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ABSTRACT The probabilistic hesitant multiplicative preference relations (PHMPRs) can model the
opinions of the decision makers for pairwise comparisons over alternatives using some possible values from
Saaty’s 1–9 scale with the probability information. The existing study normalized the PHMPRs by adding
additional preference values with the probability information into the shorter element before modifying the
consistency and consensus. As a supplement, in this paper, we focus on dealing with the consistency and
consensus for PHMPRs by means of multiplicative preference relations. We first present the definition of
geometric consistency index for PHMPRs and develop an automatic iterative algorithm for checking and
improving the geometric consistency index for PHMPRs. We also put forward the concept of geometric
consensus degree for PHMPRs and then devise an automatic consensus reaching algorithm to modify the
geometric consensus degree of PHMPRs. After that, a novel complete group decision making model with
PHMPRs is put forward. Finally, an illustrative example is shown to verify the proposed model and we
compare it with the existing study to show its superiority.

INDEX TERMS Hesitant multiplicative preference relation, probabilistic hesitant fuzzy preference relation,
probabilistic hesitant multiplicative preference relation, hesitant fuzzy set, consistency.

I. INTRODUCTION
Decision making happens frequently in our daily life. For
example, when people plan to buy a house, he or she should
assess given alternatives of houses and then make a choice
from them. With the increasing complexity of the decision
making problems, a single person cannot make a reasonable
result. In this case, it requires the involvement of a group
of decision makers to complete the decision making pro-
cesses [1], [2]. Preference relations (PRs) are an important
tool of modeling the opinions of the decision makers for
pairwise comparisons over a set of alternatives [3]. It has
become the research spot in the decision making. Based
on the methods used to model the preference information,
the PRs could be divided into three types: linguistic PRs [4],
fuzzy PRs [5], and multiplicative PRs [6].

The multiplicative PRs model the opinions of the decision
makers using the preference values from Saaty’s 1-9 scale
[7], [8]. To model the uncertainty of the evaluation infor-
mation, the concept of interval multiplicative PRs was
studied [9]. To model the preference values containing the
non-membership degree, the concept of intuitionistic mul-
tiplicative preference relations was proposed [10]. In some
cases, decision makers may hesitate among some prefer-
ence values when giving the preference information on
the pairwise comparisons over the alternatives. To model
this kind of hesitancy, the definition of hesitant multiplica-
tive preference relations (HMPRs) was given [11], [12].
Bashir et al. [13] used the probability information to extend
HMPRs into probabilistic hesitant multiplicative preference
relations (PHMPRs) that allow decision makers to give some

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

63329

https://orcid.org/0000-0003-2026-7178
https://orcid.org/0000-0003-3547-2908
https://orcid.org/0000-0001-7828-550X


M. Lin et al.: Group Decision Making With PHMPRs Based on Consistency and Consensus

preference values from Saaty’s 1-9 scale with the probability
information. For example, when evaluating the intensity of
the alternative xi over the alternative xj, an decision maker
hesitates between 5 and 7 to provide his or her preference
information. The probability assigned to 5 is 0.8, while the
probability for 7 is 0.2. Thus, the intensity of the alternative
xi over the alternative xj can be modeled as {5|0.8, 7|0.2}.
To better model the uncertainty under the hesitant fuzzy

environment [34]–[36], the concept of probabilistic hesitant
fuzzy preference relations (PHFPRs) has been devised [37].
The main difference between the PHMPRs and PHFPRs is
the use of evaluation scale. The PHMPRs consist of several
possible values from the Saaty’s 1-9 scale along with their
probability information, while the PHFPRs are composed of
some possible values from the unit interval [0,1] associated
with their probability information. The concept of PHFPRs
has been paid attention by many scholars [38]–[40].

The consistency has a great impact on the decision results
of the decision making models with PRs [14]. If there are
contradictory preference information in the PRs, then the
decision results will be unreasonable. Existing studies show
that the decision making models with acceptably consistent
PRs can obtain the reasonable decision results [15]. To make
the inconsistent PRs be acceptably consistent, two main
types of methods have been studied to adjust the inconsistent
PRs, which are the programming ones [16] and the iterative
ones [17]. However, these methods are designed to the fuzzy
PRs, themultiplicative PRs [28]–[30], the hesitantmultiplica-
tive PRs [31]–[33], and the hesitant fuzzy PRs [41]–[43].
Hence, they cannot deal with the PHMPRs since PHMPRs
contain probability information.

The consensus means the degree of agreement among a
group of decision makers [18]. It also plays an important role
on the decision results of group decision making problems
with PRs [19]. In the group decision making process, a group
of decisionmakers, coming from different professional fields,
may have diverse opinions and then give different preference
information. The serious differences among these preference
information would degrade the quality of decision results.
To solve it, many studies have been made to adjust the PRs
with very low consensus [20]–[22].

However, the above studies do not solve the problems
of consistency and consensus of PHMPRs. In this case,
Bashir et al. [13] normalized the PHMPRs so that each PHME
has the same number of elements and defined the distance
between each PHMPR and its consistent PHMPR as the con-
sistency index. They gave two iterative algorithms to modify
the inconsistent PHMPRs and the PHMPRs with low consen-
sus degree. As a supplement, in this paper, we also focus on
the consistency and consensus of the PHMPRs. By means of
themultiplicative preference relations, we utilize the logarith-
mic least squares model to obtain the priority vectors from the
PHMPRs instead of computing the consistent PHMPRs and
then develop an automatic consistency improving process to
modify the inconsistent PHMPRs. At the same time, we also
define the geometric consensus degree for the PHMPRs and

develop an automatic consensus reaching process to adjust
the acceptably consistent PHMPRs with the low consensus.
After that, these two processes are combined to develop a
complete group decision making model with the PHMPRs.
Finally, an illustrative example is introduced to validate the
proposed model and it is compared with the existing study.

The rest of this paper is structured as follows: Section II
presents the definitions and the operational laws of hesitant
multiplicative sets, probabilistic hesitant multiplicative sets,
and probabilistic hesitant multiplicative preference relations.
An automatic consistency improving process is proposed in
Section III. In Section VI, an automatic consensus reaching
process is given. In Section V, a complete group decision
making model with PHMPRs is designed. In Section VI,
an illustrative case is offered to verify the proposed model
and it is also comparedwith the existing study in [13]. Finally,
the conclusions are presented in Section VII.

II. PRELIMINARIES
To model the preference information that consists of
some possible preference values from Saaty’s 1-9 scale,
Xia and Xu [12] gave the concept of hesitant multiplicative
sets (HMSs), which can be described mathematically as:
Definition 1 [12]: A set X is given, then the mathematical

expression of a HMS on X is

H = {〈x, h (x)〉 |x ∈ X}

where h (x) = {r|r ∈ [1/9, 9]} is a set that consists of some
possible values from the Saaty’s 1-9 scale. It describes the
possible membership degrees of the element x belonging
toH . The element h = h (x) is called a hesitant multiplicative
element (HME) and all the HMEs form a HMS H .
Example 2: Assume that a decision maker evaluates a car

with respect to its two attributes, which are the comfort and
price. Then these attributes can be denoted as X = {x1, x2}.
As for the comfort x1, the decision maker hesitates between
5 and 7 when providing the preference information. Thus,
h (x1) = {5, 7}. When the price is assessed, he or she may
hesitate between 1/3 and 1/5, then h (x2) = {1/5, 1/3}.
However, if the expert shows the probability of 5 is 0.8 and

that of 7 is 0.2, then the HMSs cannot model this case.
To extend the modeling capability of HMSs, Bashir et al. [13]
gave the concept of probabilistic hesitant multiplicative
sets (PHMSs) as follows:
Definition 3 [13]: A reference set X is provided, then a

probabilistic hesitant multiplicative set (PHMS) is defined as

H = {〈x, h (x)〉 |x ∈ X}

where h (x) = {rl |pl} , l = 1, 2, . . . , #h with rl ∈ [1/9, 9]
and pl ∈ [0, 1]. h (x) is composed of some possible member-
ship degrees with their probabilities and it is considered as the
probabilistic hesitant multiplicative element (PHME). The
term pl denotes the probability of the membership degree rl .

