple optimization methods, such as integer linear
programming, the orthogonal matrix, the Taguchi method,
particle swarm optimization and the ant colony algorithm,
were employed to develop optimal charging rules to shorten
the charging time and reduce energy loss [10], [12]–[15].
A different MCC charge method was proposed that pro-
vides acceptable charging current with constraints on the
battery polarization voltage [16], [17]. Pulse charging was
first used in lead-acid battery fast charging. Subsequently,
some articles have suggested that pulse charging is also appli-
cable for lithium-ion batteries, such as the variable frequency
pulse optimization charging strategy [19], pulse optimization
charging strategy with a variable duty ratio [20], and pulse
optimized charging method based on polarization to deter-
mine the frequency and duty ratio of the upper boundary [21].
Perez et al. [22] considered that the pulse charge is the
minimum-aging charge. A variable current charge can appear
at several stages of the multistage current charge, but it needs
to know the exact SOC value [26]. Wu et al. [23] proposed
a charging method using the DP algorithm to optimize the
charging time and energy loss. Jiang et al. [24] proposed a
method that could keep the polarization voltage at a stable
value in charging process by using fuzzy control.

Temperature is an index [27] that has a significant
influence on the performance of the battery. If the bat-
tery temperature rise exceeds the temperature limit, then
the cathode lattice structure will be affected, resulting in
security risks. It is necessary to limit the temperature rise
of the battery during battery charging. Thus, the battery
model should be established to estimate the battery states,
which includes the equivalent circuit model and thermal
model [28], [29]. The thermal model is used to estimate the
temperature rise to avoid the temperature increasing over
allowable limits [30]–[32].

The rest of paper is organized as follows: in Section 2,
the modeling processes of the equivalent circuit model and
thermal model is introduced; Section 3 elaborates on the
proposed optimal charging strategy based on the multistage
constant heating rates technique; in Section 4, simulations

and experiments are conducted to verify the effectiveness of
the proposed strategy; and conclusions are drawn in the final
section.

II. BATTERY MODEL
To develop an optimal battery charge strategy, an accu-
rate equivalent circuit model and thermal model must be
established.

A. EQUIVALENT CIRCUIT MODEL
To analyze the dynamic characteristics of the battery, the bat-
tery model should be constructed. The dynamic model of the
battery is described using the equivalent circuit model shown
in Fig. 1; the model is composed of an open circuit voltage
Uocv, an ohmic resistance Ri and a resistance-capacitor (RC)
network. The RC network describes themass transport effects
and dynamic voltage performance, and the components Rp
and Cp are described as the diffusion resistance and diffu-
sion capacitor, respectively. I is the load current, and Ut is
the terminal voltage. Ud is the polarization voltage, which
is described as the diffusion voltage arising from the RC
network.

FIGURE 1. 1st order RC network equivalent circuit model.

The electrical performance of the battery can be expressed
by the following equation using the battery model:U̇d = −

1
CdRd

Ud +
1
Cd
I

Ut = Uocv + Ud + IRi
(1)

The discretized form of Eq. (1) can be formulated as follows:Ud(k) = (1− exp (−1t/τ)) I (k − 1)Rd(k − 1)
+ exp (−1t/τ)Ud(k − 1)

Ut(k) = Uocv(k)+ Ud (k)+ I (k)Ri
(2)

where 1t is the sampling and interval is set as 1s. τ is a time
constant, τ = Cd ∗ Rd. The battery SOC calculation can be
written in the following form:

SOC (k) = SOC (k − 1)+ η
I1t
Ca

(3)

where η is the charging efficiency andCa is the rated capacity
of the battery. The corresponding matrix form of Eq. (2) can
be expressed as:(

Ud(k)
SOC(k)

)
=

(
exp (−1t/τ) 0
0 1

)(
Ud(k − 1)
SOC(k − 1)

)

+

Rd(1−exp(−1t/τ ))

−
1t

3600Ca

I (k) (4)
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The dynamic characteristics are obtained through identified
parameters such as Uocv, Ri, Rd, and Cd.

