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ABSTRACT As an efficient strategy, collaborative fusion can promote the classification performance while
decreasing data transmission energy consumption and bandwidth requirements. In practice, the appropriate
reliability assessment plays an essential rule in the fusion process. In this paper, we mainly concentrate on
the classification problem of distributed target in Internet of Things scenarios, and an effective collaborative
fusion method in terms of internal reliability and relative reliability evaluation is proposed. The inner
reliability reveals the potential classes of the target in accordancewith the local hard decisionmade by distinct
sensor. The relative reliability reflects the credibility of the soft decision represented by belief function.
These two reliability measures are complementary with each other. In our proposed fusion method, the inner
reliability is applied to transfer the local hard decision into rational soft decision, and the relative reliability is
utilized to decrease the influence of conflicting soft decisions bymaking full use of the evidential discounting
operation. The discounted soft decisions are related to the combination rule of Dempster–Shafer for the
final target classification. Results of experiment show that compared with the traditional fusion method, this
method has the better fusion performance.

INDEX TERMS Data fusion, inner reliability, relative reliability, evidential reasoning.

I. INTRODUCTION
The Internet of Things (IOT) has attracted a great quantity
of attention due to its advantages on interconnecting objects,
people and other information sources together with intelli-
gent services [1]. As one of the most important part of an
IOT system, the wireless sensor network (WSN) collects
the information from the monitoring target and send it to
the sink node [2]. Recently, the data is generated, collected
and analyzed at an unprecedented scale as the increasing
application of WSNs in detection and classification, and the
volume of data is also explosively increasing when it is linked
and fused with other data to make a class decision [3]. On the
other hand, the power and bandwidth of wireless nodes are
strictly limited, so it is unreasonable to upload original data to
sink nodes [4]. In this case, proper data fusion is an effective
strategy to obtain good classification performance. In IOT

applications, data fusion is the technique of combing data pro-
vided by multiple data sources into a uniform result [5], [6].
In themeanwhile, it makes a comprehensive determination on
monitoring the objectives according to data provided by the
sensor nodes [7]. In a target classification system in terms of
data fusion, local decisions are created by independent sensor
nodes, and the fusion center connects these local decisions,
making the final decision more rational according to the
appropriate computing strategy [5]. Data fusion provides a
flexible solution to make the classification result closer to the
truth. In the wireless sensor network, the appropriate fusion
scheme is adopted to reduce the amount of data required
to be transmitted to the fusion center, and reduce energy
consumption and communication bandwidth significantly.
At present, data fusion has been extensively employed in
military, medical, disaster search, and security surveillance
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applications and other complicated applications [8]. In these
applications, the sensor nodes deployed in the monitoring
area are vulnerable to the complicated physical surroundings
and electronic jamming [9], and the information obtained by
sensors nodes is always uncertain and imprecise [10], [11].
As a result, the method of acquiring the feasible result of
the trustworthy data fusion with unreliable data is a huge
challenge of WSNs in IOT applications [12].

In distributed target classification systemswith data fusion,
sensors are deployed in the specified region to collect the
attribute knowledge of the monitoring target. The classifier
of each sensor carries out the classification work according
to the collected data. The classification result of each sensor
is considered as a local decision. All sensors then upload their
local decisions to the fusion center, which makes final deci-
sions based on complementary local decisions [13]. Com-
pared with single-sensor target classification, multi-sensor
data fusion usually has higher classification accuracy [14].
When it comes to the limitations of the energy and the
computation ability of the nodes, the classifier with low cost
and simple process is employed by each sensor. As a conse-
quence, the reasonable fusion scheme plays a critical rule in
the process of data fusion [15]. The diverse approaches have
been proposed to combine the ensemble decisions of vari-
ous classifiers for the sake of acquiring good fusion results.
Generally speaking, existing methodologies can be roughly
composed of two categories: hard decision (HD) fusion [16]
and soft decision (SD) fusion [17]. In HD strategies, the local
decision of the classifier is only a label value. The fusion
center combines these local decisions into a comprehensive
one based some combination rules, such as the weighted
sum [18], the max-log fusion [19], or the simple majority
voting method [20]. In SD strategies, the local decisions
are usually offered by soft membership measures, such as
probability value, fuzzy memberships, or belief function, and
the fusion operation is usually carried out in accordance with
some data fusion methods, containing Bayesian combina-
tion [21], Fuzzy logic [22] as well as evidential reasoning
mechanism [23]. In most cases, the HD fusion has great
advantage based on uncomplicated implementation, but it
usually provides lower fusion accuracy than the SD fusion.
The soft classification result can provide more useful infor-
mation than a hard label, and hence the SD fusion is expected
to make the fused decision closer to the truth [14]. In this
paper, we adopt the latter strategy as our basics for distributed
target classification, and employ the evidential reasoning
technology to cope with the data fusion problem of WSNs
in IOT environment.

