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ABSTRACT In order to make up for the extra energy consumption caused by spectrum sensing and
prolong the network lifetime, the energy harvesting (EH) module is introduced to the spectrum sensing
nodes in cognitive radio sensor network (CRSN) and thus forms one new type of network: EH-aided node-
heterogeneous CRSN. Take into account the fact that the existing spectrum sensing algorithms are difficult
to be applied to the real practice (due to the high cost of algorithm implementation or network deployment)
and may lead to the waste of channel and energy resources, an energy-efficient spectrum sensing algorithm
is proposed in this paper. The proposed algorithm can maximize the energy utilization efficiency under the
premise of detecting enough available time of channels, which is of great significance to reduce the network
deployment cost and promote the green communication of wireless sensor network and even the large-
scale deployment of Internet of Things applications. The simulation results demonstrate that the proposed
algorithm can greatly improve the energy utilization efficiency of spectrum sensing nodes and channel
utilization and significantly reduce the deployment cost of network equipments.

INDEX TERMS Cognitive radio sensor networks (CRSN), energy harvesting (EH), energy efficiency,
spectrum sensing (SS), Internet of Things (IoT).

I. INTRODUCTION
The Internet of Things (IoT) is the evolution of Internet which
is seizing a gigantic leap to collect, analyze and distribute data
which can then turn it into information, eventually into an
asset. The IoT is enabled by the latest developments in radio
frequency identification (RFID), smart sensors, communi-
cation technologies, and Internet protocols [24]. Wireless
sensor network (WSN) technology runs through all three lev-
els (i.e. sensing, processing and communication) of the IoT,
which has the advantages of large scale, low cost, high
density, flexible deployment, real-time acquisition and all-
weather work. It is an integrated application of the technolo-
gies in the three level, which is critical to the development
of IoT. Therefore, studying WSN technology is extremely
important for promoting the development of IoT applications,
striving for the early realization of IoT visions, promoting the
development of information industry economy and even the
improvement of people’s living standards.

Existing WSNs mainly operate on the industrial scien-
tific medical (ISM) unlicensed spectrum band [1]. With the

rapid development of emerging wireless communication
technologies (such as Wifi, Bluetooth, Zigbee, etc.), the pub-
lic frequency bands become increasingly crowded, and the
interference among various wireless technologies also
become increasingly serious.

In 2002, the spectrum policy task force (SPTF) investi-
gated the use of spectrum resources and found that only
about 15%-85% of wireless licensed spectrum was used in
New York State, USA [19], and that most of the spectrum
resources were not adequately utilized. The emergence of
cognitive radio (CR) technology enables secondary users
(SUs) to opportunistically access idle channels that are
already licensed to primary users (PUs), thereby improving
the efficiency of spectrum utilization and reducing interfer-
ence among different users or technologies.

The introduction of CR technology in WSN is expected
to effectively solve the mutual interference among various
emerging technologies in the unlicensed spectrum band by
opportunistically accessing idle channels licensed to PUs.
The WSN whose nodes are equipped with CR devices is
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called cognitive radio sensor network (CRSN) [1]. In CRSN,
spectrum sensing (SS) nodes need to frequently scan the
spectrum to obtain high-resolution estimates of spectrum
availability to avoid the interference between PUs and
SUs [2]. However, such frequent scans greatly increase the
energy consumption of traditionally energy-limited networks
powered by batteries. Therefore, energy conservation tech-
nologies have become one of the research hotspots in
CRSN area [9], [10].

Energy harvesting (EH) technology is regarded as one of
the most promising schemes to address the energy consump-
tion problem in CRSN [3]. Energy harvesting technology
refers to the technology that effectively captures and col-
lects ambient energy. The common energy harvesting sources
includes solar, eolian, vibration [25], or man-made phenom-
ena such as wireless node charging [26]. This technology
has become a promising solution to achieve green commu-
nications, which can provide very long network lifetime and
avoid manual battery recharging or replacement [27]. Sensor
nodes equipped with EH modules/devices can harvest energy
from other radio signals or environmental energy sources, and
further run continuously without battery replenishment [4].
The CRSN equipped with EH modules is called energy
harvesting aided CRSN (EH-CRSN). To reduce deployment
costs, only the spectrum sensing (SS) nodes are equippedwith
EH modules to replenish the additional energy consumed by
them while other sensor nodes are still powered by conven-
tional batteries, thereby resulting in a new type of network:
EH aided node-heterogeneous CRSN (EH-HCRSN) [6].

In EH-HCRSN, the continuous replenishable energy can
greatly extend the network lifetime, thereby promoting the
development of WSN applications. However, there are many
differences between EH-HCRSN and the traditional CRSN
in energy management. Firstly, in EH-HCRSN, the SS nodes
need to periodically scan the spectrum, which leads to the
more and faster energy consumption than that of the data sen-
sor (DS) nodes. Secondly, the process of energy harvesting
in the EH module is unstable, which leads to the fact that
the SS schemes designed for traditional CRSN (the energy
stored in the battery of nodes is static and stable) can not be
applied to EH-HCRSN. Therefore, there is an urgent need
for a new SS strategy in EH-HCRSN that can address the
aforementioned two energy management problems.

