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ABSTRACT Lattice is widely used in cryptography since it has potential for defending quantum attacks.
One of the significant problems in such cryptography is the shortest vector problem (SVP). This problem is
to find the non-zero shortest vector in lattice. The SVP is an NP-hard problem under randomized reductions
proven by Ajtai, and many cryptosystems are secure under the assumption that SVP is hard, such as NTRU.
On the other hand, some primitives of lattice-based cryptography require relatively short vectors. In this
paper, we propose a new SVP algorithm that can be performed in time complexity O(n3). We also prove that
the Hermite factor of the proposed algorithm is polynomial-bounded.

INDEX TERMS Shortest vector problem, algorithm analysis, optimization theory, lattice, lattice-based
cryptography.

I. INTRODUCTION
Lattice is a discrete set consisting of some linearly indepen-

dent vectors, L(B) = {Ev | Ev =
d∑
i=1

ciEbi where Ebi ∈ B and ci ∈

Z, ∀i}. It has been widely studied in cryptography [1], [2]
since it is believed that lattice-based cryptography has poten-
tial to resist the attacks from quantum computers. One of
the core hard problems in lattice-based cryptography is the
shortest vector problem (SVP). That is, given a linearly inde-
pendent basis B = {Eb1, Eb2, . . . , Ebn} ∈ Zm×n, find a non-zero
vector Ev such that ‖Ev‖ = min

Ez∈B
‖Ez‖. SVP is proved to be an

NP-Hard problem under randomized reductions by Ajtai [3]
in 1998. In 2001Micciancio [4] proved that the SVP problem
is NP-Hard within any factor less than

√
2. The researches

on solving the SVP play an important role in cryptography.
In some lattice-based cryptosystems, the user needs to find
a short vector, such as [5]. On the other hand, when we
are constructing a lattice-based cryptosystem, we can derive
the most appropriate security parameters according to the
time/space complexity of the best algorithm in solving the
SVP. Given an algorithm in solving the SVP, one can evaluate
the algorithm by its time complexity, space complexity, and
approximation factor α. An algorithm with approximation
factor α means that it is able to compute a short vector whose

length is not greater than αλ1(L), where λ1(L) is the length of
the shortest vector. If α = 1, then the algorithm is able to find
the shortest vector. The existing algorithms can be divided
into two types, where one can be run in polynomial timewhile
the approximation factor is exponentially large; the other is
able to find a vector with approximation factor exponentially
close to 1, i.e. α = 1, however its time and space complexity
are exponential.

A. RELATED WORKS
In 1982, Lenstra, Lenstra and Lovász proposed a lattice
reduction algorithm LLL [6], [7] which can be performed in
O(n5) with α ≤ (4/3)(n−1)/2, where n is dimension. In 1983,
Kannan [8], [9] proposed an exact algorithm HKZ which can
be performed in n

n
2e+O(n). In 1994, Schnorr and Euchner

proposed a blockwise algorithm BKZ-β [10] where β is the
block size, and it was implemented in NTL [11]. The block
size β is an important parameter for the time complexity and
α in BKZ. However, there is no good upper bound of time
complexity about β and n. The experiment [12]–[14] showed
that the performing time is sub-exponential in n as β < 25
and exponential in n as β ≥ 25. In 2001, Ajtai et al. [15]
proposed a sieve algorithm AKS which required exponen-
tially large time and space complexity, and showed that α
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is exponentially close to 1. Nguyen and Vidick [16] showed
that the time complexity of AKS is O(25.9n+O(n)) with the
space complexity O(22.95n+O(n)). Moreover, Nguyen also
proposed another sieve algorithm, called Listsieve, which is
performed in time O(23.199n+O(n)) and space O(21.325n+O(n)).
In 2008, Nguyen et al. used Mordell’s inequality to propose
slide-reduction algorithm and proved α = (γk (1+ ε))

n−k
k−1 .

We can classify these algorithms into four types:
• Approximation algorithm (non-blockwise) [6]:
It can be performed in polynomial time, but α is expo-
nentially large in n.