Dempster-Shafer evidence theory, also referred as eviden-
tial reasoning or belief function theory, has been testified to
be an effective method to deal with uncertain and inaccurate
data [24], and it has been widely applied in sorts of applica-
tions, for example, state estimation [9], target recognition [7],
data classification [25], and information fusion [4], and etc.
In an evidential reasoning framework, the insular decisions
reported by distinct sensor nodes are expressed as several

pieces of evidence, and the combined decision can be pro-
duced by proper evidence combination rules [26]. Neverthe-
less, in reality, the performance of data fusion in terms of
evidence theory is restricted in two important aspects. First,
it is complex to find rational basic belief assignment (BBA)
construction strategy. Second, it’s a thorny problem to com-
bine the BBAs in a feasible manner. Thus, quite a few meth-
ods have been proposed and discussed about the fusion of
multi-classifier. In [27], a combination approach for multi-
class classifier employing evidence theory was introduced,
and the evidence was estimated by minimizing the mean
squared error between the combined result and the truth of
the training data set. In [28], the evidence was constructed
based on the overall performance of classifiers, and a two-step
combination scheme was developed. In [14], the concept of
contextual reliability on the basis of inner reliability and rel-
ative reliability concepts was proposed. The inner reliability
reveals the difference between the output value and the truth
value for the different elements within each soft classification
result, and the relative reliability characterizes the conflicting
information among the classification results provided by vari-
ous classifiers. The inner reliability and relative reliability can
capture different aspects of the classification reliability, and
employing both of them can efficiently improve the global
classification performance. In our previous works, a simple
and effective data fusion method based on evidential reason-
ing was introduced in [7]. Each sensor node only requires
to send its hard decision and reliability to the fusion center
and build the soft decision of each sensor according to the
output confusion matrix in the fusion center. In this manner,
the bandwidth demand for data transmission can be greatly
reduced. Nevertheless, the evaluation of reliability degrees
in the hard classification result is not always regarded as
adequate, and it does not specifically reveal the reliability
degree of each element (class) within the soft classification
result. Meanwhile, relative reliability that can be used to
properly reduce the bad impact of conflicting information
among the classifiers is not taken into consideration in the
fusion process.

As a result, we propose a newweighted data fusion method
with reasonable reliability evaluation based on evidence the-
ory in this work. This method utilizes the relative distance
between the object and the sample set of each class tomeasure
the inner reliability degrees of the different classes within the
soft decision. A refined relative reliability evaluation in terms
of the dissimilarity between different local soft decisions
is also introduced to address the influence of conflicting
information for the sake of promoting the global classification
accuracy. Subsequently, the proposed combination method
is tested on randomly generated data sets and vehicle
classification data sets, and compared with other classical
methods.

The remainder of this article is organized as follows.
Section 2 fundamentally introduces the basis of evidence
theory. The proposed weighted data fusion approach with
evidential reasoning is presented in Section 3. Section 4 offers
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the experimental results to prove the performance of our
method. Conclusions are finally summarized in Section 5.

II. PRELIMINARY WORK
In this part, we show several fundamental concepts that are
commonly utilized in evidence theory. Generally, the data
fusion based on evidential reasoning framework includes
three phase: mass construction, BBA combination, and dis-
counting operation.