To compare any two PHMEs, we put forward the score
function and the deviation function for the PHMEs as follows:
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Definition 4: Given a PHME h = {rl |pl} , l =
1, 2, . . . , #h, then the score function is computed as:

S (h) =
#h∏
l=1

(rl)pl

where S (h) denotes the score value of the PHME h.
Definition 5: Given a PHME h = {rl |pl} , l =

1, 2, . . . , #h, then the variance function is computed as:

V (h) =
#h∏
l=1

(
rl

S (h)

)pl
where V (h) denotes the variance value of the PHME h.
Based on Definitions 4 and 5, the comparison method for

comparing two PHMEs h1 and h2 is developed as:
(1) If S (h1) > S (h2), then h1 > h2;
(2) If S (h1) = S (h2), then it needs to compare the variance

values of h1 and h2;
1) If V (h1) > V (h2), then h1 ≤ h2;
2) If V (h1) = V (h2), then h1 = h2.
To model the preference information though the pairwise

comparisons on alternatives, Bashir et al. [13] presented the
definition of probabilistic hesitant multiplicative preference
relations (PHMPRs) as follows:
Definition 6 [13]: Let X = {x1, x2, . . . , xn} denote a set

of alternatives, then a PHMPR on X is defined as a matrix
H =

(
hij
)
n×n, where hij =

{
r lij|p

l
ij

}
is a PHME describing

the intensity of the alternative xi over the alternative xj. For
any i, j, each PHME satisfies the following conditions:

rρ(l)ij rρ(l)ji = 1, pρ(l)ij = pρ(l)ji , #hij = #hji, hlii = 1

and

rρ(l)ij < rρ(l+1)ij , rρ(l+1)ji < rρ(l)ji

where rρ(l)ij denotes the lth least element in hij.
From Definition 6, some conclusions can be derived as

follows:
(1) Each element in the PHMPR is a PHME;
(2) The preference values in a PHME of the upper trian-

gular matrix are arranged according to the ascending order
of the membership degree, while the preference values in a
PHME of the lower triangular matrix are arranged according
to the descending order of the membership degree.

III. CONSISTENCY IMPROVING PROCESS FOR PHMPRS
A. CONSISTENCY MEASURE
Firstly, we review the definition of multiplicative preference
relations (MPRs) [23] as follows:
Definition 7 [23]:LetX = {x1, x2, . . . , xn} be a finite set of

alternatives, then a multiplicative preference relation (MPR)
on X is a matrix M =

(
mij
)
n×n ⊂ X × X with the element

mij ∈
[
1
9 , 9

]
and its element mij satisfies mijmji = 1 for any

i, j = 1, 2, . . . , n.
Inspired by the idea of expected fuzzy preference relation

proposed by Wu et al. [24], we utilize the score function of

PHMSs to give the definition of the geometric probabilistic
hesitant multiplicative preference relations (GPHMPRs).

Definition 8: Given a PHMPR H =
(
r lij|p

l
ij

)
n×n

, then
its geometric probabilistic hesitant multiplicative preference

relation is defined as E =
(
eij
)
n×n with eij =

#hij∏
l=1

(
r lij
)plij

.

From Definition 8, a theorem can be obtained.

Theorem 9: Given a PHMPR H =
(
r lij|p

l
ij

)
n×n

and its

GPHMPR E =
(
eij
)
n×n, then the GPHMPR E is a MPR.

Proof:
(1) According to Definition 8, we have

eijeji =
#hij∏
l=1

(
r lij
)plij #hji∏

l=1

(
r lji
)plji

Since #hij = #hji, r lijr
l
ji = 1, and plij = plji, then

eijeji =
#hij∏
l=1

(
r lijr

l
ji

)plij
= 1

(2) eii =
#hii∏
l=1

(
r lii
)plii = #hii∏

l=1
(1)p

l
ii =1.

which completes the theorem.
The definition of the group geometric probabilistic hesitant

multiplicative preference relations (GGPHMPRs) is given as
follows.
Definition 10:LetHk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =
1, 2, . . . ,m be m PHMPRs and λk be their weights with λk ∈

[0, 1] and
m∑
k=1

λk = 1, then the group geometric probabilis-

tic hesitant multiplicative preference relation (GGPHMPR)
denoted by G =

(
gij
)
n×n satisfies

gij =
m∏
k=1

(
eij,k

)λk
=

m∏
k=1

#hij,k∏
l=1

(
r lij,k

)plij,kλk (3.1)

where #hij,k denotes the number of elements in hij,k .
According to the multiplicative transitivity of MPRs [23],

the consistent GPHMPR is defined as:
Definition 11: Given a PHMPR H =

(
r lij|p

l
ij

)
n×n

and its

GPHMPR E =
(
eij
)
n×n, if it satisfies

eij = eik ⊗ ekj, i, k, j = 1, 2, . . . , n (3.2)

then E is called a consistent GPHMPR.
From (3.2), we can derive that

eij =
wi
wj
, i, j = 1, 2, . . . , n (3.3)

where w = (w1,w2, . . . ,wn)T denotes the priority vector of

the GPHMPR E and
n∑
i=1

wi = 1,wi > 0, i = 1, 2, . . . , n.

Equation (3.3) can be transformed into eijwj = wi, which
is equivalent to

ln eij + lnwj = lnwi
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Then the value of
∣∣ln eij + lnwj − lnwi

∣∣ can be utilized to
measure and define the consistency level of the PHMPR H .
The smaller value the equation

∣∣ln eij + lnwj − lnwi
∣∣ is, the

more consistent the PHMPR is. If it equals to 0, the PHMPR
is considered to be consistent.

Motivated by the definition of the geometric consistency
index in [25], we give the concept of geometric consistency
index (GCI) for PHMPRs.
Definition 12: Given a PHMPR H =

(
r lij|p

l
ij

)
n×n

, its

GPHMPR E =
(
eij
)
n×n, the priority vector of the PHMPRH

denoted by w = (w1,w2, . . . ,wn)T with
n∑
i=1

wi = 1,wi > 0,

then the geometric consistency index for the PHMPR H is
computed as:

GCI (H ) = GCI (E)

=
2

(n−1)(n−2)

∑
i<j

(
ln eij + lnwj − lnwi

)2 (3.4)

where GCI (H ) denotes the geometric consistency index of
the PHMPR H .

From (3.4), it can be seen that the geometric consistency
index GCI (H ) ≥ 0 for each PHMPR H . If GCI (H ) = 0,
then the PHMPRH is completely consistent. The larger value
GCI (H ) is, the less consistent the PHMPR H is.
In the real applications, it is difficult for the decision

makers to provide completely consistent PHMPRs. However,
investigations show that the decision making models with
acceptably consistent PHMPRs can also derive reasonable
decision results [13].
Definition 13: Given a PHMPR H =

(
r lij|p

l
ij

)
n×n

and a

threshold expressed as GCĪ for the geometric consistency
index, if the geometric consistency index GCI (H ) of the
PHMPR H satisfies GCI (H ) ≤ GCĪ , then it is called the
PHMPR with the acceptable consistency or the acceptably
consistent PHMPR.

More information about the threshold for the geometric
consistency index can be obtained from [25].

Inspired by the method for deriving the priority vector
presented in [26], we develop a logarithmic least squares
model to derive the priority vector from the PHMPRs:

(MOD 1) Min J =
n∑
i=1

n∑
j=1

(
ln eij + lnwj − lnwi

)2
s.t.

n∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , n

We make some transformations on J and get

J =
n∑
i=1

n∑
j=1

(ln eij + lnwj − lnwi)2

=

n∑
i<j

(ln eij+lnwj−lnwi)2+
n∑
i>j

(ln eij + lnwj − lnwi)2

=

n∑
i<j

(ln eij+lnwj−lnwi)2+
n∑
j>i

(−(ln eji+lnwj−lnwi))2

=

n∑
i<j

(ln eij+lnwj−lnwi)2+
n∑
I<j

(ln eij + lnwj − lnwi)2

= 2
n∑
i<j

(ln eij + lnwj − lnwi)2

Thus, (MOD 1) can be rewritten as:

(MOD 2) Min J = 2
n∑
i<j

(ln eij + lnwj − lnwi)2

s.t.
n∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , n

which is equivalent to

(MOD 3) Min J =
n∑
i<j

(ln eij + lnwj − lnwi)2

s.t.
n∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , n

Referring to [26], the solution of (MOD 3) is

wi =

(
n∏
j=1

eij

) 1
n

n∑
i=1

(
n∏
j=1

eij

) 1
n

(3.5)

According to Definitions 10 and 11, a theorem about the
priority vector of GGPHMPRs is given as follows:
Theorem 10: Let Hk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =

1, 2, . . . ,m be m PHMPRs with the priority vectors wk =(
wk1,w

k
2, . . . ,w

k
n
)
, λk be their weights satisfying that 0 ≤

λk ≤ 1 and
m∑
k=1

λk = 1, Ek =
(
eij,k

)
n×n be their GPHMPRs,

andG =
(
gij
)
n×n be the GGPHMPR , then the priority vector

of the GGPHMPR is wg =
(
w1,g,w2,g, . . . ,wn,g

)
satisfying

wi,g =

m∏
k=1

(wki )
λk

n∑
i=1

m∏
k=1

(wki )
λk

(3.6)

where wi,g denotes the ith element in the priority vector wg.
Proof: According to Definition 10, we have

gij
gji
=

m∏
k=1

(
eij,k

)λk
m∏
k=1

(
eji,k

)λk
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Then

wi,g =

(
n∏
j=1

gij

) 1
n

n∑
i=1

(
n∏
j=1

gij

) 1
n

=

(
n∏
j=1

m∏
k=1

(
eij,k

)λk) 1
n

n∑
i=1

(
n∏
j=1

m∏
k=1

(
eij,k

)λk) 1
n

=

m∏
k=1

(
n∏
j=1

(
eij,k

)λk) 1
n

n∑
i=1

m∏
k=1

(
n∏
j=1

(
eij,k

)λk) 1
n

=

m∏
k=1

(
n∏
j=1

(
eij,k

) 1n )λk/ n∑
i=1

m∏
k=1

(
eij,k

) 1
n

n∑
i=1

m∏
k=1

(
n∏
j=1

(
eij,k

) 1n )λk/ n∑
i=1

m∏
k=1

(
eij,k

) 1
n

=

m∏
k=1


n∏
j=1
(eij,k)

1
n

n∑
i=1

m∏
k=1
(eij,k)

1
n


λk

n∑
i=1

m∏
k=1


n∏
j=1
(eij,k)

1
n

n∑
i=1

m∏
k=1
(eij,k)

1
n


λk
=

m∏
k=1

(
wki
)λk

n∑
i=1

m∏
k=1

(
wki
)λk

which completes the proof of the theorem.