A. RELATED WORK AND MOTIVATIONS
Existing SS strategies for energy management can be divided
into two categories:

1) SS strategy without EH technology.
2) SS strategy with EH technology.

The first type of research work mainly focuses on how
to improve the energy efficiency of SS. Due to the shadow
effect, multipath effect and other interference, the detection
accuracy of a single sensor node is difficult to satisfy require-
ment of SS [5]. The detection accuracy of cooperative SS can
be enhanced by scheduling multiple nodes to simultaneously

detect a channel [18], but it also increases the energy con-
sumption at the same time. Reference [9] minimizes energy
consumption by limiting the number of nodes involved in SS.
In [10], some specific nodes are chosen to sense the spec-
trum, while other nodes are dormant to prolong the network
lifetime. Reference [11] uses the karush-kuhn-tucker (KKT)
condition in the optimization theory to find the sensors with
the best detection performance for cooperative SS, and extend
the network lifetime by balancing the residual energy among
all SS nodes. However, balancing the energy consumption
among the nodes can not maximize the network lifetime.
To improve the energy efficiency in SS, a variety of per-
formance parameters are optimized, such as the detection
threshold of SS [13], sensing duration [14], and the chan-
nel switching cost [15]. The paper presents an architecture
of CRSNs for IoT, in which sensor nodes can access the
spectrum opportunistically and harvest energy from ambient
radio-frequency sources. Reference [31] declares that the
research on energy harvesting and cognitive radios (CRs)
are vital for the success of Internet of Things (IoT). And
it proposes an efficient KKT condition-based algorithm to
determine the optimal packet size in CRSN. Reference [23]
indicates CRSN is a promising solution for spectrum scarcity
problem of IoT applications and proposes a novel channel
access scheme to maximize system throughput. However,
these SS strategies can not be applied to EH-HCRSN because
they do not consider EH and the energy fluctuations caused
by EH.

The second type of research work mainly focuses on how
to deal with the contradiction between the unstable capability
of energy harvesting and the continuous energy demand in
the SS nodes, and how to detect as much available time
of channels as possible for WSN. References [7] and [17]
study the optimal cooperative sensing scheduling strategy
that can select the optimal set of sensing nodes with the goal
of maximizing the time average sensing utility. However,
the references assumes the storage capacity of the battery in
nodes to be infinite, which is inconsistent with the reality and
further make the proposed algorithm difficult to be applied
to the real practice (the increase in the storage capacity
of the battery can lead to the rise in the cost of network
deployment, so the capacity of the storage battery in nodes
should be as small as possible under the premise of ensuring
that the network can continuously operate). Reference [28]
investigates the architecture and advantages of RF-powered
CRSN, typical applications, as well as the key challenges
arising from applying RF energy harvesting and transfer
into CRSN. Meanwhile, it formulates a resource allocation
framework to optimize network utility while guaranteeing
network stability and sustainability. Reference [29] considers
a cognitive radio system, in which a secondary transmitter
harvests energy from a primary transmitter’s wireless sig-
nals. And it proposes a two-level bisection search algorithm
to achieve maximal secondary throughput. An energy and
spectrum efficient scheme for CRSNs is proposed in [30].
Reference [6] studied the multichannel selection problem
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in SS. The proposed algorithm in the reference aims at max-
imizing the available time of channels detected by SS nodes.
However, in real WSN, the maximum available time detected
by the algorithm may not be fully utilized by DS nodes due
to the lack of the consideration of the actual demand, which
may cause the great waste of channel and energy resources.
Moreover, in the literature, the energy harvesting rates in all
SS nodes are assumed to be constant and identical, which is
insistent with the fact that SS nodes at the different locations
may have different energy harvesting probability/rate since
energy source typically arrives randomly.

Besides the aforementioned problems, to the best of
our knowledge, the implementation cost problem of algo-
rithms is also not considered in the existing SS algorithms
designed for EH-HCRSN, namely, the deployment cost of EH
devices/modules is not still considered so far. More specifi-
cally, maximizing the available time or average time utility
of channels in existing references [6]–[7], [17] may require
EH devices to have a high energy harvesting and conversion
rates to provide enough and continuous energy for SS nodes,
thereby resulting in a sharp rise in the deployment cost of the
nodes. Considering the fact that the energy harvesting and
conversion rates of the current commercial EH devices are
still very low, the existing SS algorithms are difficult to be
applied to real practice.

Our work aim to propose an energy-efficient spectrum
sensing algorithm (EESS), which can address the possible
waste problem of channel and energy resources and the high
implementation cost problem of SS algorithms (which make
it difficult for the algorithms to be applied to real reality)
in EH-HCRSN. At present, green communication is greatly
advocated in communications industry, which aim to mini-
mize the impact of the entire communication industry chain
on the environment and maximize the resource efficiency.
The proposed scheme can thus be regarded as one of enabling
technologies for green communications.