A. MASS CONSTRUCTION
Dempster-Shafer evidence theory introduced by Shafer
is also known as evidential reasoning. In this theory,
the frame of discernment is defined as a finite set, whose
elements are exhaustive and mutually exclusive, and it
can be denoted by � = {w1,w2, . . . ,wi, . . . , wn} .
The power set of � is denoted by 2�, representing
a set that identifies all probable subsets of the frame-
work. For instance, if � = {w1,w2, w3} , then 2� =
{φ, {w1} , {w2} , {w3} , {w1,w2} , {w1,w3} , {w2,w3} , �}. In a
target classification system, the singleton element represents
an individual class, and the compound element stands for
the partial ignorance among several singleton classes in 2�.
When it comes to a monitoring target X , we can allocate X
into any singleton element and compound element in 2� with
different basic belief assignments (BBAs). A BBA is also
identified as a mass function, which is a mapping m : 2� →
[0, 1], and it satisfies the following condition:∑

A∈2�
m (A) = 1, and m (φ) = 0 (1)

where A is the subset of 2�, and the function m (A) is utilized
to compute the mass of belief of the class A. If m (A) > 0,
the subset A can be referred to as the focal element of a
mass function. The mass values of diverse focal elements
containing singleton elements and compound elements can
reasonably characterize the imprecise observation reported
by each sensor on the object X .
In evidence theory, given a mass function m, the corre-

sponding belief function Bel (·), plausibility function Pl (·)
and pignistic probability function BetP (·) are defined as
follows, respectively:

Bel(B) =
∑

A⊆B
m (A) (2)

Pl(B) =
∑

A∩B6=∅
m (A) (3)

BetP (w) =
∑

w∈A,A⊆�

1
|A|

m (A) (4)

where |A| is the cardinality of focal element A. All three of
these functions can be used to support decision making on
classes of unknown monitoring objects on the basis of their
corresponding values. For instance, the decision can be made
by selecting the class label with maximum BetP.
In reality, the quantity of Bel (A) can be taken into account

minimum support degree of class A of the evidence, while
quantity of Pl (A) can be considered as the maximum support

degree of class A of the evidence. Quantity of BetP (A) offers
a compromised support degree of class A of the evidence.
The relationship among these three measures satisfies the
following condition:

Bel(A) ≤ BetP(A) ≤ Pl(A), ∀A ⊆ �. (5)

Generally speaking, there is no unified solution to solve
the problem of large-scale construction. Any algorithm that
satisfies the equation 1-4 can be used as a mass construction
method.

B. BBA COMBINATION
In a multiple sensor data fusion system, the output of each
sensor can be recognized as an evidence described by a
BBA. Provided that there are two distinct sources of evi-
dence denoted by m1 and m2 over 2�, the well-known
Dempster-Shafer (DS) combination rule can be utilized to
combine them in the following manner:

m⊕ (A)

= m1 (B)⊕ m2 (C)

=


0, B ∩ C = φ;∑

B∩C=A,∀B,C⊆�
m1 (B)×m2 (C)

1−
∑

B∩C=φ,∀B,C⊆�
m1 (B)×m2 (C)

, B ∩ C 6= φ,

(6)

where
∑

B∩C=φ,∀B,C⊆� m1 (B)×m2 (C) < 1 characterizes
the whole conflicting mass between m1 and m2, and by
standardizing the steps, all focus elements are proportionally
reassigned.

DS rule is commutative and associative, and it could be
employed for combining multiple BBAs by sequentially.
Assume that there are K pieces of evidences, we can use (6)
to combine them as follows:

m = m1 ⊕ m2 ⊕ · · · ⊕ mK (7)

Additionally, the values of focal elements of m can be
calculated by:

m(A) = k
∑

X1∩X2∩···∩XK=A

K∏
i=1

mi (Xi)

k−1 = 1−
∑

X1∩X2∩···∩XK=φ

K∏
i=1

mi (Xi)

=

∑
X1∩X2∩···∩XK 6=φ

K∏
i=1

mi (Xi) (8)

Nevertheless, DS combination rule often offers a poor per-
formance due to counter-intuitive combined results in some
conflicting cases. Thus, a series of alternative combination
methods are proposed for this problem, such as Smets’s
unnormalized combination rule, the disjunctive combination
rule, and Yager’s combination rule [29], [30], etc. Unfor-
tunately, these modified methods are less attractive for the
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reason that they are not associative and complicated to imple-
ment. In the next part, another solution named as discounting
operation will be introduced to decrease negative influence
on conflicting information in the course of the fusion process
with classical DS combination rule.

C. DISCOUNTING OPERATION
In the course of the combination of multiple outputs repre-
sented by BBAs from different sensors, conflicting informa-
tion sometimes may occur among the BBAs, and it often
results in negative impact on the fusion process when the
DS combination rule is employed. The Shafer’s discounting
method was introduced in [31] for the sake of reducing
the influence of conflict. On the basis of the opinions from
Shafer, the evidence is not completely reliable. The reliability
(weight) factor α of a BBA can capture the degree of conflict
between this BBA and other BBAs. If a BBA has a lower
reliability than others, the influence of this BBA should be
reduced in the fusion process.