• Approximation algorithm (blockwise) [10], [17]–[19]:
It can be performed in sub-exponential time with appro-
priate k and α is exponentially large in n

k .
• Exact algorithm (polynomial space complexity) [8]:
It can be performed in time complexity 2O(n log n).

• Exact algorithm (exponenial space complexity) [15],
[16], [20]–[24]
It can be performed in time complexity 2O(n).

B. CONTRIBUTION
In this paper, we propose a new approximation algorithm
for solving the SVP. Our algorithm is motivated from some
techniques in the optimization theory. That is, add some
noise and find the critical point of a distance function. The
time complexity of the proposed algorithm is O(n3) and only
polynomially large space is needed. The most special feature
of the proposed algorithm is that the Hermite factor of our
algorithm is a polynomial-bounded function in the number
of the dimensions. With the best of our knowledge, it is the
first algorithm with polynomial-bounded Hermite factor and
polynomial time complexity.

II. PRELIMINARY
In this section, we introduce the shortest vector problem and
some theorems on lattice.

A. LATTICE
Lattice is a set containing all integer linear combinations of a
basis. Given a basis B = {Eb1, Eb2, . . . , Ebn} ∈ Zm×n, define the
lattice of B as follows.

L(B) = {Ev | Ev =
n∑
i=1

ciEbi,∀Ebi ∈ B,∀ci ∈ Z, i = 1, 2, . . . , n}.

B. MATRIX FORM
Let B = {Eb1, Eb2, . . . , Ebn} ∈ Zm×n, then we denote the matrix
form of B as M (B) where

M (B) =
[
Eb1 Eb2 Eb3 · · · Ebn

]
.

C. THE SHORTEST VECTOR PROBLEM
Given a basis B = {Eb1, Eb2, . . . , Ebn} ∈ Zm×n, the shortest
vector problem is to find a vector Ev satisfying

‖Ev‖ = min
Eu∈L(B)/0

‖Eu‖ = λ1(L(B)).

FIGURE 1. Example of the shortest vector problem. Let
B = {[19,−6], [31,−11]}, then the nonzero shortest vector is
5× [19,−6]− 3× [31,−11] = [2, 3].

For example, given B = {[19,−6], [31,−11]}, then we can
generate the lattic set (Figure 1), and the shortest vector is
[2, 3]. SVP is an NP-hard problem under randomized reduc-
tions proved by Ajtai [3]. Currently, there is no polynomial
time algorithm to verify whether a vector is the solution of
SVP or not. Therefore, we will use Minkowski’s theorems
or Hermite factor to test the solution. Note that the shortest
vector might not be unique in lattice.

D. MINKOWSKI’S THEOREM
Theorem 1 (Minkowski’s First Theorem): Let B be a basis

in Rn and λ1(L(B)) be the first Minkowski’s minimum in∞-
norm of L(B), then λ1(L(B)) ≤ det(L(B))1/n.
Theorem 2 (Minkowski’s Second Theorem): Let B be a

basis inRn and λi(L(B)) be the i-th Minkowski’s minimum in
∞-norm of L(B) for i = 1, 2, . . . , n, then

∏n
i=1 λi(L(B)) ≤

2n ∗ det(L(B)).

Let Ew =
n∑
i=1

fiEbi be the shortest vector of L(B) for some

vector Ef = [fi]n. We can estimate the upper bound of ‖Ef ‖∞
by Minkowski’s theorems. Then we have

‖Ef ‖∞ = ‖M (B)−1 Ew‖∞
≤ ‖M (B)−1‖∞‖Ew‖∞ ≤ ‖M (B)−1‖∞det(L(B))1/n.

Remark: M (B)−1 is the pseudoinverse of M (B).

E. NORM SPACE
Definition 1: Let Ex be a vector in Rn and q ∈ R, then we

define its q-norm and∞-norm as follow:

‖Ex‖q =
q
√
xq1 + x

q
2 + . . .+ x

q
n .

‖Ex‖∞ = max
i
|xi|.