More specifically, under the premise of ensuring the sens-
ing performance and detecting enough available time of chan-
nels, with the consideration of the randomness of energy
harvesting in EH devices, the proposed algorithm (EESS)
can schedule SS nodes to detect the channels targeting the
maximization of the available time detected by per unit
energy consumption such that the channel scheduling scheme
of SS with maximum energy utilization efficiency can be
found, which can greatly reduce the network deployment cost
and promote green communication of WSN. The novelty of
the article is to consider the implementation cost problem
of SS algorithms in EH-HCRSN and the time varying EH
systems in SS nodes. The innovation will be detailed in the
contribution section below.

B. CONTRIBUTIONS
The main contributions of this work can be summarized as
follows:
• For the first time, the implementation cost problem of
SS algorithms in EH-HCRSN, namely the deployment

cost problem of the EH devices, is considered in this
work. Different from the previous algorithms maximiz-
ing the detected available time or average time utility
(which may lead to the waste of channel and energy
resources and high deployment cost of EH devices), this
work targets the maximization of the energy utilization
efficiency (i.e. the available time detected by per unit
energy consumption) and proposes an energy-efficient
spectrum sensing algorithm. The proposed algorithm
can not only avoid the waste of energy and channel
resources in the previous algorithms, but also reduce the
implementation cost of SS algorithms, which is in great
value of practical application.

• For the first time, the actual demand of CRSN for
the available time of channels in SS algorithms of
EH-HCRSN is considered in this work. The constraint
on the available time of channels detected by SS nodes
is imposed in this work. It can enable the proposed
algorithm to detect enough available time of channels
for the data transmission of DS nodes when the energy
utilization efficiency of SS nodes is maximized, which
is of great significance to realize an energy-efficient
SS algorithm.

• For the first time, the constraint on false alarm prob-
ability in SS algorithms of EH-HCRSN is considered
in this work. It can make the false alarm probability of
channels remain in the lower range and further improve
the utilization of idle channels.

• For the first time, the time varying EH systems in
SS nodes, which are modeled as independent Bernoulli
processes with different probability, are considered in
the EH-HCRSN system. It makes the developed algo-
rithm in the paper more practical.

The remainder of this work is organized as follows. The
network model is detailed in Section II. A mathematical for-
mulation and the proposed solutions of the spectrum sensing
problem are detailed in Section III. Performance evaluation
results that demonstrate the efficiency of the proposed algo-
rithms are presented in Section IV. Conclusions are drawn
in Section V.

II. SYSTEM MODEL
A. CR MODEL
We consider the scenario of a single hop EH-HCRSN,
which consists of three types of nodes: N battery-powered
DS nodes, M EH-enabled SS nodes, and one sink node.
It is shown in Fig. 1. The EH-HCRSN periodically operates
over three phases: channel decision, SS and data transmis-
sion phase, as shown in Fig 2. In the phase of channel
decision, based on some known information and certain
spectrum sensing strategy, the channel allocation scheme to
SS nodes can be determined for channel detection. In the sec-
ond phase, based on the channel decision in the first phase,
EH-enabled SS nodes cooperatively detect the licensed spec-
trum for idle channels. In the third phase, the available chan-
nels are utilized by DSs for data transmission. The sink node
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FIGURE 1. Illustration of an EH-HCRSN.

FIGURE 2. Timing diagram and frame structure of the EH-HCRSN.

is deployed at the network center as the fusion center of the
entire network, and it can schedule SS nodes in the network
to work cooperatively, including the cooperative sensing of
SS nodes and data transmission of DSs.

In the paper, the duration of SS phase and data transmission
phase are designed to be fixed, as shown in Fig. 2. Let τs and
τd denotes the duration of SS phase and data transmission
phase, respectively. Because the channel decision time τr is
varied, the whole cycle T is dynamic. However, based on the
existing hardware condition and the computation complexity
of the spectrum sensing strategy, the channel decision time
τr is often very small (e.g. less than 0.5ms for the proposed
algorithm in the paper).

When a PU on a channel is detected, it means the channel
is unavailable at this time. We use vk to denote the transition
rate from the unavailable state to the available state on the
kth channel and uk to denote the transition rate in the reverse
direction [13]. The sampling frequency is denoted by fs.
The energy consumption and sensing time that one SS node
detects one channel are denoted by e and τ ′, respectively.

We assume that the PU signal is a complex-valued phase-
shift keying (PSK) signal and that the noise is circularly sym-
metric complex Gaussian with zero mean and σ 2 variance,
then according to [16], the false alarm probability and the
detection probability can be respectively calculated as

pf (m, k) = Pr(Ym,k > ε |H0 ) = Q((
ε

σ 2 − 1) ·
√
fs · τ ′) (1)

pd (m, k) = Pr(Ym,k > ε |H1 ) = Q(
Q−1(pf )−

√
fs · τ ′)√

2 · γm,k + 1
(2)

where ε is the detection threshold of the energy detector,
H0 indicates that the target channel is not occupied by PUs,
and H1 indicates that the target channel is occupied by PUs.