Considering a BBA denoted by m (·) on the frame of dis-
cernment �, and its corresponding reliability (weight) factor
α ∈ [0, 1], the discounting operation of this BBA can be
implemented by:{

mα(A) = αm(A), A 6= �
mα(�) = αm(�)+ (1− α) , A = �.

(9)

Based on reliability factor α, the mass value of each focal
element in m (·) is proportionally redistributed to the total
ignorance element �, which has no impact in the fusion pro-
cess. By using the discount operation, the effect of unreliable
evidence is reduced, and the rational final combination results
can be obtained by using the classic DS combination rule.
Thus, equation (6) is modified by:

(mα11 ⊕ m
α2
2 ) (A)

=


0, A=φ
1

1−k

∑
B∩C=A,∀B,C⊆�

mα11 (B)×mα22 (C), A∈2�/φ. (10)

where

k =
∑

B∩C=φ,∀B,C⊆�

mα11 (B)× mα22 (C) . (11)

III. MULTIPLE SENSOR DATA FUSION BASED
ON EVIDENTIAL REASONING
A. SYSTEM MODEL
In multiple sensor data fusion system, each sensor is inde-
pendently deployed in the monitoring area, and there is no
correlation between their observations. We assume that all
potential classes are known in our system, thus the frame of
discernment utilized in evidential reasoning can be exclusive
and exhaustive. The system model is showed in Figure 1.
Provided that there are s = {s1, s2, · · · , sn} sensors deployed
in the sensors network, all the local classifiers of sensor
nodes will be well trained, and their training output confusion

FIGURE 1. System model of the data fusion method for target
classification.

matrices will be saved in the fusion center. Any appropri-
ate classifiers can be employed for this multi-class target
recognition task, and we don’t take into consideration how
to understand the process of classification. For a target with
� = {w1,w2, . . . , wc} potential classes, the n sensors carry
out classification operations independently on the basis of
their observations x = {x1, x2, · · · xn}. After classification
processes of these sensors, the corresponding hard decisions
u = {u1, u2, · · · , un}, in which ui ⊂ �(1 ≤ i ≤ n) and the
reliability degrees of the decisions r = {r1, r2, · · · rn} are
generated by the classifiers of sensors in terms of their real-
time observations. Subsequently, each sensor sends its local
hard decision and corresponding reliability degree to fusion
center. The global data fusion is conducted in the fusion
center, and the final decision can be made directly on the
basis of the final combined result. There exist several standard
decision-making methods using the different criteria [32].
The pessimistic decision is made by choosing the class with
maximum belief Bel (·). The optimistic decision makes up
of selecting the class with maximum plausibility Pl (·). The
middle decision is made by selecting the class with maximum
pignistic probability BetP (·). In our classification system,
the class with maximum BBA in the global combined result
also has the maximum belief Bel (·), maximum plausibility
Pl (·) and maximum pignistic probability BetP (·) due to the
particular structure of BBA. As a result, our decision can be
determined by selecting the class with maximumBBA, which
is of a small computation burden in the global combined
result.

B. DATA FUSION METHOD BASED
ON CONFUSION MATRIX
In our previous work, a simple data fusion method based on
confusion matrix was proposed [7]. This method consists of
twomain steps: (1) the determination of the local soft decision
of each senor, and (2) the combination of different local soft
decisions using equation (8). In this part, these two steps are
briefly introduced, and the improved version of this method
will be introduced in the next part.
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For a sensor si (1 ≤ i ≤ n), denote its training set as 0i ={(
yi1,w1

)
, · · ·

(
yic,wc

)}
, when receiving a new observation xi,

the local classification operation is carried out, and the local
hard decision ui can be produced by the classifier of sensor si.
Let di,j denote the distance between xi and training sample
set yj(1 ≤ j ≤ c). We assume that the local hard deci-
sion is ui = wk (1 ≤ k ≤ c), and its corresponding distance
is di,k . The relative distance between di,j and di,k can be
calculated by:

∇di,j =
di,j
di,k

, 1 ≤ j ≤ c, j 6= k (12)