B. THERMAL MODEL
Because the surface temperature rise of the battery is limited,
the charge can be considered to be a particle, so that the tem-
perature of the battery is the same. The heat generation model
of the battery can be described in the following equation:

mC
dT
dt
= QS + Qo + Q (5)

where C is a specific heat capacity, m is themass of the battery
and T is the temperature of the battery, QS is the reversible
reaction heat, Qo is the energy loss and Q is the exchange of
heat. The reversible reaction heat can be described as:

QS = T1S
I
nF

(6)

1S = nreF
∂E
∂T

(7)

where F is Faraday constant, the I is the charging current, and
the nre is the number of mole of the electron transfer of the
battery and 1S the entropy change. The conversion heat can
be described as:

Q = hA(T − Tamb) (8)

where h is the coefficient of heat exchange, A is the surface
area of the battery, and Tamb is the room temperature.

The overpotential of the battery consists of the polarization
voltage, ohmic voltage and open circuit voltage. The energy
loss of the battery can be ascribed to polarization and ohmic
resistance. Therefore, the energy loss of the battery can be
described by the following formula:

Qo = I2Ri + U2
d /Rd (9)

where Ud is the polarization voltage which is obtained by the
polarization voltage Eq. (4), Rd is the polarization internal
resistance. Through discretizing Eq. (5) -(9) and defining the
sampling interval as 1s, the temperature of the battery can be
expressed at the time of k:

Tk = exp
(
−
hA
mC

)
Tk−1

+

[
1− exp

(
−
hA
mC

)]
Qo,k + QS + hATamb

hA
(10)

where the initial T (0) and room temperature Tamb of the
battery are set to 20◦C.
Using the battery parameters provided from the introduc-

tion from the battery manufacture in TABLE 1, the heat
exchange coefficient h of the battery can be determined.

III. FORMULATION OF OPTIMAL CHARGING STRATEGY
A. BATTERY CHARGING STRATEGY
Because the lithium-ion battery is sensitive to tempera-
ture, to ensure the battery charging performance and safety,
the temperature rise should be controlled at a lower value.

TABLE 1. Battery parameters.

To keep the temperature at a low value, a multistage constant
heating rates charge strategy is proposed. From Eq. (5), it is
observed that heating and cooling occur at same time during
the battery charging process. If the heating is averaged, then
the heating accumulate is reduced, thus effectively reducing
the temperature rise. Moreover, to reduce the battery charging
time, it is necessary to increase the charge current value.
During the battery charging process, the terminal voltage is
forbidden to exceed the upper cut-off voltage. Because the
charging current value increases with the constant heating
rates value, the charging voltage reaches the upper cut-off
voltage quickly, leading to an incompletely charged battery.
To address this problem, a multistage constant heating rates
charging curve is used to charge the battery inspired by the
multistage constant current charging method, as shown in
Fig. 2. There are three heating rates values is set as three
stages. It will turn to next stage when the terminal voltage
reach the Vbat (upper cut-off voltage).

FIGURE 2. Multistage constant production thermal current curve.

The battery charging process shown in Fig. 3 is as follows:
First, set the initial values of the SOC, charging time N ,

and temperature, where the initial temperature is equal to the
ambient temperature. Second, the battery is charged by the
multistage constant heating strategy in sequence. Every stage
of the charge process functions as follows:
Step 1: calculate the battery SOC according to Eq. (3).
Step 2: the open circuit voltage of the battery is obtained

by a seven-order polynomial function of SOC the internal
resistance, polarization internal resistance and polarization
capacitance are obtained by polynomial interpolation. The
polarization voltage is obtained according to Eq. (1).
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FIGURE 3. Charging process.

Step 3: the current of each moment is determined by the
heating rates, polarization voltage, polarization internal resis-
tance, and Ohmic resistance, which can be written as:

I =

√√√√(J − U2
d

Rd

)
/Ri (11)

I = min (I , Imax) (12)

where J is the constant heating rates value for this second.
Because the maximum charge current of the battery is 1 C,
the charging current curve must be constrained. The end
voltage of the battery can be described according to Eq. (1).
Step 4: calculate the terminal voltage and temperature rise.
Step 5: judge whether the terminal voltage reached the

upper cut-off voltage. If not, go to step 1.