Definition 2: Let M (B) be a matrix in Rm×n and q ∈ R,
then we define its q-norm as follow:

‖M (B)‖q = max
‖Ex‖q 6=0

‖M (B)Ex‖q
‖Ex‖q

= max
‖Ex‖q 6=0

‖M (B)
Ex
‖Ex‖q
‖q = max

‖Ex‖q=1
‖M (B)x‖q
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Algorithm 1

Input: A basis B = {Eb1, Eb2, . . . , Ebn}, where Ebi ∈ Zm.
Step 1: Set ei = 1 for i = 1, 2, . . . , n.
Step 2: Construct a distance function

S =
m∑
i=1

(
n∑
j=1

(Ebj)ixj)2 + (−1+
n∑
j=1

ejxj)2.

Step 3: Compute
∂S
∂xi

for i = 1, 2, . . . , n.

Step 4: Get xi = ci by solving the linear system below.



∂S
∂x1
= 0

∂S
∂x2
= 0

...
∂S
∂xn
= 0

Step 5: Choose t. = max
1≤i≤n

|ci|, compute ui =
ci
t .

Step 6: For i = 1, 2, . . . , ‖M (B)−1‖∞det(L(B))
1
n , compute

Evi =
n∑
j=1

rijEbj, where rij = duj ∗ ic.

Step 7: output Ev′, where ‖Ev′‖2 = min
i
‖Evi‖2.

Note: d·c is a round function.

Let B be a basis in Rm×n and σ1 ≥ σ2 ≥ . . . ≥ σn > 0 be
the singular values ofM (B). SinceM (B)TM (B) is Hermitian
matrix, it can be written as M (B)TM (B) = V3V T , where
VV T

= I . Then we have

‖M (B)‖22 = max
‖Ex‖2=1

‖M (B)Ex‖22

= max
‖Ex‖2=1

ExT (M (B)TM (B))Ex

= max
‖Ex‖2=1

ExTV3V T
Ex

= max
‖Ey‖2=1

EyT3Ey

= max
‖Ey‖2=1

y21σ
2
1 + y

2
2σ

2
2 + . . .+ y

2
nσ

2
n

≤ max
‖Ey‖2=1

σ 2
1 (y

2
1 + y

2
2 + . . .+ y

2
n)

= σ 2
1

Remark:
• ‖Ey‖22 = ‖V

T
Ex‖22 = Ex

TVV T
Ex = ExT Ex = ‖Ex‖22 = 1.

• The equality is hold as Ey = [1, 0, 0, . . . , 0]. Thus
‖M (B)‖2 = σ1.

• It is obvious that ‖M (B)−1‖2 = 1
σn

since 3−1 =
diag( 1

σ 21
, 1
σ 22
, . . . , 1

σ 2n
).

We give some properties of norms. Let x, y ∈ S, and then
p : S → R is a norm if and only if
• p(x) ≥ 0 and p(x) = 0 if and only if x = 0.
• For all a ∈ F , p(ax) = |a|p(x).
• p(x + y) ≤ p(x)+ p(y).

Algorithm 2

Input: A basis B = {Eb1, Eb2, . . . , Ebn}, where Ebi ∈ Zm.
Step 1: Set ei = 1 for i = 1, 2, . . . , n.
Step 2: Construct a distance function

S =
m∑
i=1

(
n∑
j=1

(Ebj)ixj)2 + (−1+
n∑
j=1

ejxj)2.

Step 3: Compute
∂S
∂xi

for i = 1, 2, . . . , n.

Step 4: Get xi = ci by solving the linear system below.



∂S
∂x1
= 0

∂S
∂x2
= 0

...
∂S
∂xn
= 0

Step 5: If ∃ciei < 0, then ei←−ei and go to Step 2.
Step 6: Choose t. = max

1≤i≤n
|ci|, compute ui =

ci
t .

Step 7: For i = 1, 2, . . . , ‖M (B)−1‖∞det(L(B))
1
n , compute

Evi =
n∑
j=1

rijEbj, where rij = duj ∗ ic.

Step 8: output Ev′, where ‖Ev′‖2 = min
i
‖Evi‖2.