When this relative distance ∇di,j is large, it is certain that
the target does not belong to wj. When the value of ∇di,j
is small, the class of this target should be wj. Thus, this
relative distance is applied to evaluate the reliability degree
of decision ui as follows:

ri = min
1≤j≤c

{
λ
(
1− exp

(
−β∇d2i,j

))}
(13)

After that, the sensor si sends its determination ui and
the corresponding reliability degree ri to the fusion center.
In accordance with the decision ui and confusion matrix of
sensor si, we can obtain the corresponding condition prob-
ability vector pi = {pi (ui|w1) , · · · , pi (ui|wc)}, in which
pi (ui|wk) (1 ≤ i, k ≤ c) is the conditional probability of class
wk when the local decision is ui. This probability vector
characterizes the overall performance of sensor si. In our
system, the confusionmatrix of the classifier of each sensor is
kept in the fusion center. When the local decision is uploaded
to the fusion center, the conditional probability vector can be
obtained directly from the confusion matrix.

With the probability pi (ui|wk) and reliability degree ri,
a BBA mi,k (ui|wk) on the frame of discernment � =

{w1,w2, . . . , wc} can be calculated by:

mi,k (ui|wk) = ripi (ui|wk)

mi,k (ui|�) = 1− ripi (ui|wk) (14)

By using the obtained BBAs
{
mi,1, · · ·mi,c

}
, the hard deci-

sion ui can be transferred into a soft decision denoted by mi,
which is calculated as follows:

mi (wk) = ⊕ck=1mi,k (ui|wk) (15)

where ⊕ denotes the DS combination operation.
After the mi construction process, we can acquire a set of

BBAs M = {m1, · · · ,mc} from s = {s1, s2, · · · , sn} sensors.
Equation (8) is employed to compute the global combined
result, and the final decision is determined by selecting the
class with maximum mass value in the global combined
result.

Comparedwith the classical naïve Bayes rule andweighted
majority voting rule, this data fusion has better performance
on classification accuracy [7]. But in the determination pro-
cess of the local soft decision, the reliability degree ri of hard
decision ui is represented by a single number, and this number
plays the same role in the calculation operation of mass

values of different focal elements according to equation (14)
and (15). Moreover, the relative reliability that is utilized to
properly decrease the negative impact of conflicting informa-
tion among the classifiers is not taken into consideration in the
global fusion process. Therefore, a refined inner reliability
evaluation method that assigns different reliability degrees to
different focal elements in the process of the determination
of the local soft decision will be introduced, and a reasonable
relative reliability measure will also be shown in the next part.

C. IMPROVED DATA FUSION
InWSNs, the classifier of sensor si conducts the classification
operation and makes the local hard decision ui when a new
observation xi is acquired. For decision ui, we regard the vec-
tor ri = {ri(ui|w1), · · · , ri(ui|wc)} as its corresponding inner
reliability degree vector, and the elements in this vector sat-

isfies 0 < ri(ui|wj) < 1,
c∑
j=1

ri(ui|wj) = 1(1 ≤ i, j ≤ c). This

vector ri can be evaluated in terms of the distance between the
object and the sample set of each training class. For instance,
when the object is close to the class wj, inner reliability
degree ri(ui|wj) should be large. In contrast, when the object
is far away from the wj, inner reliability degree ri(ui|wj)
should be small. The value of ri(ui|wj)(1 ≤ j ≤ c) reflects
the relative probability of the object potentially belonging
to class wj, when the local hard decision is ui. Therefore,
the inner reliability degree vector of hard decision ui can be
defined as:

ri(ui|wj) =
e−d(xi,wj)
c∑

q=1
e−d(xi,wq)

(16)

where

d(xi,wj) =
di,j

min
1≤p≤c

di,p
(17)

Obviously, the value of ri(ui|wj) is limited to interval (0, 1),
and d(xi,wj) is the relative distance of the object xi to the class
wj with respect to the minimum distance to the all training
classes. The distance di,j(1 ≤ j ≤ c) can be calculated
according to any appropriate distance definitions, for exam-
ple, Euclidean distance, Cosine distance, Hamming distance,
and etc. In the meanwhile, the selected samples in each class
for distance computation can be the whole sample set, or the
k nearest neighbors to the object. In this paper, we utilize
Euclidean distance to calculate the inner reliability degree.