And Ym,k = (1/U )
U∑
u=1

∣∣ym,k (u)∣∣2 denotes the output of the

energy detector which is taken to decide on the state of the
PU, i.e., the test statistic [6]. U = fs · τ ′ is the number of
samples, ym,k (u) is the uth sample of the received signal at
the mth spectrum sensor on the kth channel. If the output of
the energy detector exceeds ε, the PU is considered as being
on the channel, i.e., the channel is unavailable. γm,k denotes
the received Signal to Noise Ratio (SNR) from the PU on the
kth channel. In the paper, the detection threshold is designed
to be the same for all of the spectrum sensors, the false alarm
probability thus becomes fixed for all of the sensors and is
denoted by pf .
SS nodes make a binary assessment on each target channel

according to the SS result, and then the binary decisions are
sent to the sink node for data fusion following the logic-OR
rule [10]. The common fusion methods are the logic-OR rule,
the logic-AND rule, the K -out-of-N rule and so on. Currently
the most widely applied method is the logic-OR rule [15],
which is a criterion biased toward reducing interference to
PUs. If at least one sensing result exceeds the threshold ε (i.e.,
the decision result of at least one SS node is 1), the channel
is regarded as being unavailable, i.e., there is a PU on the
channel. Therefore, the final false-alarm probability Qkf and
final detection probability Qkd can be written as follows [6]:

Qkf = 1−
∏
m∈Mk

(1− pf ) (3)

Qkd = 1−
∏
m∈Mk

(1− pd ) (4)

whereMk represents the number of SS nodes that is scheduled
to detect the kth channel.

B. EH MODEL
In the paper, each SS node is assumed to be equipped
with a rechargeable battery with finite capacity. The battery
with finite capacity can guarantee the sustainability of the
power when the SS nodes don’t harvest energy in some
time. We assume that the energy arrives randomly at the
EH-enabled SS nodes in each cycle T . As described in pre-
vious section, the channel decision time τr is very small,
the differences among the channel decision time in different
work cycles is smaller.We can thus assume the arrival process
of the energy in the SS nodes to be independent Bernoull pro-
cess with the probability of λm(m ∈ 1, 2, . . . ,M ) in a cycle.
We also assume that the mth SS node can harvest energy emh
with the probability λm in a cycle. The Bernoulli model is
simple, but it captures the random and sporadic availability
of ambient energy source [5]. In practice, statistics of the
energy harvesting models are time varying. However they can
be approximated by piecewise stationary processes [5], and
the Bernoulli model has this property.
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III. CROSS-ENTROPY BASED SPECTRUM SENSING
ALGORITHM
The Cross-Entropy (C-E) algorithm is an algorithm that
can find the optimal solution in combinatorial and continu-
ous nonconvex optimization problem with convex bounded
domains [21]. Its basic idea is to transform a determinis-
tic optimization problem to an Associated Stochastic Prob-
lem (ASP) problem that can be easily solved [21], [22].
More specifically, the C-E algorithm is an adaptive algorithm,
which can produce a series of stochastic solutions converging
to or approaching the optimal solution of the original deter-
ministic problem.

Based on the idea of C-E algorithm, we aim to find the
channel allocation scheme for SS with the highest energy
utilization efficiency through multiple iterations, while sat-
isfying the following constraint conditions:

1) The detected actual available time can not be less than
the transmission time required by the DSs.

2) The interference to PUs can not exceed the predefined
threshold.

3) The false alarm probability of the channels cannot be
higher than the predefined threshold.

4) The energy consumption rate of SS nodes can not
exceed the energy harvesting rate of the EH module
to meet the demand for the energy sustainability of SS
nodes.

5) The sensing time for a single channel can not
exceed τs.

Based on the priori information of channel k , the mean
sojourn time of the available state and the unavailable state on
the channel can be calculated as Lk0 = 1/uk and Lk1 = 1/vk ,
respectively. According to the stochastic process theory, the
stationary probabilities of the available and unavailable states
can respectively be given by [6]

pk0 =
vk

uk + vk
(5)

pk1 =
uk

uk + vk
(6)

The average available time on the channel k can thus be
given by [6]

∂k = Lk0 · p
k
0 (7)

Let J denote a matrix withM rows and K columns, where
the row denotes node number and the column denotes channel
number. In matrix J , the element [J]m,k indicates whether the
mth SS node participates in the detection of the kth channel.
The value 1 means that the mth SS node participates in the
detection of the kth channel, and the value 0 means not.