III. OUR ALGORITHM
This section presents a new algorithm (Algorithm 1) for the
shortest vector problem. The details of the algorithm will
be shown in Section III-A. Our main concept is based on
finding the critical point of a distance function and then we
find the ratio between each component of the shortest vector.
However, we will just get the trivial solution if we solve it
directly. Hence in the initial step (Step 1), we add some noises

ei = 1 for each vector such that
n∑
i=1

ciei ≈ 1. In Step 2 and

Step 3, in order to simplify the procedure, we construct the
linear system by computing ∂S

∂xi
, but it can be computed by

performing the inner product in the implementation. That is,
for each component of the matrix M = [aij]n×n, aij is equal
to < Ebi, Ebj > +eiej. In Step 4, we can find the critical
point by Gaussian elimination or any effective algorithm.
In Step 5 to Step 7, we will recover the ratio from a rational
number to an integer. Moreover, we improve Algorithm 1
and give Algorithm 2. For the simplicity of the analysis,
we analyse the algorithm under some assumptions, as shown
in Section IV-C.

A. DISCUSSION
1) COST OF STEP 3
Consider a basis B = {Eb1, Eb2, . . . , Ebn} ∈ Zm×n with its
corresponding distance function

S =
m∑
i=1

(
n∑
j=1

(Ebj)ixj)2 + (−1+
n∑
j=1

ejxj)2.
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FIGURE 2. The flowchart of Algorithm 1.

FIGURE 3. The flowchart of Algorithm 2.

Let Eb′i = [Ebi, ei] for i = 1, 2, . . . , n. Then we compute

∂S
∂xq

=

∑m

i=1
2(
∑n

j=1
(Ebj)ixj)× (Ebq)i+2(−1+

∑n

j=1
ejxj)×eq

= 2
∑n

j=1
(
∑m

i=1
(Ebj)i(Ebq)ixj)+ 2(

∑n

j=1
ejeqxj)− 2eq

= 2[
∑n

j=1
(
∑m

i=1
(Ebj)i(Ebq)i + ejeq)xj − eq]

= 2[
∑n

j=1
< Eb′j, Eb

′
q > xj − eq].

It means that we can perform the inner product to compute
each component of M .

2) THE UPPER BOUND OF COEFFICIENT

Let Ew =
n∑
i=1

fiEbi be the shortest vector in L(B), then Ef =

[f1, f2, . . . , fn] can be written as follow.

Ef =
[
Eb1 Eb2 · · · Ebn

]−1

w1
w2
...

wn


ByMinkowski’s first theorem, we have ‖Ew‖∞ ≤ det(L(B))

1
n .

Thus, the inequality will hold.

‖Ef ‖∞ = ‖M (B)−1 Ew‖∞
≤ ‖M (B)−1‖∞‖Ew‖∞
≤ ‖M (B)−1‖∞det(L(B))

1
n

3) CHANGE THE SIGN IN STEP 5
In algorithm 2, we want to minimize the distance function S
in our main concept. It can be shown as S = D1+D2, where{

D1 =
∑m

i=1
(
∑n

j=1
(Ebj)ixj)2

D2 = (−1+
∑n

j=1
ejxj)2.

InD2, there exist two kinds of situations by Step 4, (a) ∃ciei <

0 or (b) ∀c′ie
′
i ≥ 0. Since the goal is

n∑
i=1

ciei ≈ 1, we predict

that the variability of (c1, c2, . . . , cn) is relatively large in (a).

That is,
n∑
i=1

(ci)2 >
n∑
i=1

(c′i)
2.

Now, we consider D1, the upper bound of D1 is

D2
1 = ‖

∑n

i=1
xiEbi‖2

=

∑n

i=1
x2i ‖Ebi‖

2

≤ (
∑n

i=1
x2i )(

∑n

i=1
‖Ebi‖2).

It can be found that the upper bound in (b) is better than (a).
Therefore, we require the situation of (b).

4) THE SUM OF ciei IS IN [0,1]
In geometric meaning, we generate a plane4 which contain-
ing all vector {Ev | Ev =

∑n
i=1 ti[Ebi, ei] for all ti ∈ R and Ebi ∈ B}.