In our approach, the inner reliability degree vector ri =
{ri(ui|w1), · · · , ri(ui|wc)} is different from the condition
probability vector pi = {pi (ui|w1) , · · · , pi (ui|wc)}. The
inner reliability degree reveals the relative probability of the
object potentially belonging to each class when the local
decision is ui, and it is related to the object that requires to
be classified. The condition probability vector reflects the
overall classification performance of the classifier, and it is
related with the classifier. The information provided by these
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two vectors is complementary. As a sequence, when both of
them are taken into account, the refined local soft decision
can be produced.

With the received pattern (ui, ri) from sensor si, the fusion
center can obtain the corresponding the condition probability
vector pi directly according to confusion matrix. After that,
a BBA mi,k (ui|wk) (1 ≤ k ≤ c) on the frame of discernment
� = {w1,w2, . . . , wc} can be computed by:

mi,k (ui|wk) = ri (ui|wk)× pi (ui|wk)

mi,k (ui|�) = 1− ri (ui|wk)× pi (ui|wk) (18)

Because there are c elements in both the inner reliability
degree vector and condition probability vector, we can obtain
a set of BBAs

{
mi,1, · · ·mi,c

}
. For convenience, pi (ui|wk) and

ri (ui|wk) are denoted by pi,k and ri,k for short. By combining
BBAs

{
mi,1, · · ·mi,c

}
by (8), the local soft decision can be

calculated as follows:

mi (wk) =
1

1− ki

ri,kpi,k
1− ri,kpi,k

c∏
j=1

(
1− ri,jpi,j

)
mi (�) =

1
1− ki

c∏
j=1

(
1− ri,jpi,j

)
(19)

where

ki = 1−

(
c∑

k=1

ri,kpi,k
1− ri,kpi,k

+ 1

)
c∏
j=1

(
1− ri,jpi,j

)
(20)

After the determination of the local soft decision of s =
{s1, s2, · · · , sn} sensors, we can obtain n pieces of BBAs,
denoted by M = {m1, · · · ,mc}.
Considering that the local combination results provided

by different sensors on the same object may cause major
conflicts, we propose a new method of relative reliability
measurement to detect the unreliable BBAs. For the reason
that the conflicting information often offers negative influ-
ence in the fusion process, the classical discounting operation
will be conducted before the global combination for the sake
of reducing the impact of unreliable evidence.

In this work, we propose that the relative reliability of the
sensor is correlated with uncertainty and dissimilarity [5].
The uncertainty measure is used to quantify the quality of
each piece of evidence, and the dissimilarity measure ref-
erences the idea of mutual conflict between two pieces of
evidence.

In the framework of evidential reasoning, many researchers
propose a series of methods to measure the conflict between
BBAs, such as the famous Jousselme’s evidential distance
dj [33], MaxDiff distance [34], and the Deng entropy func-
tion [35]. The efficiency of these approaches has been proved
in a series of literatures [23]. Therefore, we employ the
Jousselme’s distance to measure the dissimilarity between
two BBAs, and use Deng entropy function to quantify the
quality of a BBA directly.

Assume there are two BBAs m1 and m2 generated by
two independent sensors on the frame of discernment �.

The corresponding Jousselme’s distance dJ between them can
be formally defined as follows:

dJ (m1,m2) =

√
1
2
(m1 − m2)TD (m1 − m2), (21)

where D is a 2|�| × 2|�| positively defined matrix, whose
elements are calculated as follows:

Dij =

∣∣Ai ∩ Bj∣∣∣∣Ai ∪ Bj∣∣ ,Ai,Bj ∈ 2� (22)

This distance satisfies all requirements (non-negativity,
non-degeneracy, symmetry, and triangle inequality) of a strict
distance metric, and it is a widely accepted metric to measure
the dissimilarity between two BBAs.

Let Ai be a focal element of the mass functionm, |Ai| is the
cardinality of set Ai. Deng entropy Ed of set Ai can be denoted
as follows:

Ed = −
∑
i

m (Ai) log
m (Ai)
2|Ai| − 1

. (23)

Deng entropy is the generalization of Shannon entropy.
It offers a significant way to measure and handle the uncer-
tainty in the belief function theory.