B. OPTIMIZATION CHARGING CURVE
The genetic algorithm is a search algorithm that is used to
perform optimization using computational mathematics and
is one of the original evolutionary algorithms; the genetic
algorithm was developed according to phenomena that occur
in evolutionary biology, such as heredity, mutation, natural
selection and hybridization.

In this multi-objective function, there are three objectives:
short charging time, low charging temperature rise and max-
imum charging capacity. In fact, there are only two goals,
the charging time and charge temperature increase, that must
be optimized. The charging capacity is used to ensure that the
battery can be charged to the target capacity. The charging
capacity is obtained experimentally to guarantee the battery
charging efficiency and charging time. Because the charging
time and temperature rise are counterparts, the target function
only needs to meet the amount of charge needed to reach a
certain value. Therefore, the fitness function can be expressed
as:

Ff =
(1− β)N

a
+
βTc
b

(13)

where β is the weight coefficient which balances the charging
time and temperature rise, N is the charging time, Tc is the
temperature rise and SOCf is the corresponding SOCend for
the charged amount of capacity. a and b are two coefficients
for normalization. The maximum temperature rise of the
charge can be obtained by the following equation:

Tc = max (Tk)− T0 (14)

Where Tk is yielded by (10), and T0 is the initial temperature
of the battery. To ensure the safety of the battery, some
constraints should be added during the optimization process:

0 < iL < Ic,max
Ut,min < Ut < Ut,max
Tc < Tmax∣∣SOCend − SOCf

∣∣ < 0.05

(15)

FIGURE 4. Optimization process of genetic algorithm.

where Ic,max is allowable maximum charging current,
Ut,min is the minimal discharge voltage, Ut,max is maximum
charge voltage, SOCf is the target SOC of charging, SOCend
is the terminal SOC. The genetic algorithm toolbox in MAT-
LAB is used to optimize the flow chart of heating that occurs
during charging, and the algorithm parameters is set automat-
ically by the GA tool-box. As shown in Fig. 4, we first gener-
ate the heating rates value of each order and judge whether
every heating rates value is decreasing step by step. If the
heating rates value is decreasing step by step, then calculate
the fitness function according to the charging time, temper-
ature rise and charging capacity; otherwise, directly assign a
large value to the fitness function, and then, the large value
children are eliminated. The selection, crossover, and muta-
tion operations are then performed to optimize the parameters
in the offspring. Finally, jump out when the predetermined
value is reached. In fact, optimization of the heat production
at each stage is obtained, and the optimal combination of
heating rates in the several stages is obtained. The charging
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current curves of each stage can be obtained according to the
heat production and constraint conditions.

IV. RESULT AND DISCUSION
A series of battery charging experiments was conducted. The
proposed charging strategy was used to operate the experi-
mental instruments. The battery optimal charge test platform
is shown in Fig. 5. In this paper, we will use an Arbin test
system, a thermal chamber, a host computer and tempera-
ture measuring instrument. An Arbin instrument was used
for battery recharge and discharge tests. The volume of the
thermal chamber was approximately 0.5 cubic meters. The
tested batteries used in this study were LR1865SZ batteries,
as shown in TABLE 1. The test equipment and measuring
devices utilized in this study are shown in Fig. 5.

FIGURE 5. Configuration of optimal charge test platform.

A. OPTIMAL CHARGE PARAMETERS
1) DETERMINATION OF THE SOC RANGE
To simultaneously reduce the charge time and increase the
charge capacity, two targets need to be optimized according to
the charging time and charging capacity. It is obvious that the
efficiency of charge and discharge is higher when the SOC is
90%, but the advantage is not obvious, as shown in TABLE 2.
Moreover, a total time of 3376 s are required to charge 90%
of the battery capacity, which is 544 s more than the time
spent to charge the battery to 80% SOC; however, its charge
time is half the time required to charge the battery to 100%
SOC, as shown in Fig. 6. From the above results, the value of
SOCend is set to 90% in Eq. (15).