B. AUTOMATIC CONSISTENCY CHECKING AND
IMPROVING PROCESS
In the real decision making problems, the perfectly consistent
preference relations cannot be provided. Existing researches
support that acceptably consistent preference relations can
also derive the reasonable decision making results [27]. Thus,
in this section, an automatic consistency improving process
is put forward to check the geometric consistency index of
a given PHMPR and then adjust the preference value until
it is acceptably consistent. The basic idea of this algorithm
is to obtain the priority vector from a given PHMPR using
(MOD3), form a complete consistent preference relation, and
adjust the preference value of the given PHMPR so as tomake
it be closer to the complete consistent one. Based on this idea,
this algorithm is developed as follows:

Three theorems could be derived from Algorithm 1 as
Theorem 15: Let H =

(
r lij|p

l
ij

)
n×n

be an inconsistent

PHMPR, H (t) and H (t+1) be two modified PHMPRs after t
and t + 1 iterations, then GCI

(
H (t+1)

)
< GCI

(
H (t)

)
.

Proof: According to (3.10), we have

GCI
(
H (t+1)

)
=

2
(n− 1) (n− 2)

∑
i<j

(
ln e(t+1)ij + lnw(t)j − lnw(t)i

)2

Algorithm 1 ConsistencyCheckingandImprovingAlgorithm

Input: A given PHMPRH =
(
r lij|p

l
ij

)
n×n

, an optimized
parameter θ ∈ [0, 1], the maximum number of iterations
denoted by T , the threshold for geometric consistency
index denoted by GCĪ .
Output: An acceptably consistent PHMPR Ĥ .
Step 1. Let t = 0 and H (t) = H =

(
r lij|p

l
ij

)
n×n

;
Step 2. Use Definition 8 to calculate the GPHMPR

E (t) =
(
e(t)ij
)
n×n

of H (t), which satisfies

e(t)ij =
#hij∏
l=1

((
r lij
)(t))plij

(3.7)

Step 3. Use (3.5) to calculate the priority vector of the
GPHMPR E (t) as:

w(t)i =

(
n∏
j=1

e(t)ij

) 1
n

n∑
i=1

(
n∏
j=1

e(t)ij

) 1
n

(3.8)

Step 4. Calculate the geometric consistency index of the
PHMPR H (t) as:

GCI
(
H (t)

)
= GCI

(
E (t)

)
=

2
(n− 1)(n− 2)

×

∑
i<j

(
ln e(t)ij + lnw(t)j − lnw(t)i

)2
(3.9)

If GCI (H ) ≤ GCĪ , then turn to Step 6; otherwise, turn
to the next step.
Step 5. Build the modified GPHMPR E (t+1) =(
e(t+1)ij

)
n×n

, which satisfies

e(t+1)ij =

(
e(t)ij
)(1−θ)

×

(
wi
wj

)θ
(3.10)

Let t = t + 1, turn to Step 4;
Step 6. Let Ĥ = H (t) and output Ĥ ;
Step 7. End.

=
2

(n− 1) (n− 2)

×

∑
i<j

ln
(
e(t)ij
)1−θ (w(t)i

w(t)j

)θ
+ lnw(t)j − lnw(t)i

2

=
2

(n− 1) (n− 2)

×

∑
i<j

 ln
(
e(t)ij
)1−θ

+ ln
(
w(t)i

)θ
− ln

(
w(t)j

)θ
+ lnw(t)j − lnw(t)i

2
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=
2

(n− 1) (n− 2)

×

∑
i<j

(
ln
(
e(t)ij
)1−θ

− ln
(
w(t)i

)1−θ
+ ln

(
w(t)j

)1−θ)2

=
2 (1− θ)2

(n− 1) (n− 2)

∑
i<j

(
ln e(t)ij − lnw(t)i + lnw(t)j

)2
= (1− θ)2 GCI

(
H (t)

)
≤ GCI

(
H (t)

)
which completes the proof of theorem.
Theorem 16: Let Hk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =

1, 2, . . . ,m be m PHMPRs with the priority vectors wk =(
wk1,w

k
2, . . . ,w

k
n
)
, λk be the weights satisfying that 0 ≤ λk ≤

1 and
m∑
k=1

λk = 1, Ek =
(
eij,k

)
n×n be the corresponding

GPHMPRs,G =
(
gij
)
n×n be their correspondingGGPHMPR

with the priority vector wg =
(
w1,g,w2,g, . . . ,wn,g

)
, then

GCI (G) ≤ max
k

GCI (Hk).

Proof: According to Definition 12, we have

max
k

GCI (Hk)

=
2

(n− 1) (n− 2)
max
k

∑
i<j

(
ln eij,k + lnwki + lnwkj

)2
Let εkij = ln eij,k + lnwki − lnwkj , then

max
k

GCI (H k ) =
2

(n− 1)(n− 2)
max
k

∑
i<j

(
εkij

)2
Similarly,

GCI (G)

=
2

(n− 1) (n− 2)

∑
i<j

(
ln gij + lnwj,g − lnwi,g

)2
=

2
(n− 1) (n− 2)

∑
i<j

(
ln gij − ln

wi,g
wj,g

)2

=
2

(n− 1)(n− 2)

∑
i<j

ln
m∏
k=1

(
eij,k

)λk
−ln

m∏
k=1

(
wki
wkj

)λk2

=
2

(n− 1) (n− 2)

∑
i<j

m∑
k=1

(λk )2
(
ln eij,k − ln

wki
wkj

)2

=
2

(n− 1) (n− 2)

m∑
k=1

(λk)
2
∑
i<j

(
εkij

)2

≤
2

(n− 1) (n− 2)

m∑
k=1

(λk)
2max

k

∑
i<j

(
εkij

)2

≤
2

(n− 1) (n− 2)

(
m∑
k=1

λk

)2

max
k

∑
i<j

(
εkij

)2
=

2
(n− 1) (n− 2)

max
k

∑
i<j

(
εkij

)2
= max

k
GCI (Hk)

which completes the proof Theorem 16.
Theorem 17: Let Hk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =

1, 2, . . . ,m be m PHMPRs and G =
(
gij
)
n×n be the

GGPHMPR, if Hk is acceptably consistent for each k, then
their GGPHMPR G is also acceptably consistent.

Proof: According to Theorem 16, we have

GCI (G) ≤ max
k

GCI (Hk)

Since GCI (Hk) ≤ GCĪ , then

GCI (G) ≤ max
k

GCI (Hk) ≤ GCĪ

which completes the proof the theorem.
To demonstrate the implementation process of Algo-

rithm 1, an example is given as follows:
Example 18:Assume that an expert gives a PHMPR on the

set of alternatives X = {x1, x2, x3} as:

H=

 {1} {3|0.6, 5|0.4} {3}
{1/3|0.6, 1/5|0.4} {1} {1/7|0.6, 1/3|0.4}

{1/3} {7|0.4, 3|0.6} {1}


Step 1: Let t = 0 and H (0) = H =

(
r lij|p

l
ij

)
n×n

;

Step 2:Use (3.7) to derive the GPHMPR E (0) =
(
e(0)ij

)
n×n

of H (0) as:

E (0)
=

 1 3.68 3.00
0.27 1 0.24
0.33 4.21 1


Step 3: Use (3.8) to calculate the priority vector of the

GPHMPR E (0) as:

w = (0.5942, 0.1070, 0.2988)T

Step 4: Use (3.9) to calculate the geometric consistency
index of the PHMPR H (0) as:

GCI (H (0)) = 0.5069

Referring to [25], we set GCĪ = 0.1573. GCI
(
H (0)

)
≥

GCĪ , then we continue the process.
Step 5: Let θ = 0.6 and then use (3.10) to construct the

modified GPHMPR E (1) =
(
e(1)ij

)
n×n

as:

E (1)
=

 1 4.71 2.34
0.21 1 0.30
0.43 3.29 1


Let t = 1, turn to the next step;
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Step 6: Use (3.9) to calculate the geometric consistency
index of the PHMPR H (1) as:

GCI (H (1)) = 0.0811 < GCĪ

Step 7: Let Ĥ = H (1) and output Ĥ .