In the multi-class pattern recognition application, the rel-
ative reliability degree of each sensor is calculated by the
fusion of the uncertainty and contradiction measures in the
fusion center [5]. The value of dJ expresses the degree of con-
flict between two pieces of evidences. We presume that the
more one source contradicts other sources, the less reliable
it becomes. When n sensors are deployed in the monitoring
area, the dissimilarity between two sensors can be calculated
by (21). The greater the dissimilarity between two sensors,
the smaller the similarity between them. Thus, the similarity
measure can be obtain by:

Sim
(
mi,mj

)
= 1− dJ (m1,m2) , (24)

where Sim
(
mi,mj

)
denotes the degree of similarity between

mi and mj.
Then, the support degree of the mi is defined as

Sup (mi) =
n∑

j=1,j 6=i

Sim(mi,mj). (25)

Subsequently, the credibility of the BBA, mi, can be
given by:

Crd (mi) =
Sup(mi)
n∑
j=1

Sup(mj)
. (26)

Provided that a BBA mi has relatively high credibility
degree determined by (26), we take into account that it should
be more credible when it has more information volume than
the others. Thus, this BBA mi can obtain a larger relative
reliability degree due to its good quality. Based on this idea,
the credibility measure of a BBA can be modified as follows:

Crdα (mi) = Crd (mi)× Q (mi) . (27)
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where

Q (mi) = eE
α
d (mi) (28)

Eαd (mi) =
Ed (mi)
n∑
i=1

Ed (mi)
(29)

If the output of a sensor mi is considered quite credible,
it usually has a large reliability degree. Thus, the relative
reliability of mi can be defined based on the uncertainty and
the dissimilarity is defined as:

αi =
Crdα (mi)

max
1≤j≤n

Crdα
(
mj
) (30)

Since the relative reliability αi (1 ≤ i ≤ n) reflects the
whole credibility of the elements in local soft decision
represented by mi, Shafer’s discounting operation, denoted
by (9),will be used to discount all local soft decisions
M = {m1, · · · ,mc}. The discounted BBAs can be combined
by (10). The final decision is to select the largest class of BBA
in the global composite result.

It’s generally considered that the appropriate reliability
evaluation method can promote the classification perfor-
mance in a multi-class target classification task. Moreover,
in WSNs, the data gained by sensors nodes are always con-
flicting and imprecise. The relative reliability and inner reli-
ability measures can efficiently show and cope with such
conflicting and imprecise data, and make the classification
result closer to the truth. In our proposed multiple sensor data
fusion system based evidential reasoning, we assume that
all sensors have sufficient calculations to perform local clas-
sification and internal reliability evaluation operations. The
communication channel is regarded as an error-free channel,
and the information of sensors will be sent to the fusion center
without distortion. Table 1 supplies the pseudocode of the
proposed data fusion method.

IV. EXPERIMENT RESULTS
In this section, two experiments are carried out to evaluate our
proposed data fusion method. The first one is implemented
on artificial generated dataset. The sensor number and sample
distribution are artificially changed in this experiment. Subse-
quently, the classification performance can be expressed with
changing sensor number and sample distribution. The second
experiment is applied to test the performance of the proposed
weighted data fusion by using real sensor dataset. In these two
experiments, take into account that the complexity of calcu-
lation, local decision is made for each sensor using two easy-
to-implement classifiers, namely k-nearest neighbor (k-NN)
and extreme learning machine (ELM). For performance com-
parison, three related data fusion methods, containing the
Naïve Bayes fusion, the weighted majority voting, and the
belief function on the basis of confusion matrix, have been
evaluated in this paper. In the naïve Bayes, the fusion decision
is made by selecting the class with maximum fusion statistic,

TABLE 1. Pseudocode of the proposed data fusion method.

as showed by:

ld = arg max
1≤k≤c

{
n∏
i=1

pi,k

}
(31)

In the weighted majority voting rule, decision ui,k is
weighted by adjustment factor bi, and the determination is
made by:

ld = arg max
1≤k≤c

{
n∑
i=1

biui,k

}
(32)

In the belief function method based on confusion matrix,
the decision is made by [7]:

wd = arg min
1≤k≤c

{
n∏
i=1

(
1− ripi,k

)}
(33)

A. EXPERIMENT ON ARTIFICIAL GENERATED DATASET
The Gaussian random number generating function randomly
generated data set is utilized in this experiment. The target
class is designed to be five, and each example presumes two
randomly generated attributes that follow diverse Gaussian
distributions. As demonstrated in Table 2, α is a coefficient
of variation of sensor data standard deviation. Obviously,
this coefficient can influence the classification accuracies.
Figure 2 provides an example of sample data.