2) DETERMINATION OF THE STAGE
The genetic algorithm is used to optimize the stages of
the method. The calculation process is shown in Fig. 4.
Because of the lower number of stages, the heating rate must

TABLE 2. Charge efficiency.

FIGURE 6. Charging time at different SOC.

be reduced and it will make charging current value reduced
to guarantee the charging capacity, thereby prolonging the
charging time. Hence, it is desired to increase the number of
heating rates stages to reduce the charging time. Nevertheless,
the charging time is negligibly reduced by the increasing
number of stages when the number of stages reaches a certain
value. Therefore, it is necessary to use the GA to find the
appropriate stages to balance the charging time and difficulty
of optimizing the charging strategy. The fitness function can
be obtained by Eq. (13), and the β is set as 0.5 which means
the charging time and temperature rise are equally important.
The result is shown in Fig. 7.

FIGURE 7. Charging time at different stages.

The temperature rise is not obviously variable at different
stages, as shown in Fig. 7. Therefore, the stage can be selected
according to the charging time. From Fig. 7, no apparently
decrease of charging time is found after stage 3. Therefore,
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according to the above analysis, to reduce the complexity of
optimizing the charging strategy, the 3-stage constant heating
charging strategy to charge the battery is determined.

3) WEIGHT COEFFICIENT INFLUENCE
According to the previous analysis, an optimized charg-
ing strategy of three-stage constant heating rates is selected
as the optimal charging strategy for the battery. However,
the charging time and temperature rise of the target function
are not determined after normalization of the target function.
Fig. 8 shows the battery charging time and temperature rise
with the increase of β from 0.1 to 0.9. When the weight is
0 or 1, only the charging time or temperature rise is optimized;
thus, the process of weight optimization is not considered
when β is set to 0 or 1. Fig. 8 shows that the charging time
and temperature rise are two conflicting optimization targets,
and the intersection of two curves is taken as an example of
β in the sequel to illustrate the charge strategy. At this point,
the battery charge time is 3563 s and the temperature increase
to 2.07 ◦C. The coefficient of the SOCend factor in Eq. (15)
of this item must ensure that the battery charge capacity is in
the vicinity of the SOC of 90%.

FIGURE 8. Charge time and Temperature rise under different weights.

When β is 0.24, it is used to optimize the multistage
constant heating rates curve and charging current curve. The
three stages heating rates are set to 0.36 0.27 0.19, respec-
tively. And then the charging current can be obtained by
Eq. (13). The off-line charge curve is used to charge the
battery, as shown in Fig. 9.

B. EFFECTS ON BATTERIES AT DIFFERENT TEMPERATURES
1) CHARGE CURVE COMPARISON
AT DIFFERENT TEMPERATURE
Because the GA optimizes the heating rates value at each
stage, the dynamic characteristics of the battery at different
temperatures are different; thus, the charging curve of the
battery at different temperatures is different. In this paper,
Hybrid Pulse Power Characterization (HPPC) tests experi-
ments were conducted at ambient temperature, 10◦C, 25◦C,
and 40◦C, and then, the dynamic characteristics at different

FIGURE 9. 3 stage constant heating value and current curve.

temperatures were obtained. The internal resistance is the
main parameter that affects the current curve. Fig. 10 shows
that the internal resistance of the battery varies greatly at
different temperatures.

FIGURE 10. Internal resistance at ambient temperature, 10◦C, 25◦C and
40◦C: (a) the internal resistance diagram of the battery at ambient
temperature; (b) the internal resistance of the battery at 10◦C; (c) the
internal resistance of the battery at 25◦C; (d)the internal resistance
diagram of the battery at 40◦C.