IV. CONSENSUS REACHING PROCESS FOR PHMPRS
During the real group decision making problems, the experts
from the different professional fields usually have the diverse
opinions and then provide PHMPRs with very low con-
sensus. The consensus also plays an important role on
the decision-making results. To obtain reasonable decision-
making results, in this section, an iterative consensus reaching
process based on geometric consensus is put forward to adjust
the PHMPRs until they satisfy the acceptable consensus
condition.

We first give the definition of geometric consensus degree
for PHMPRs as follows:
Definition 19:LetHk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =
1, 2, . . . ,m be m PHMPRs with the weight λk meeting 0 ≤

λk ≤ 1 and
m∑
k=1

λk = 1, Ek =
(
eij,k

)
n×n be the GPHMPRs,

and G =
(
gij
)
n×n be their corresponding GGPHMPR with

the priority vector wg =
(
w1,g,w2,g, . . . ,wn,g

)T , then the
geometric consensus degree of Hk is computed as:

GCD(Hk ) = GCD(Ek )

=
2

(n− 1)(n− 2)

∑
i<j

(
ln eij,k+lnwj,g−lnwi,g

)2
(4.1)

where GCD (Hk) means the geometric consensus degree of
Hk . As presented in Definition 19, it can be seen that the
geometric consensus degree of Hk can be considered as the
closeness degree between its GPHMPR and GGPHMPR.

Based on Definition 19, an algorithm for the consensus
reaching process is put forward to modify the PHMPRs as
follows:

Two theorems can be derived from Algorithm 2.
Theorem 20: Let Hk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =

1, 2, . . . ,m be m PHMPRs, Ek =
(
eij,k

)
n×n be the

GPHMPRs, G =
(
gij
)
n×n be their GGPHMPR,

{
E (t)k

}
and

{
G(t)

}
be the sequences of the GPHMPRs and

their GGPHMPRs that are produced by the process
of Algorithm 2. If max

1≤k≤m
{GCI (Hk)} ≤ GCĪ , then

max
1≤k≤m

{
GCI

(
H (t+1)
k

)}
≤ max

1≤k≤m

{
GCI

(
H (t)
k

)}
≤ GCĪ .

Proof: According to Algorithm 2, the GPHMPR E (t+1)k
that is obtained after t+ 1 iterations should satisfy

e(t+1)ij,k =

(
e(t)ij,k

)(1−θ)
×

(
w(t)i,g

w(t)j,g

)θ

Algorithm 2 Consensus Reaching Algorithm

Input: m PHMPRs Hk =
(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

with the weight λk satisfying 0 ≤ λk ≤ 1 and
m∑
k=1

λk = 1,

a parameter θ ∈ [0, 1], the threshold for geometric con-
sensus degree that is expressed by GCD̄, the maximum
number of iterations denoted by T .
Output: The PHMPRs having the geometric consensus

degrees less than or equal to GCD̄.
Step 1. Let t = 0 and H (t)

k = Hk ;
Step 2. Use Definition 10 to compute the group geomet-

ric PHMPR (GGPHMPR) G(t) =
(
g(t)ij

)
n×n

as:

g(t)ij =
m∏
k=1

(
e(t)ij,k

)λk
(4.2)

Step 3. Calculate the priority vector of the GGPHMPR
G(t) as:

w(t)i,g =

(
n∏
j=1

g(t)ij

) 1
n

n∑
i=1

(
n∏
j=1

g(t)ij

) 1
n

(4.3)

Step 4. Utilize Definition 19 to calculate the geometric
consensus degree of each PHMPR as:

GCD
(
H (t)
k

)
=

2
(n− 1) (n− 2)

∑
i<j

(
ln e(t)ij,k + lnw(t)j,g − lnw(t)i,g

)2
(4.4)

If GCD
(
H (t)
k

)
≤ GCD̄ or t > T , turn to Step 6;

otherwise, turn to the next step.
Step 5. Construct the modified PHMPR H (t+1)

k =(
e(t+1)ij,k

)
n×n

as

e(t+1)ij,k =

(
e(t)ij,k

)(1−θ)
×

(
w(t)i,g

w(t)j,g

)θ
(4.5)

Let t = t + 1, turn to Step 2.
Step 6. Let Ĥ = H (t) and output Ĥ ;
Step 7. End.

where w(t)g =

(
w(t)1,g,w

(t)
2,g, . . . ,w

(t)
n,g

)
denotes the priority

vector of GGPHMPR G(t). Hence,
w(t)i,g
w(t)j,g

denotes the ele-

ment of the complete consistent preference relation of the
GGPHMPR G(t) denoted by G̃(t).
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Then,

e(t+1)ij,k ∈

{
min

(
e(t)ij,k ,

w(t)i,g

w(t)j,g

)
,max

(
e(t)ij,k ,

w(t)i,g

w(t)j,g

)}
.

According to Theorem 16, we have

GCI
(
H (t+1)
k

)
= GCI

(
E (t+1)k

)
≤ max

{
GCI

(
H (t)
k

)
,GCI

(
G̃(t)

)}
.

Since GCI
(
G̃(t)

)
= 0, then

max
{
GCI

(
H (t+1)
k

)}
= max

{
GCI

(
E (t+1)k

)}
≤ max

{
GCI

(
H (t)
k

)}
≤ GCĪ

which completes the proof.
Theorem 21: Let Hk =

(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

, k =

1, 2, . . . ,m be m PHMPRs, Ek =
(
eij,k

)
n×n be their GPHM-

PRs, G =
(
gij
)
n×n be their GGPHMPR,

{
E (t)k

}
and

{
G(t)

}
be the sequences of the GPHMPRs and their GGPHMPRs
that are produced by Algorithm 2, then GCD

(
H (t+1)
k

)
≤

GCD
(
H (t)
k

)
.

Proof: e(t+1)ij,k =

(
e(t)ij,k

)(1−θ)
×

(
w(t)i,g
w(t)j,g

)θ
and

w(t+1)i,k =

(
n∏
j=1

e(t+1)ij,k

) 1
n

n∑
i=1

(
n∏
j=1

e(t+1)ij,k

) 1
n

,

so we have

w(t+1)i,k =

(
w(t)i,k

)1−θ (
w(t)i,g

)θ
∑n

i=1

((
w(t)i,k

)1−θ (
w(t)i,g

)θ)
Hence,

w(t+1)i,g

=

m∏
k=1

(
w(t+1)i,k

)λk
n∑
i=1

m∏
k=1

(
w(t+1)i,k

)λk =
m∏
k=1

((
w(t)i,k

)1−θ (
w(t)i,g

)θ)λk
n∑
i=1

m∏
k=1

((
w(t)i,k

)1−θ (
w(t)i,g

)θ)λk

=

m∏
k=1

((
w(t)i,k

)1−θ ( m∏
k=1

(
w(t)i,k

)λk)θ)λk
n∑
i=1

m∏
k=1

((
w(t)i,k

)1−θ ( m∏
k=1

(
w(t)i,k

)λk)θ)λk

=

m∏
k=1

((
w(t)i,k

)λk)1−θ m∏
k=1

((
w(t)i,k

)λk)θ
n∑
i=1

m∏
k=1

((
w(t)i,k

)λk)1−θ m∏
k=1

((
w(t)i,k

)λk)θ

=

m∏
k=1

(
w(t)i,k

)λk
n∑
i=1

m∏
k=1

(
w(t)i,k

)λk = w(t)i,g

GCD
(
H (t+1)
k

)
= GCD

(
E (t+1)k

)
=

2
(n− 1) (n− 2)

×

∑
i<j

 ln

(e(t)ij,k)1−θ ×
(
w(t)i,g

w(t)j,g

)θ+ lnw(t+1)j,g

− lnw(t+1)i,g


2

=
2

(n− 1) (n− 2)

×

∑
i<j

 ln
(
e(t)ij,k

)1−θ
+ ln

(
w(t)i,g

)θ
− ln

(
w(t)j,g

)θ
+ lnw(t)j,g − lnw(t)i,g

2

=
2 (1− θ)2

(n− 1) (n− 2)

=

∑
i<j

 ln
(
e(t)ij,k

)1−θ
+ ln

(
w(t)j,g

)1−θ
− ln

(
w(t)i,g

)1−θ


2

= (1− θ)2 GCD
(
H (t)
k

)
≤ GCD

(
H (t)
k

)
which completes the proof of the theorem.

V. GROUP DECISION MAKING MODEL
BASED ON PHMPRS
As shown in Theorem 20, it can be seen that the acceptably
consistent PHMPRs, that are modified by Algorithm 2, are
still acceptably consistent. Hence, Algorithms 1 and 2 can be
combined to design a complete group decision making model
to deal with the consistency and consensus of PHMPRs and
make reasonable decisions.