Since the data set is randomly generated, we generate
1,500 examples and 500 examples respectively as the train-
ing data set and test data. There are 300 training samples
and 100 test samples in each class. After training process,
1000 samples are randomly generated as new observations.
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TABLE 2. Data generation parameters.

FIGURE 2. An example of randomly generated data with 100 samples per
class tag.

The categories observed is randomly selected. The new obser-
vations are classified by using the classifier acquired in the
training process. In this experiment, we use ELM classifier
to make the local decision of sensor. The hidden neurons in
ELM is 50, meanwhile, the activation function is ‘‘radbas’’
function.

The following four methods are utilized for performance
comparison: the proposed weighted belief function fusion,
the belief function fusion on the basis of confusion matrix,
the naïve Bayes fusion, and the weighted majority voting
method. We fix the sensor number as 5. This experiment is
repeated 5 times to gain the average classification accuracy.
The experiment results with different α values are shown
in Figure 3.

FIGURE 3. Average classification accuracy with changing α values.

As illustrated in Figure 3, the average classification accura-
cies of these fusion methods decline with different rates when
the value of α increases from 0.6 to 2.5. Compared with the
other three method, the average classification accuracy of our
proposed weighted belief function fusion is reduced at the
lowest rate, especially when α is larger than 1.5. It demon-
strates the proposed method always has better performance
rather than the others evenwith sparse and imprecise samples.

FIGURE 4. Average classification accuracy with changing sensor number.

As the number of sensors changes, the average classifi-
cation accuracy is shown in Figure 4. In this experiment,
the value of α is fixed as 1.5. The results illustrate that our
weighted belief function fusion also has the better classifica-
tion performance than the others when the number of sensor
increases from 2 to 15.

B. EXPERIMENT ON VEHICLE CLASSIFICATION
In this experiment, we make full use of the collected sensor
vehicle classification data set for vehicle monitoring applica-
tions by a distributed WSN in IOT environment. The 23 sen-
sors are deployed on the road to record signals from passing
vehicles. 11 sensors were chosen for vehicle classification.
The acoustic and seismic signals captured by the sensor
are used for classification missions, and the target vehicle
may be an Assault Amphibian Vehicle (AAV) or a Dragon
Wagon (DW).

The k-NN classifier and the ELM classifier are chosen
to make local hard decision of each sensor. The value of k
applied in k-NN classifier is set as 1. The hidden neurons in
ELM is 50, meanwhile, the activation function is ‘‘radbas’’
function.We repeated the experiment 20 times to get the aver-
age classification accuracy. The classification performance
comparison of fusion results is shown in Figure 5.

As observed from Figure 5, the proposed weighted belief
function fusion has the best performance in these four meth-
ods. Our scheme can significantly promote the classification
accuracy of k-NN classifier from 0.72 to 0.98. We also find
out that the ELM classifier has a better performance than
k-NN classifier when the sensor number is equal. Neverthe-
less, when the sensor number is 11, they can get almost the

VOLUME 6, 2018 62321



Y. Zhang et al.: Collaborative Fusion for Distributed Target Classification Using Evidence Theory in IOT Environment

FIGURE 5. Average classification accuracy with changing sensor number.
Classifier utilized in subplots (a, b) are k-NN and ELM, respectively.

same classification accuracy. It indicates that our proposed
method can efficiently improve the fusion accuracy in the
distributed target classification task.

V. CONCLUSION
In this paper, we study the distributed target classification
problem in IOT applications, and propose an effective data
fusion method on the basis of internal and relative reliability
evaluation. In our proposed fusion method, the inner reli-
ability is used to transfer the local hard decision made by
distinct sensor into a rational soft decision represented by
BBAs, and the relative reliability is employed to decrease the
influence of conflicting soft decisions by utilizing classical
shafer’s discounting operation. The discounted soft decisions
are combined with the DS combination rule. The final deci-
sion was to choose the top class in the BBA. Experimental
results show that the fusion method can significantly enhance
the classification accuracy of multi-pattern recognition. Our
future work mainly involves the following two aspects: (1)
finding a more efficient strategy to construct rational BBAs
and improve the classification accuracy; (2) designing more

trustworthy big data fusionmethods to deal with the uncertain
data in IOT environment.
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