Let pkavail denote the probability that channel k can be
detected to be available given that channel k is idle, then it
can be written as [6]:

pkavail = 1− Qkf =
∏
m∈Mk

(1− pf ) = (1− pf )

M∑
m=1

[J]m,k
(8)

The total available time of channels detected by SS nodes
can thus be represented as [6]:

td=
∑K

k=1
∂kpkavailI

k
d =

∑K

k=1
∂k (1− pf )

M∑
m=1

[J]m,k
I kd (9)

where I kd is a binary variable.
The binary variable I kd introduced in the formula (9) indi-

cates whether the protection requirement of PUs, i.e. the sec-
ond constraint condition, is satisfied or not, which can thus
be given by [6]

I kd =

{
1 1− Qkd < Thr
0 1− Qkd ≥ Thr

(10)

where Thr is the predefined misdetection probability thresh-
old. According to equation (4), 1 − Qkd indicates the final
misdetection probability of channel k . If 1−Qkd exceeds Thr ,
the detection of the channel k is considered as being unreli-
able, and the channel k can not be accessed by DSs. Other-
wise, the channel can be accessed.

It is not hard to understand that the longer the occupancy
time on the channel by DSs is, the more likely it is to collide
with PUs. In order to keep the collision probability as low
as possible on the channel, it is necessary to control the
occupancy time on each channel by DSs. We use ∂kmax to
denote the maximum occupancy time on the kth channel.
Obviously, ∂kmax ≤ ∂

k .
The PU behavior on each channel can be modeled as a

stationary exponential ON-OFF random process [8], then
the probability of collision on the kth channel can be given
by [6]:

pkcoll(∂k ) = pk0 · (1− e
−µk∂k ) (11)

where pk0 is the probability that the PU is not present on the
kth channel at the beginning of the data transmission phase,
and 1 − e−µk∂

k
is the probability that the PU returns the k

channel in [0, ∂k ].
Assuming that the collision probability of channel k is

required not to be greater than the predefined threshold pkcoll ,
from formula (11), we can obtain [6]

∂k ≤
− ln(1− pkcoll/p

k
0)

µk
(12)

Considering ∂kmax ≤ ∂
k , the maximum occupancy time on

the kth channel by DSs should satisfy the following constraint
condition [6]:

∂kmax ≤
− ln(1− pkcoll/p

k
0)

µk
(13)

Additionally, ∂kmax can not exceed the data transmission
phase τd , ∂kmax can thus be given by [6]:

∂kmax = min

(
− ln(1− pkcoll/p

k
0)

µk
, τd

)
(14)
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Therefore, the detected available time of all channels for
DSs transmission can be determined by:

taccess =
K∑
k=1

∂kmaxI
(∑M

m=1
[J]m,k > 0

)
(15)

where I
(∑M

m=1 [J]m,k > 0
)
is a binary variable introduced

to indicate whether the kth channel is detected, the indicator
function I (•) takes the value of 1 for true evaluations and zero
otherwise.

According to the constraint condition (1), the proposed
algorithm needs to ensure that the detected available time can
meet the demand for the transmission time of DSs, the con-
straint can thus be represented as:

taccess ≥ Nβ (16)

where N is the number of DS nodes in the network, and β is
the average transmission time required by DSs.

In this work, we intend to maximize the energy utilization
efficiency, i.e. the available time of channels detected by each
unit of energy consumption, which can be described as

max
J

∑K
k=1 ∂

k (1− pf )

M∑
m=1

[J]m,k
I kd(∑M

m=1
∑K

k=1 [J]m,k
)
· e

(17)

In order to improve the channel utilization efficiency,
the false alarm probability of channels should remain within
a certain range, thus we impose the constraint (3) on it, which
can be given by

Qkf ≤ α, ∀k (18)

where α is the predefined threshold of the false alarm proba-
bility.

Associating (8) with (18), we can get

(
∑M

m=1
[J]m,k ) ≤

ln(1− α)
ln(1− pf )

, ∀k (19)

Rounding down the right part of the formula (19) can
obtain

(
∑M

m=1
[J]m,k ) ≤

⌊
ln(1− α)
ln(1− pf )

⌋
= 9, ∀k (20)

According to the constraint (5), the total sensing time of
one channel can not exceed the duration of the SS phase, i.e.,∑M

m=1
[J]m,kτ

′
≤ τs, ∀k (21)

Let Nslot denote the number of sensing time slots in the
SS phase, then Nslot = τs

/
τ ′, and further formula (21) can be

described as ∑M

m=1
[J]m,k ≤ Nslot , ∀k (22)

In a sensing time slot, a SS node can only sense a single
channel, thus the number of channels detected by a SS node
can not exceed the total number of sensing time slots, i.e.,∑K

k=1
[J]m,k ≤ Nslot , ∀m (23)

In order to ensure the energy sustainability of each
SS node, the energy consumption of each SS node should not
exceed the energy harvested by itself in each work cycle, i.e.,

(∑K

k=1
[J]m,k

)
· e ≤ Em, ∀m (24)

where Em = emh ·λm is the energy harvested by the EHmodule
in SS nodes during the work cycle T .
Therefore, the optimization problem of the energy utiliza-

tion efficiency with the consideration of multiple constraints
in the multi-channel scenario can be expressed as

max
J

∑K
k=1 ∂

k (1− pf )