Prior to designing the group decision making model,
the score function of the GGPHMPR G =

(
gij
)
n×n is defined

as follows:
Definition 22: Given a GGPHMPR G =

(
gij
)
n×n, then the

score function of the alternative xi is defined as:

s (xi) =
n∏
j=1

(
gij
) 1
n

where s (xi) denotes the score function of the alternative xi.
As demonstrated in Figure 1, the complete group decision

making model is composed of three components that are the
consistency improving process, consensus reaching process,
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FIGURE 1. A complete group decision making model with PHMPRs.

and selection process. The former two processes have been
described in Section III and Section IV. Based on Defini-
tion 22, the selection process is designed to rank the alter-
natives based on their values of score function and select the

optimal one with the highest value. The above group decision
making model is implemented using Algorithm 3 listed as
follows.

Algorithm 3 Complete Group Decision Making Algorithm

Input: m PHMPRs Hk =
(
hij,k

)
n×n =

(
r lij,k |p

l
ij,k

)
n×n

with their weights λk

satisfying that 0 ≤ λk ≤ 1 and
m∑
k=1

λk = 1, a parameter θ1 ∈ [0, 1], a parameter

θ2 ∈ [0, 1], the threshold for the geometric consistency index expressed by GCĪ ,
the threshold for geometric consensus degree denoted by GCD̄, the maximum
number of iterations denoted by T .
Output: The ranking of alternatives and the optimal one.
Step 1. Let t = 0 and H (t)k = Hk ;

Step 2. Utilize Definition 8 to compute the GPHMPR E(t)k =
(
e(t)ij,k

)
n×n

of H (t)k ,
which satisfies

e(t)ij,k =

#hij∏
l=1

((
r lij,k

)(t))plij,k
(5.1)

Step 3. Use (3.5) to calculate the priority vector of the GPHMPR E(t)k as:

w(t)i,k =

(
n∏
j=1

e(t)ij,k

) 1
n

n∑
i=1

(
n∏
j=1

e(t)ij,k

) 1
n

(5.2)

Step 4. Calculate the geometric consistency index of the PHMPR H (t)k as:

GCI
(
H (t)k

)
= GCI

(
E(t)k

)
=

2
(n− 1)(n− 2)

∑
i<j

(
ln e(t)ij,k + lnw(t)j,k − lnw(t)i,k

)2
(5.3)

If GCI
(
H (t)k

)
≤ GCĪ , then turn to Step 6; otherwise, turn to the next step.

Step 5. Build the modified GPHMPR E(t+1)k =

(
e(t+1)ij,k

)
n×n

, which satisfies

e(t+1)ij,k =

(
e(t)ij,k

)(1−θ)
×

(
wi,k
wj,k

)θ
(5.4)

Let t = t + 1, turn to Step 4;
Step 6. Use Definition 10 to compute the group geometric PHMPR (GGPHMPR)

G(t) =
(
g(t)ij

)
n×n

as:

g(t)ij =
m∏
k=1

(
e(t)ij,k

)λk (5.5)

Step 7. Calculate the priority vector of GGPHMPR G(t) as:

w(t)i,g =

(
n∏
j=1

g(t)ij

) 1
n

n∑
i=1

(
n∏
j=1

g(t)ij

) 1
n

(5.6)

Step 8. Utilize Definition 19 to calculate the geometric consensus degree of each
PHMPR as:

GCD
(
H (t)k

)
=

2
(n− 1) (n− 2)

∑
i<j

(
ln e(t)ij,k + lnw(t)j,g − lnw(t)i,g

)2
(5.7)

If GCD
(
H (t)k

)
≤ GCD̄ or t > T , then we turn to Step 10; otherwise, turn to the

next step.
Step 9. Build the modified PHMPR H (t+1)k =

(
e(t+1)ij,k

)
n×n

as:

e(t+1)ij,k =

(
e(t)ij,k

)(1−θ)
×

w(t)i,g

w(t)j,g

θ (5.8)

Let t = t + 1, turn to Step 6.
Step 10. Compute the score value of each alternative using the GGPHMPRG(t) =(
g(t)ij

)
n×n

;

Step 11. Rank all the alternatives according to their score values and select the
optimal one;
Step 12. End.
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H1 =


{1} {3|0.6, 5|0.4} {5, 7} {3}

{1/3|0.6, 1/5|0.4} {1} {5} {7}
{1/5, 1/7} {1/5} {1} {3}
{1/3} {1/7} {1/3} {1}


H2 =


{1} {1/3} {1/7|0.3, 1/5|0.7} {1/3}
{3} {1} {5|0.4, 7|0.6} {3}

{7|0.3, 5|0.7} {1/5|0.4, 1/7|0.6} {1} {1/3}
{3} {1/3} {3} {1}


H3 =


{1} {1/7|0.8,1/3|0.2} {1/5} {1/3}

{7|0.8, 3|0.2} {1} {3} {3|0.4, 5|0.6}
{5} {1/3} {1} {1/3}
{3} {1/3|0.4,1/5|0.6} {3} {1}


H4 =


{1} {1/3} {1/7, 1/5} {1/5|0.6,1/3|0.4}
{3} {1} {3} {5}
{7, 5} {1/3} {1} {1/3}

{5|0.6, 3|0.4} {1/5} {3} {1}


VI. ILLUSTRATIVE EXAMPLE AND
COMPARISON ANALYSIS
A. ILLUSTRATIVE EXAMPLE
Example 23: In recent years, more and more parents pay

attention to the English education for kids. In the education
markets, there are many kinds of English education courses
provided by companies. Assume that there are four popular
English education brands, which are VIPKID, Cinostar, EF
Education, and GIRAFFE expressed by X = {x1, x2, x3, x4}.
To select an appropriate suit of English education courses for
Chinese kids from these four English education brands, four
experts with their weight vector w = (0.25, 0.25, 0.25, 0.25)
are invited to assess these four English education brands and
give their evaluation information in the form of PHMPRs as
H1,H2,H3,H4, as shown at the top of this page.
To show the practical application processes of Algorithm 3,

this example is implemented as follows:
Step 1: Let t = 0 and H (0)

k = Hk for each k;

Step 2:Use (5.1) to derive the GPHMPR E (0)k =

(
e(0)ij,k

)
n×n

of H (0)
k as:

E (0)1 =


1.0 3.6801 5.9161 3.0

0.2717 1.0 5.0 7.0
0.1690 0.2 1.0 3.0
0.3333 0.1429 0.3333 1.0

,

E (0)2 =


1.0 0.3333 0.1808 0.3333
3.0 1.0 6.1182 3.0

5.5311 0.1634 1.0 0.3333
3.0 0.3333 3.0 1.0

,

E (0)3 =


1.0 0.1692 0.2 0.3333

5.9088 1.0 3.0 4.0760
5.0 0.3333 1.0 0.3333
3.0 0.2453 3.0 1.0

,

E (0)4 =


1.0 0.3333 0.1690 0.2453
3.0 1.0 3.0 5.0

5.9161 0.3333 1.0 0.3333
4.0760 0.2 3.0 1.0



Step 3: Use (5.2) to calculate the priority vectors of the
GPHMPRs E (0)k as:

w1 = (0.5152, 0.3182, 0.1023, 0.0643)T ,

w2 = (0.0730, 0.5282, 0.1437, 0.2552)T ,

w3 = (0.0612, 0.5476, 0.1622, 0.2290)T ,

w4 = (0.0674, 0.5095, 0.1771, 0.2460)T

Step 4: Use (5.3) to calculate the geometric consistency
indexes of the PHMPRs H (0)

k as:

GCI
(
H (0)
1

)
= 3.2174, GCI

(
H (0)
2

)
= 3.3842,

GCI
(
H (0)
3

)
= 1.9871, GCI

(
H (0)
4

)
= 3.8619

According to [25], the value of GCĪ is set to 0.04. Since
GCI

(
H (0)
k

)
> GCĪ , then we turn to the next step:

Step 5: Let θ = 0.9, then we use (5.4) to construct the
modified GPHMPR E (1)k =

(
e(1)ij,k

)
n×n

as:

E (1)1 =


1.0 1.7573 5.1192 7.2601

0.5690 1.0 3.2630 5.1222
0.1953 0.3065 1.0 1.6941
0.1377 0.1952 0.5903 1.0

,

E (1)2 =


1.0 0.1509 0.4582 0.2905

6.6260 1.0 3.8688 2.1481
2.1822 0.2585 1.0 0.5342
3.4427 0.4655 1.8719 1.0

,

E (1)3 =


1.0 0.1165 0.3543 0.2733

8.5822 1.0 3.3373 2.5227
2.8227 0.2996 1.0 0.6568
3.6587 0.3964 1.5224 1.0

,

E (1)4 =


1.0 0.1452 0.3511 0.2712

6.8873 1.0 2.8886 2.2620
2.8482 0.3462 1.0 0.6667
3.6878 0.4421 1.5000 1.0


Let t = 1, then we turn to the next step;
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Step 6: Use (5.3) to calculate the geometric consistency
indexes of the PHMPRs H (1)

k as:

GCI
(
H (1)
1

)
= 0.0322, GCI

(
H (1)
2

)
= 0.0338,

GCI
(
H (1)
3

)
= 0.0199, GCI

(
H (1)
4

)
= 0.0386

Since GCI
(
H (1)
k

)
< GCĪ for each k, then we turn to the

next step;
Step 7: Use (5.5) to calculate GGPHMPR G(1) =(
g(1)ij

)
n×n

as:

G(1) =


1.0 0.2588 0.7350 0.6288

3.8673 1.0 3.3214 2.8149
1.3606 0.3011 1.0 0.7934
1.5904 0.3552 1.2604 1.0


Step 8: Utilize (5.6) to calculate the priority vector of

GGPHMPR G(1) as:

w(1)g = (0.1248,0.5201,0.1602,0.1949)
T

Step 9: Use (5.7) to calculate the geometric consensus
degree of each PHMPR as:

GCD
(
H (1)
1

)
= 4.7855, GCD

(
H (1)
2

)
= 0.4613,

GCD
(
H (1)
3

)
= 0.6412, GCD

(
H (1)
4

)
= 0.5699

Step 10: The value of GCD̄ is set to 0.05. Because the
geometric consensus degree of each PHMPR is higher than
0.05, then we turn to the next step;
Step 11: Utilize (5.8) to construct the modified PHMPR

H (2)
k =

(
e(2)ij,k

)
n×n

as:

E (2)1 =


1.0 0.2927 0.9402 0.8161

3.4160 1.0 3.2485 2.8486
1.0636 0.3078 1.0 0.8836
1.2253 0.3511 1.1317 1.0

,

E (2)2 =


1.0 0.2290 0.7386 0.5915

4.3665 1.0 3.3043 2.6115
1.3539 0.3026 1.0 0.7873
1.6905 0.3829 1.2702 1.0

,

E (2)3 =


1.0 0.2232 0.7199 0.5880

4.4810 1.0 3.2558 2.6538
1.3892 0.3071 1.0 0.8037
1.7008 0.3768 1.2442 1.0

,

E (2)4 =


1.0 0.2281 0.7192 0.5875

4.3834 1.0 3.2091 2.6250
1.3904 0.3116 1.0 0.8049
1.7022 0.3810 1.2424 1.0


Let t = 2, then we turn to the next step.

Step 12: Utilize (5.5) to compute the group geometric
PHMPR (GGPHMPR) G(2) =

(
g(2)ij

)
n×n

as:

G(2) =


1.0 0.2417 0.7744 0.6390

4.1372 1.0 3.2543 2.6830
1.2914 0.3073 1.0 0.8190
1.5649 0.3727 1.2209 1.0


Step 13: Utilize (5.6) to calculate the priority vector of

GGPHMPR G(2) as:

w(2)g = (0.1248,0.5201,0.1602,0.1949)
T

Step 14: Use (5.7) to calculate the geometric consensus
degree of each PHMPR as:

GCD
(
H (2)
1

)
= 0.0479, GCD

(
H (2)
2

)
= 0.0046,

GCD
(
H (2)
3

)
= 0.0064, GCD

(
H (2)
4

)
= 0.0057

Since GCD
(
H (2)
k

)
< GCD̄ for each k, then we turn to the

next step.
Step 15: Use Definition 22 to calculate the score value of

each alternative as:

s (x1) = 0.5880, s (x2) = 2.4516,

s (x3) = 0.7551, s (x4) = 0.9186

Step 16: According to their score values, the alternatives
are ranked as:

x2 � x4 � x3 � x1

B. COMPARISON ANALYSIS
To verify the effectiveness of our model, the model proposed
by Bashir et al. [13] is introduced to process Example 23 as
follows:
Step 1: Normalize all the PHMPRs into NPHMPRs as

H (0)
1 ,H (0)

2 ,H (0)
3 ,H (0)

4 , as shown at the next page.
Step 2: Calculate their consistency indexes as:

CI
(
H (0)
1

)
= 1.1976, CI

(
H (0)
2

)
= 1.2524,

CI
(
H (0)
3

)
= 1.2162, CI

(
H (0)
4

)
= 1.2236

Step 3: The threshold for the consistency index in [13] is
set to 1.01. Hence, all the PHMPRs are inconsistent. After
two iterations, acceptably consistent PHMPRs are obtained
as H (2)

1 ,H (2)
2 ,H (2)

3 ,H (2)
4 , as shown at the next page.

Their completely consistent PHMPRs are H̃ (2)
1 , H̃ (2)

2 ,
H̃ (2)
3 , H̃ (2)

4 , as shown at the next page.
In this step, their consistency indexes are

CI
(
H (2)
1

)
= 1.0081, CI

(
H (2)
2

)
= 1.0078,

CI
(
H (2)
3

)
= 1.0068, CI

(
H (2)
4

)
= 1.0083

Step 5: Utilize the PHMWG operator in [13] to obtain the
group PHMPR as H (2)

g , as shown at the top of the page 13.
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H (0)
1 =


{1|0.5, 1|0.5} {3|0.6, 5|0.4} {5|0.5, 7|0.5} {3|0.5, 3|0.5}
{1/3|0.6, 1/5|0.4} {1|0.5, 1|0.5} {5|0.5, 5|0.5} {7|0.5, 7|0.5}
{1/5|0.5,1/7|0.5} {1/5|0.5,1/5|0.5} {1|0.5, 1|0.5} {3|0.5, 3|0.5}
{1/3|0.5,1/3|0.5} {1/7|0.5, 1/7|0.5} {1/3|0.5, 1/3|0.5} {1|0.5, 1|0.5}

,

H (0)
2 =


{1|0.5, 1|0.5} {1/3|0.5, 1/3|0.5} {1/7|0.3, 1/5|0.7} {1/3|0.5, 1/3|0.5}
{3|0.5, 3|0.5} {1|0.5, 1|0.5} {5|0.4, 7|0.6} {3|0.5, 3|0.5}
{7|0.3, 5|0.7} {1/5|0.4, 1/7|0.6} {1|0.5, 1|0.5} {1/3|0.5, 1/3|0.5}
{3|0.5, 3|0.5} {1/3|0.5, 1/3|0.5} {3|0.5, 3|0.5} {1|0.5, 1|0.5}

,

H (0)
3 =


{1|0.5, 1|0.5} {1/7|0.8,1/3|0.2} {1/5|0.5, 1/5|0.5} {1/3|0.5, 1/3|0.5}
{7|0.8, 3|0.2} {1|0.5, 1|0.5} {3|0.5, 3|0.5} {3|0.4, 5|0.6}
{5|0.5, 5|0.5} {1/3|0.5, 1/3|0.5} {1|0.5, 1|0.5} {1/3|0.5, 1/3|0.5}
{3|0.5, 3|0.5} {1/3|0.4,1/5|0.6} {3|0.5, 3|0.5} {1|0.5, 1|0.5}

,

H (0)
4 =


{1|0.5, 1|0.5} {1/3|0.5, 1/3|0.5} {1/7|0.5, 1/5|0.5} {1/5|0.6,1/3|0.4}
{3|0.5, 3|0.5} {1|0.5, 1|0.5} {3|0.5, 3|0.5} {5|0.5, 5|0.5}
{7|0.5, 5|0.5} {1/3|0.5, 1/3|0.5} {1|0.5, 1|0.5} {1/3|0.5, 1/3|0.5}
{5|0.6, 3|0.4} {1/5|0.5, 1/5|0.5} {3|0.5, 3|0.5} {1|0.5, 1|0.5}



H (2)
1 =


{1.00|0.52, 1.00|0.48} {1.51|0.54, 2.16|0.46} {4.46|0.51, 6.02|0.49} {6.68|0.51, 8.08|0.49}
{0.66|0.53, 0.47|0.47} {1.00|0.53, 1.00|0.47} {3.16|0.51, 3.29|0.49} {4.78|0.51, 5.36|0.49}
{0.22|0.51, 0.17|0.49} {0.32|0.51, 0.30|0.49} {1.00|0.50, 1.00|0.50} {1.63|0.50, 1.73|0.50}
{0.15|0.51, 0.12|0.49} {0.21|0.51, 0.19|0.49} {0.57|0.50, 0.61|0.50} {1.00|0.50, 1.00|0.50}

,

H (2)
2 =


{1.00|0.46, 1.00|0.54} {0.14|0.46, 0.14|0.54} {0.42|0.45, 0.55|0.55} {0.27|0.47, 0.29|0.53}
{7.23|0.46, 7.23|0.54} {1.00|0.47, 1.00|0.53} {3.15|0.45, 4.06|0.55} {1.98|0.48, 2.15|0.52}
{2.35|0.45, 1.83|0.55} {0.32|0.45, 0.25|0.55} {1.00|0.44, 1.00|0.56} {0.53|0.46, 0.62|0.54}
{3.70|0.47, 3.40|0.53} {0.51|0.48, 0.47|0.52} {1.89|0.46, 1.60|0.54} {1.00|0.48, 1.00|0.52}