If the same charge curve is used at different temperatures,
as shown in TABLE 3 (a), then less capacity is charged when
the battery is at a low temperature compared to when it is
at a high temperature using same charging curve because
the higher battery resistance and the heating rates will not
be a constant at each stage. As shown in Fig. 11, charging
of the battery terminal voltage is simulated at ambient tem-
perature, 10◦C and 40◦C using the obtained charging curve
at ambient temperature. Because of the low resistance at
high temperature, the charging curve goes to the next stage
when the terminal voltage is not reached at the upper cut-off
voltage; in this case, the charging curve used is the same
curve. On the contrary, the terminal voltage will be reached
early on account of the high resistance at low temperature.
If the battery is charged by different curve in different temper-
ature. Then the charge capacity will be increased, as shown
in TABLE 3 (b). It is evident that the battery should be
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TABLE 3. Charge capacity AT ambient temperature, 10◦C, 40 ◦C.
(a) charged by one curved. (b) charged by different curved.

FIGURE 11. Charge voltage curve at ambient temperature, 10◦C, 40◦C.

FIGURE 12. Charge current at Ambient temperature, 10◦C, 25◦C,
40◦C: (a) optimal charging current curve at ambient temperature;
(b) optimal charging current curve at 10◦C; (c) optimized charging current
curve at 25◦C, 9 (d) optimal charging current curve at 40◦C.

charged with different curve at different temperature from
the TABLE 3.

According to the dynamic characteristics of the battery
at different temperatures, the optimal charging curve of

FIGURE 13. Charging time compare to CCCV at different temperatures.

TABLE 4. Comparative of optimization charging strategy and CCCV (a) at
ambient temperature. (b) at 10◦C. (c) at 25◦C. (d) at 40◦C.

the battery at different temperatures is obtained, as shown
in Fig. 12.With the increase of temperature, it is found that the
optimal current of the battery is higher and the charging time
is shortened. By contrast, the charging current is lower and the
charging time is prolonged when the temperature decreases.

2) EXPERIMENTAL RESULTS
The experiment involves the proposed charging curve and
CCCV charging for which the current rate is the average
of the proposed charging curve at ambient temperature.
The average charge rate is calculated by the charge time
divided by the charge time. An experimental comparison
between the multistage constant heating rates charging strat-
egy and the average CCCV at different temperatures is shown
in TABLE 4. The charging times of the batteries at different
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FIGURE 14. Charge temperature rise at different temperatures.

temperatures were obtained experimentally and compared
with CCCV, as shown in Fig. 13. Fig. 14 shows the tem-
perature variation curve of the battery using the optimized
charging strategy and CCCV at ambient temperature, 10◦C,
25◦C, and 40◦C. Note that the proposed method is better than
the average CCCV under different temperature, as shown
in Fig. 13 and Fig. 14. Because the battery under test is
charged in a thermal chamber at 10◦C, 25◦C, and 40◦C,
the charge temperature rise is lower than that at ambient
temperature. As shown in Fig. 13 and Fig. 14, the charging
time of the proposed method is reduced by 1.9%, 5.3%,
8.56%, and 9.54% compared to that of the average CCCV
method under ambient temperature, 10◦C, 25◦C, and 40◦C,
respectively.Moreover, temperature rise is reduced by 48.6%,
28.3%, 67.3%, and 17.9% compared to the average CCCV
method under ambient temperature, 10◦C, 25◦C, and 40◦C,
respectively.

V. CONCLUSION
This paper offers a new strategy to charge lithium-ion bat-
teries based on the multistage constant heating optimization
method. The method balances the charging time and charg-
ing temperature increase while ensuring the charge capacity.
In themethod, the charge capacity is obtained experimentally.
Based on the equivalent circuit model and thermal model,
the GA is iteratively used when β is set to be different values.
The experimental results indicate that the proposed charging
method can reduce both the charging time and charging tem-
perature increase; in specific, the charging time is reduced
by 1.9%, 5.3%, 8.56%, and 9.54%, and the temperature rise
is reduced by 48.6%, 28.3%, 67.3%, and 17.9% compared
to the average CCCV charging under ambient temperature,
10◦C, 25◦C, and 40◦C, respectively.
Further studies will focus on convert the off-line strategy

into an online strategy, fast charging of battery packs and
applications in real electric vehicles; a long-term experiment,
such as 500 charging cycles, will be performed to investigate
the effects of the heating method of a battery charged at a
subzero temperature.
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