M∑
m=1

[J]m,k
I kd(∑M

m=1
∑K

k=1 [J]m,k
)
· e

s.t.



taccess ≥ Nβ, ∀m(∑K

k=1
[J]m,k

)
· e ≤ Em, ∀m∑M

m=1
[J]m,k ≤ Nslot , ∀k∑K

k=1
[J]m,k ≤ Nslot , ∀m

[J]m,k = {0, 1}, ∀m, k

Qkf ≤ α, ∀k

where
∑M

m=1 [J]m,k in the objective function represents the
number of SS nodes that are scheduled to detect the kth
channel.

When the number of the SS nodes scheduled to detect
channel k increases, according to formula (8) the probability
pkavail decreases, and according to the equation (4) and the
formula (10) I kd tends to take the value of 1 (i.e. the detection
probability Qkd of channel k increases). On the contrary,
when the number of SS nodes scheduled to detect channel
k deceases, I kd tends to take the value of 0 (i.e. the detection
probability Qkd of channel k decreases). Therefore, we can
concluded that there is an optimal tradeoff in the number
of SS nodes scheduled to sense channels (or between pkavail
and I kd ). However, the optimization problem is an integer
programming problem.

Intuitively, the objective function in (17) can be optimized
by executing an exhaustive search over the space defined by
the constraints. However, this scheme leads to a search space
of size 2MK , which is computationally prohibitive, particu-
larly for the resource-limited sensor network. Although the
performance bound of the C-E algorithm remains an open
theoretical issue [22], it has been shown effective in solv-
ing a similar combinatorial optimization problem [6], [12].
Therefore, in this work, the C-E algorithm [21] is employed
to address the optimization problem.

By employing a penalty method, the constrained problem
can be transformed into an unconstrained problem, which can
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be expressed as

O =

∑K
k=1 ∂

k (1− pf )
∑M

m=1 [J]m,k · I kd(∑M
m=1

∑K
k=1 [J]m,k

)
· e

− w · I1 − w · I2

−w · I3 − w · I4 − w · I5 (25)

I1 = I (taccess < Nβ ) (26)

I2 = I
(∑K

k=1
[J]m,k · e > Em

)
(27)

I3 = I
(∑M

m=1
[J]m,k > Nslot

)
(28)

I4 = I
(∑K

k=1
[J]m,k > Nslot

)
(29)

I5 = I
(
Qkf > α

)
= I

(∑M

m=1
[J]m,k > 9

)
(30)

where w =
∑K

k=1 ∂
k is the penalty for violating any of the

constraints.
The value of the indicator function I (•) is 1 when the

decision in the brackets is true and zero otherwise. This
penalty mechanism allows the channel assignment schemes
satisfying the constraints to obtain higher priority value. This
means that the schemes have the priority to be chosen in sort-
ing. The new round of probability matrix can be generated by
these excellent samples, throughwhich the better samples can
then be found. The sample schemes with poor performance
because of not meeting the penalty conditions are abandoned,
namely, they do not participate in generating a new round of
probability matrix.

For a single user, there are 2K kinds of selection algorithms
in choosing channels during the entire SS phase. If these
algorithms are numbered and each number only corresponds
to one algorithm, the set of the number of these algorithms is
a 1 × 2K one-dimensional matrix, denoted by C . A binary
matrix Vz

= {vzm,c |1 ≤ m ≤ M,c ∈ C } with M rows and
K columns, whose elements are 0 or 1, is defined for the con-
venient selection of the allocation algorithms. Its superscript
z is introduced to denote the sample number. The value 1 of
the element (m, c) means that node m adopts algorithm c.
In matrix V z, the sum of any row is 1, i.e. each node can only
select one algorithm at a time.

Let Qi
= {qim,c |1 ≤ m ≤ M , c ∈ C } denote the probabil-

ity matrix, where the element qim,c represents the probability
of SS node m adopting algorithm c, and i is the number
of iterations in the optimization. Therefore, the optimization
steps of the proposed EESS algorithm are summarized as
follows.

Equation (32) represents the Frobenius norm, i.e., the sum
of the squares of each element in the matrix. When the
iteration stops, the solution Vz with the maximum value
of objective function OZ is selected, and the corresponding
matrix J can be obtained and regarded as the optimal channel
allocation scheme. In the above algorithm, each iteration is a
periodic optimization. As the number of iterations increases,
the matrix Q increasingly approaches the optimal value until

Algorithm 1 The C-E Based EESS Algorithm
Input:

The counter of iterations i
The maximum number of iterations imax
The probability matrix Q1;
The threshold of iteration termination ζ .

Output:
The probability matrix Qi.

1: Initialize the counter of iterations i = 1;
2: Initialize the maximum number of iterations imax;
3: Initialize the elements in the probability matrixQ1 to be a

uniform distribution such that SS node m chooses vector
c with probability q1m,c = 1/|C|,∀m, c.