,

H (2)
3 =


{1.00|0.55, 1.00|0.45} {0.11|0.55, 0.12|0.45} {0.26|0.53, 0.33|0.47} {0.17|0.52, 0.23|0.48}
{8.77|0.55, 8.26|0.45} {1.00|0.54, 1.00|0.46} {2.75|0.52, 2.99|0.48} {1.89|0.52, 1.98|0.48}
{3.76|0.53, 3.05|0.47} {0.36|0.53, 0.33|0.47} {1.00|0.51, 1.00|0.49} {0.64|0.50, 0.73|0.50}
{3.76|0.53, 3.05|0.47} {0.53|0.53, 0.36|0.47} {1.56|0.51, 1.37|0.49} {1.00|0.50, 1.00|0.50}

,

H (2)
4 =


{1.00|0.52, 1.00|0.48} {0.13|0.51, 0.16|0.49} {0.31|0.51, 0.41|0.49} {0.23|0.53, 0.33|0.47}
{7.49|0.51, 6.19|0.49} {1.00|0.50, 1.00|0.50} {2.78|0.50, 3.00|0.50} {2.16|0.51, 2.42|0.49}
{3.27|0.51, 2.42|0.49} {0.36|0.50, 0.33|0.50} {1.00|0.50, 1.00|0.50} {0.66|0.51, 0.69|0.49}
{4.29|0.53, 3.00|0.47} {0.46|0.51, 0.41|0.49} {1.51|0.51, 1.45|0.49} {1.00|0.52, 1.00|0.48}



H̃ (2)
1 =


{1.00|0.52, 1.00|0.48} {1.40|0.52, 1.97|0.48} {4.40|0.51, 5.92|0.49} {7.30|0.51, 9.02|0.49}
{0.71|0.52, 0.51|0.48} {1.00|0.52, 1.00|0.48} {3.01|0.51, 3.14|0.49} {4.58|0.51, 5.21|0.49}
{0.23|0.51, 0.17|0.49} {0.33|0.51, 0.32|0.49} {1.00|0.51, 1.00|0.49} {1.52|0.51, 1.66|0.49}
{0.14|0.51, 0.11|0.49} {0.22|0.51, 0.19|0.49} {0.66|0.51, 0.60|0.49} {1.00|0.51, 1.00|0.49}

,

H̃ (2)
2 =


{1.00|0.46, 1.00|0.54} {0.14|0.46, 0.14|0.54} {0.43|0.45, 0.55|0.55} {0.27|0.47, 0.29|0.53}
{7.30|0.46, 7.30|0.54} {1.00|0.47, 1.00|0.53} {3.13|0.46, 4.03|0.54} {1.97|0.47, 2.14|0.53}
{2.33|0.45, 1.81|0.55} {0.32|0.46, 0.25|0.54} {1.00|0.45, 1.00|0.55} {0.53|0.46, 0.63|0.54}
{3.71|0.47, 3.41|0.53} {0.51|0.47, 0.47|0.53} {1.88|0.46, 1.59|0.54} {1.00|0.47, 1.00|0.53}

,

H̃ (2)
3 =


{1.00|0.54, 1.00|0.46} {0.11|0.54, 0.12|0.46} {0.26|0.53, 0.32|0.47} {0.16|0.53, 0.23|0.48}
{8.70|0.54, 8.48|0.46} {1.00|0.53, 1.00|0.47} {2.70|0.52, 2.94|0.48} {1.88|0.52, 1.96|0.48}
{3.88|0.53, 3.14|0.47} {0.37|0.52, 0.34|0.48} {1.00|0.52, 1.00|0.48} {0.63|0.51, 0.71|0.49}
{6.07|0.53, 4.32|0.48} {0.53|0.52, 0.51|0.48} {1.59|0.51, 1.40|0.49} {1.00|0.51, 1.00|0.49}

,

H̃ (2)
4 =


{1.00|0.52, 1.00|0.48} {0.12|0.51, 0.12|0.49} {0.33|0.51, 0.45|0.49} {0.24|0.52, 0.33|0.48}
{8.29|0.51, 6.71|0.49} {1.00|0.51, 1.00|0.49} {2.76|0.51, 3.00|0.49} {1.97|0.51, 2.24|0.49}
{3.01|0.51, 2.24|0.49} {0.36|0.51, 0.33|0.49} {1.00|0.51, 1.00|0.48} {0.71|0.51, 0.74|0.49}
{4.21|0.52, 3.00|0.48} {0.51|0.51, 0.45|0.49} {1.40|0.51, 1.34|0.49} {1.00|0.52, 1.00|0.48}


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H (2)
g =


{1.00|0.51, 1.00|0.49} {0.22|0.51, 0.28|0.49} {0.63|0.50, 0.82|0.50} {0.52|0.51, 0.67|0.49}
{4.47|0.51, 3.62|0.49} {1.00|0.51, 1.00|0.49} {3.05|0.50, 3.21|0.50} {2.56|0.50, 2.65|0.50}
{1.60|0.50, 1.22|0.50} {0.33|0.50, 0.31|0.50} {1.00|0.49, 1.00|0.51} {0.81|0.49, 0.83|0.51}
{1.94|0.51, 1.52|0.49} {0.39|0.50, 0.38|0.50} {1.23|0.49, 1.21|0.51} {1.00|0.50, 1.00|0.50}


H (3)
1 =


{1.00|0.51, 1.00|0.49} {0.27|0.52, 0.34|0.48} {0.76|0.50, 1.00|0.50} {0.67|0.51, 0.84|0.49}
{3.69|0.52, 2.94|0.48} {1.00|0.51, 1.00|0.49} {3.07|0.50, 3.20|0.50} {2.76|0.50, 2.81|0.50}
{1.31|0.50, 1.00|0.50} {0.33|0.50, 0.31|0.50} {1.00|0.49, 1.00|0.51} {0.89|0.49, 0.87|0.51}
{1.50|0.51, 1.18|0.49} {0.36|0.50, 0.36|0.50} {1.12|0.49, 1.15|0.51} {1.00|0.50, 1.00|0.50}

,

H (3)
2 =


{1.00|0.51, 1.00|0.49} {0.21|0.51, 0.26|0.49} {0.60|0.49, 0.78|0.51} {0.48|0.51, 0.61|0.49}
{4.69|0.51, 3.88|0.49} {1.00|0.50, 1.00|0.50} {3.06|0.49, 3.28|0.51} {2.50|0.50, 2.59|0.50}
{1.66|0.49, 1.27|0.51} {0.33|0.49, 0.30|0.51} {1.00|0.48, 1.00|0.52} {0.78|0.49, 0.80|0.51}
{2.07|0.51, 1.65|0.49} {0.40|0.50, 0.39|0.50} {1.29|0.49, 1.24|0.51} {1.00|0.50, 1.00|0.50}

,

H (3)
3 =


{1.00|0.52, 1.00|0.48} {0.20|0.52, 0.25|0.48} {0.57|0.50, 0.74|0.50} {0.46|0.51, 0.59|0.49}
{4.90|0.52, 3.93|0.48} {1.00|0.51, 1.00|0.49} {3.04|0.50, 3.16|0.50} {2.49|0.51, 2.57|0.49}
{1.74|0.50, 1.34|0.50} {0.33|0.50, 0.32|0.50} {1.00|0.49, 1.00|0.51} {0.80|0.50, 0.81|0.50}
{2.17|0.51, 1.69|0.49} {0.40|0.51, 0.39|0.49} {1.25|0.50, 1.24|0.50} {1.00|0.50, 1.00|0.50}

,

H (3)
4 =


{1.00|0.51, 1.00|0.49} {0.21|0.51, 0.26|0.49} {0.58|0.50, 0.76|0.50} {0.48|0.51, 0.61|0.49}
{4.71|0.51, 3.82|0.49} {1.00|0.51, 1.00|0.49} {3.02|0.50, 3.19|0.50} {2.52|0.50, 2.63|0.50}
{1.72|0.50, 1.31|0.50} {0.33|0.50, 0.31|0.50} {1.00|0.49, 1.00|0.51} {0.80|0.50, 0.81|0.50}
{2.10|0.51, 1.63|0.49} {0.40|0.50, 0.38|0.50} {1.25|0.50, 1.24|0.50} {1.00|0.50, 1.00|0.50}


H (3)
g =


{1.00|0.51, 1.00|0.49} {0.22|0.51, 0.28|0.49} {0.63|0.50, 0.82|0.50} {0.52|0.51, 0.67|0.49}
{4.47|0.51, 3.62|0.49} {1.00|0.51, 1.00|0.49} {3.05|0.50, 3.21|0.50} {2.56|0.50, 2.65|0.50}
{1.60|0.50, 1.22|0.50} {0.33|0.50, 0.31|0.50} {1.00|0.49, 1.00|0.51} {0.81|0.49, 0.83|0.51}
{1.94|0.51, 1.52|0.49} {0.39|0.50, 0.38|0.50} {1.23|0.49, 1.21|0.51} {1.00|0.50, 1.00|0.50}



Step 6: The consensus degrees of these four PHMPRs are
computed as:

GCI
(
H (2)
1

)
= 2.42, GCI

(
H (2)
2

)
= 1.14,

GCI
(
H (2)
3

)
= 1.22, GCI

(
H (2)
4

)
= 1.10

The consensus degree in [13] is set to be 1.1. Hence, these
PHMPRs should be modified. After 1 iteration, the PHMPRs
with the consensus degree lower than 1.1 can be obtained as
H (3)
1 , H (3)

2 , H (3)
3 , H (3)

4 , as shown at the top of this page, as
well as the following GGPHMPR, H (3)

g , as shown at the top
of this page.