4: repeat
5: Randomly generate Z samples of the matrix Vz based

on the matrix Q;
6: Substitute the Z samples into the object function (25)

and obtain an objective function value OZ for each
sample, sort the Z values of OZ in descending order
and select W optimal samples;

7: Update the new probability matrix Q according to the
following formula:

qi+1m,c =

∑W
z=1 v

z
m,c

W
(31)

8: until ∥∥∥Qi+1
−Qi

∥∥∥
Fr
≤ ζ or i ≥ imax (32)

the trend of the matrix is flat enough. When the iteration
stops, the optimal allocation scheme can be obtained from
the sample value at this time.

IV. PERFORMANCE EVALUATION
We assume that there are 10 SS nodes and 30 DS nodes in the
considered EH-HCRSN, and they are uniformly distributed
in a circular area with a radius of 20m. The sink node is
located in the center of the circular area, and there are totally
7 licensed channels. The parameters for numerical simula-
tions are shown in Table 1, and the prior information of the
licensed channels is shown in Table 2.

As discussed above, [6] also proposed a spectrum sens-
ing algorithm to schedule SS nodes to sense channels in
EH-HCRSN, the proposed algorithm (EESS) in the paper is
thus compared with the proposed algorithm in the reference
for the performance evaluation. For convenient description,
the proposed algorithm in the reference is also referred to as
Time-maximum SS (TMSS) in this work.

In order to further understand the proposed algorithm
(EESS), we compare it with the exhaustive method, the ran-
dom assignment and TMSS in a network with 3 SS nodes,
10 DS nodes and 2 to 4 licensed channels. The exhaustive
method searches all possible allocation schemes and find
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TABLE 1. The key notations.

TABLE 2. Parameter setting.

TABLE 3. The prior information of the licensed channels.

the optimal solution from them, while the random allocation
scheme randomly allocates the channels to the SS nodes.
The prior information of the licensed channels uses the

FIGURE 3. The comparison of the energy efficiency of different
algorithms.

information of the first to fourth channel in Table 1. Simu-
lation parameters are Thr = 0.1, emh = 0.6mJ , β = 5ms.
Their performance comparison is shown in Fig. 3. It can be
seen from Fig. 3 that the energy utilization efficiency of the
exhaustive method is the highest, while that of the random
assignment is the lowest. The energy utilization efficiency
of the proposed algorithm (EESS) can reach 77%-94% of
that of the exhaustive method, while that of TMSS can only
reach 57%-66%. It can be seen from Fig. 3 that as the number
of channels increases, the energy utilization efficiency of
EESS increasingly approaches the exhaustive method that
can be regarded as being the optimal solution in energy uti-
lization efficiency. However, the computation complexity of
the exhaustive method is O(2MK ), which is computationally
prohibitive, while that of the EESS algorithm is O(MW2K ).

Fig. 4 and Fig. 5 respectively depicts the energy utilization
efficiency (the available time detected by per unit of energy
consumption) of the proposed algorithm (EESS) and TMSS,
and in Fig. 4 and 5, the prior information of the licensed
channels uses the information of the first to sixth channel
in Table 1.

Fig. 4 shows the comparison of energy utilization effi-
ciency of EESS algorithm under different misdetection
thresholds. It can be seen from Fig. 4 that the energy uti-
lization efficiency fluctuates at the beginning of the iteration.
This is because the sample of the channel assignment vector
is uniformly distributed in the initial stage of the proposed
C-E algorithm. With the execution of the algorithm/iteraion,
the probability of generating samples with high energy effi-
ciency is getting higher and higher, and finally the algorithm
converges to a stable solution. It can be observed from the
Fig. 4 that the energy utilization efficiency decreases when
the misdetection threshold Thr decreases. This is because
more SS nodes may be required to participate in channel
detection to improve the detection probability of the channel
when the misdetection threshold Thr decreases. The more
SS nodes participate in channel detection, the more energy is
consumed and the less available time is detected, according
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FIGURE 4. The comparison of energy efficiency of EESS algorithm with
different misdetection threshold.

FIGURE 5. The comparison of the energy efficiency of the two algorithms
under different misdetection threshold.

to the formula (9). Finally it leads to the the decrease of the
energy efficiency.

Fig. 5 shows the comparison of the energy utilization
efficiency of EESS and TMSS under different misdetection
thresholds. It can be seen from Fig. 5 that the convergence
speed of EESS algorithm is faster than that of TMSS algo-
rithm, and the energy utilization efficiency of EESS algorithm
is always higher than that of TMSS algorithm. This is because
TMSS aims at maximizing the available time of channels
(ignoring the energy utilization efficiency of SS nodes),
while the proposed algorithm (EESS) aims at maximizing
the energy utilization efficiency, namely, the available time
detected by per unit of energy consumption.