Their consensus degrees are updated as:

GCI
(
H (3)
1

)
= 1.0071, GCI

(
H (3)
2

)
= 1.0033,

GCI
(
H (3)
3

)
= 1.0006, GCI

(
H (3)
4

)
= 1.0003

Step 7: Use the PHMG operator in [13] to aggregate each
row of the group PHMPR H (3)

g as:

H1
g = {0.52|0.51, 0.62|0.49}, H

2
g = {2.43|0.51, 2.35|0.49},

H3
g = {0.81|0.49, 0.74|0.51}, H

4
g = {0.98|0.50, 0.92|0.50}

Step 8: Use the score function defined in [13] to compute
the score value of each alternative as:

s (x1) = 0.75, s (x2) = 1.55, s (x3) = 0.88, s (x4) = 0.97

Step 9: According to the score values, all the alternatives
are ranked as:

x2 � x4 � x3 � x1

From the rankings of all the alternatives in our model and
the model proposed by Bashir et al. [13], it can be seen that
our model is effective.

We introduce the concept of the confidence level to make
the comparison analysis between our group decision making
model and the model proposed by Bashir et al. [13] using the
probability theory.
Definition 24: Given a random variable X and a threshold

GCĪ for geometric consistency index, then the confidence
level for the geometric consistency index should satisfy the
following equation:

LCI = P
{
X ≤ GCĪ

}
where the term LCI denotes the confidence level for the geo-
metric consistency index. It can be easily seen that the
confidence level has a great impact on the threshold. The
higher the confidence level is, the higher the threshold is.
It means that most PHMPRs could reach the threshold
easily.
Definition 25: Let X be a random variable and GCD̄

be the threshold for the geometric consensus degree,
the confidence level for the geometric consensus degree
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should satisfy

LCD = P
{
X ≤ GCD̄

}
where the term LCD denotes the confidence level for the
geometric consensus degree. Similar to LCI , the higher the
value of LCD is, the higher the value of GCD̄ is.
In our model, the geometric consistency index (GCI) for a

PHMPR H is computed as:

GCI (H) = GCI (E)

=
2

(n− 1) (n− 2)

∑
i<j

(
ln eij + lnwj − lnwi

)2
Assume that a random variable X = (ln eij+lnwj−lnwi)2.

Because of the iterative process for modifying the PHMPRs
in Algorithm 2, the value of the random variable X tends
to 0. Hence, let us assume that the random variable X follows
the normal distribution having a mean of zero and a vari-
ance of σ 2

1 , which is denoted by X ∼ N
(
0, σ 2

1

)
. Since the

linear combination of n random variables which follow the
normal distribution still follows the normal distribution, we
have

E

∑
i<j

X

 = 0

and

D

∑
i<j

X

 = n(n− 1)
2

σ 2
1

Since E (CX) = CE (X) and D (CX) = C2D (X), then

E

 2
(n− 1) (n− 2)

∑
i<j

X

 = 0

and

D

 2
(n− 1) (n− 2)

∑
i<j

X

 = 2n

(n− 1) (n− 2)2
σ 2
1

Let a random variable Y = GCI (H), then

Y ∼ N
(
0,

2n

(n− 1) (n− 2)2
σ 2
1

)
.

The distribution function of the random variable Y is

F (y) = P {Y ≤ y} = (n−2)
√
n−1

2
√
nπσ1

∫ y
−∞

e
−
(n−1)(n−2)2t2

4nσ21 dt . In this
paper, the value of σ1 is set to 0.2, then Y ∼ N (0, 0.0267).
In Example 23, GCĪ is set to 0.04. Based on Definition 24,
we have

LCI = P {0 ≤ Y ≤ 0.04} = F (0.04)− F (0) = 9.67%

Similar to the computation process of LCI, when the value
of GCD̄ is set to 0.05, then we have

LCD = P {0 ≤ Y ≤ 0.05} = F (0.05)− F (0) = 12.02%

In [13], the consistency index of PHMPRs is computed as:

CI (H) =
1
dn2

∑n

i=1

∑n

j=1

∑d

s=1

((
h̄(t)ij
)σ (s)
×

(
h̃(t)ji
)σ (s))

+
2

nd (n+ 1)

×

∑n

i=1

∑n

j≥i

∑d

s=1

((
p̄(t)ij
)σ (s)
×

(
p̃(t)ji
)σ (s))

The above equation can be further simplified as:

CI (H)

=
2

nd(n+1)

∑n

i=1

∑n

j≥i

∑d

s=1

((
h̄(t)ij
)σ (s)
×

(
h̃(t)ji
)σ (s))

+
2

nd(n+ 1)

∑n

i=1

∑n

j≥i

∑d

s=1

×

(∣∣∣∣(p̄(t)ij )σ (s) − (p̃(t)ji )σ (s)∣∣∣∣)
=

2
nd(n+ 1)

∑n

i=1

∑n

j≥i

∑d

s=1

×

((
h̄(t)ij
)σ (s)
×

(
h̃(t)ji
)σ (s)
+

∣∣∣∣(p̄(t)ij )σ (s) − (p̃(t)ji )σ (s)∣∣∣∣)
Let a random variable R =

(
h̄(t)ij
)σ (s)

×

(
h̃(t)ji
)σ (s)

+∣∣∣∣(p̄(t)ij )σ (s) − (p̃(t)ji )σ (s)∣∣∣∣, then the value ofR tends to 1. Hence,

let us assume that the random variable R follows the normal
distribution with the mean of 1 and the variance of σ 2

2 ,
which is expressed by R∼N

(
1, σ 2

2

)
. Namely, E (R) = 1

and D (R) = σ 2
2 . Since the linear combination of n random

variables obeying the normal distribution can also follow the
normal distribution, then

E (CI (H)) = E
(

2
nd (n+ 1)

∑n

i=1

∑n

j≥i

∑d

s=1
R
)
= 1

and

D (CI (H)) = D
(

2
nd (n+ 1)

∑n

i=1

∑n

j≥i

∑d

s=1
R
)

=
2

nd (n+ 1)
σ 2
2

Let a random variable S = CI (H), then S ∼

N
(
1, 2

nd(n+1)σ
2
2

)
and its distribution function is

F (s) = P {S ≤ s} =

√
nd (n+ 1)
2
√
πσ2

∫ s

−∞

e
−
nd(n+1)(t−1)2

4σ22 dt

To perform fair comparison, the value of σ2 is also set to 0.2,
then S ∼ N (1, 0.0013). In [13], the value of CĪ is 1.01, then

LCI = P {0 ≤ S ≤ 1.01} = F (1.01)− F (0) = 0.1092.

Similar to LCI, the value of CR̄ in [13] is set to 1.10, then

LCD = P {0 ≤ S ≤ 1.10} = F (1.10)− F (0) ≈ 0.9972.

Based on the above analysis, the performance comparison
between them is summarized in Table 1.
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TABLE 1. Comparison analysis between our model and that in [13].

As listed in Table I, it can be seen that our model requires
one time when improving the consistency index. However,
it takes the model proposed by Bashir et al. [13] two times to
update the PHMPRs. During the consensus reaching process,
both our model and the model proposed by Bashir et al. [13]
requires only one time when revising the consensus degree.
As discussed before, the higher the confidence levels for the
consistency index and the consensus degree are, the higher
the thresholds for the consistency index and the consensus
degree are. Namely, the PHMPRs can reach the conditions
for the consistency and consensus more easily. Even if the
confidence levels for consistency index and consensus degree
in our model is lower than that in [13], it takes our model less
times to obtain the PHMPRs with the acceptably consistent
index and consensus degree. It indicates that our model can
perform better than the model proposed by Bashir et al. [13].

VII. CONCLUSIONS
In this paper, we have analyzed the existing group decision
making model with PHMPRs proposed by Bashir et al. [13].
As a supplement to it, we put forward a novel group deci-
sion making model with the PHMPRs. Firstly, by means of
the multiplicative preference relations (MPRs), the PHMPRs
are transformed into the multiplicative preference relations.
Then, based on the priority weights of the PHMPRs, the geo-
metric consistency index is given to measure the consistency
index of the PHMPRs and an automatic consistency checking
and improving process is designed to revise the PHMPRs.
After that, the geometric consensus degree based on the prior-
ity weight is designed to measure the consensus degree of the
PHMPRs and it is utilized to develop a consensus reaching
process for PHMPRs. Combining the consistency improving
process and consensus reaching process, a complete group
decision making model is presented to deal with PHMPRs
and then make decisions. Finally, an example is provided to
demonstrate the implementation process of our model and
the probability theory is utilized to perform the comparison
analysis between our model and the model that is proposed
by Bashir et al. [13].

In the near future, we plan to introduce the uncertainty to
extend the PHMPRs and study their features.
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