Fig. 6 shows the convergence and energy efficiency of
EESS algorithm under different emh . When the harvested
energy emh decreases, the energy utilization efficiency also
decreases. This is because when the EH capability of the
sensor is reduced, the number of channels it can detected is
also reduced in the SS phase. This may result in insufficient
nodes participating in the channel detection, which causes a

FIGURE 6. The comparison of energy efficiency of EESS algorithm under
different em

h .

FIGURE 7. The comparison of the energy efficiency of the two algorithms
under different number of channels.

decrease in the final detection probability Qkd of the channel
according to the equation (4), and further lead to the under-
utilization of these channels. Thus it decreases the channel
available time detected by nodes and the energy utilization
efficiency.

Fig. 7-10 show the simulation results under M = 10,
β = 15ms, emh = 0.6mJ , Thr = 0.2. Fig. 7 depicts the
energy utilization efficiency (the available time detected by
per unit of energy consumption) of the proposed algorithm
(EESS) and TMSS for different number of channels. It can
be observed from Fig. 7 that the energy utilization efficiency
of the TMSS algorithm is about 30%-40% higher than that
of the TMSS algorithm under the same channels. We can
also note from Fig. 7 that the energy utilization efficiency
becomes smaller and smaller when the number of channels
grows. This is because the average available time of the added
channels is smaller and smaller (as can be observed from the
formula (7) and the prior information in Table 1. Obviously,
if the prior information of all channels is same, the energy
utilization efficiency would remain constant).
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FIGURE 8. The comparison of total available time under different
numbers of channels.

FIGURE 9. The comparison of the energy consumption under different
numbers of channels.

Fig. 8 shows the comparison of total available time
detected by the two algorithms under different number of
channels. The total time detected by the EESS algorithm
can reach 86%-93.6% of the total time detected by the
TMSS algorithm. However, the detected available time by
TMSSmay not be fully utilized since TMSS does not consid-
ering the actual demand of DS nodes, which may result in the
waste of valuable channel and energy resources. It can be seen
from Fig. 9 that the energy consumption of the EESS algo-
rithm ismuch smaller than that of the TMSS algorithm, which
is only equivalent to 63.6%-66.7% of the TMSS algorithm.
This leads to the fact that the proposed algorithm (EESS)
can be significantly better than TMSS in energy utilization
efficiency, as shown in Fig. 7.

Fig. 10 shows the comparison of the average false alarm
probability of channels under different number of channels.
We can see from the diagram that the average channel false

FIGURE 10. The comparison of the average false alarm probability under
different numbers of channels.

FIGURE 11. The comparison of the energy efficiency under the same em
h .

alarm probability of EESS is reduced by 20.6%-31.4% com-
pared with TMSS, which improves the utilization efficiency
of idle channels. This is because the proposed algorithm
(EESS) takes into account the constraint on the false alarm
probability, thereby controlling the false alarm probability of
EESS, while TMSS ignores this.

Fig. 11 shows the comparison of the energy utilization
efficiency of the two algorithms under the same emh . It can
be observed from Fig. 11 that under the same emh , the energy
utilization efficiency of EESS is always much higher than
that of TMSS. This means that the lower energy harvested
is required in the proposed algorithm (EESS) to obtain the
same energy utilization efficiency as that of TMSS. This
also leads to the lower implementation cost of the algorithm
(i.e. the deployment cost of EH devices), which is extremely
important for WSNs, especially in the case that the current
EH technology is not yet mature.
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FIGURE 12. The comparison of energy efficiency of each algorithm under
the same β.

It can be observed from Fig. 12 that under the same average
transmission time β, the energy utilization efficiency of EESS
is always larger than that of TMSS. This is because the
proposed algorithm (EESS) maximizes the energy utilization
efficiency under the premise of detecting enough available
time of channels, while TMSS only maximizes the available
time of channels. Since TMSS does not take into account
the actual available time of DS nodes, its energy utilization
efficiency is not affected by the average transmission time β
and is constant, as shown in Fig. 12. It can be also observed
from Fig. 12 that the energy utilization efficiency of our
algorithm (EESS) increases with the decrease of β. This is
because the constraint (16) becomes looser and looser when
β decreases, and further the idle channel is detected more
easily.

V. CONCLUSION
An energy-efficient spectrum sensing (EESS) algorithm is
proposed in this work. The algorithm can address the problem
that existing SS algorithms are difficult to be applied to
real practice (due to the high cost of algorithm implemen-
tation or network deployment) and avoid the possible waste
of channel and energy resources. The proposed algorithm
(EESS) can maximize the efficiency of energy utilization on
the premise of ensuring the sensing performance and detect-
ing enough available time of channels, which can greatly
reduce the network deployment cost (i.e. the deployment
cost of EH devices), promote the green communication and
the large-scale deployment of IoT applications. Extensive
simulation results have demonstrated that the proposed algo-
rithm can make full use of the precious energy harvested by
SS nodes, thereby greatly improving the energy utilization
efficiency and reducing the network deployment cost.
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