Since 0 ∈ 4, the plane of 4 can be written as

τ1 x1 + τ2 x2 + . . .+ τnxn + y = 0.

Through optimization theory, we find a point Ec on 4 such
that ‖Ec − Eϕ‖2 has the minimum, where Eϕ = [0, 0, . . . , 0, 1].
That is, the vector Ec− Eϕ is perpendicular to4. Thus, Ec can be
written as 

c1 = 0+ tτ1
c2 = 0+ tτ2
...

cn = 0+ tτn
cn+1 = 1+ t
⇒ tτ 21 + tτ

2
2 + . . .+ tτ

2
n + 1+ t = 0.
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Finally, we have t = −1

1+
n∑
i=1
τ 2i

.

∑n

i=1
ciei = cn+1 =

n∑
i=1
τ 2i

1+
n∑
i=1
τ 2i

.

IV. ANALYSIS
A. CORRECTNESS
In the proposed algorithm, we can find a ratio (u1, u2, . . . , un)
between each component of the shortest vector. Let Ev′ =
n∑
i=1

uikEbi and Ew =
n∑
i=1

fiEbi be the shortest vector. Now,

we prove that ∃k such that ∀i, |ui∗k− fi| ≤ η =
σ1
σn
√
nwhere

σ1 and σn are the maximum and minimum singular value of
M (B).

First, let k =
∑n

i=1 fi∑n
i=1 ui

and ri = ui∗k . Thus
n∑
i=1

ri−
n∑
i=1

fi = 0.

Let
n∑
i=1

riEbi−
n∑
i=1

fiEbi =
n∑
i=1

ziEbi where zi = ri−fi. It is obvious

that

n∑
i=1

zi =
n∑
i=1

ri −
n∑
i=1

fi

=

n∑
i=1

ui ∗ k −
n∑
i=1

fi

=

∑n
i=1 fi∑n
i=1 ui

n∑
i=1

ui −
n∑
i=1

fi

= 0.

Definition 3: Let Ep be the plane which contain the vector

set {Eg|Eg =
n∑
i=1

qieiEbi with
n∑
i=1

qi = p}, where ei is chosen in

step 1 of our algorithm 1 or step 5 of our algorithm 2 for all i.
The optimization theory ensures that Ec = {c1, c2, . . . , cn},

which is the corresponding ratio vector, satisfy Ev′ =
n∑
i=1

uikiEbi

will perpendicular to Ep for all k and p, where ui =
ci/max

i
|ci| (Figure 4).

Remark: There is an exact p′ > 0 such that Ew ∈ Ep′ ,
we denote this plane as E . For example, in algorithm 1, if B =
{Eb1, Eb2, Eb3, Eb4} with the shortest vector Ew = Eb1 − 3Eb2 + 4Eb4

in L(B), then Ew ∈ E2 = {Eg|Eg =
4∑
i=1

qiEbi, where
4∑
i=1

qi = 2}.

Theorem 3: Let zi ∈ R for each i = 1, 2, . . . , n with
n∑
i=1

zi = 0. Then ∃z′i ∈ Z such that |zi − z′i| < 1 for each i.

Proof: Let zi ∈ [αi, αi + 1) where αi ∈ Z for all i.
We have

β =

n∑
i=1

αi =

n∑
i=1

(αi − zi)+
n∑
i=1

zi =
n∑
i=1

(αi − zi) ≥ −n.

FIGURE 4. The schematic diagrams of Ep and Ev ′ .

Choose a set � = {i1, i2, . . . , i(−β)} ⊆ {1, 2, . . . , n} with
is 6= it ∀s 6= t . Finally, set

z′i =

{
αi + 1 , i ∈ �
αi , i 6∈ �

⇒

n∑
i=1

z′i =
∑
i∈�

(αi + 1)+
∑
i 6∈�

αi

= (
n∑
i=1

αi)+ (−β) = β − β = 0.

This concludes the proof. �
If each |zi| ≤ η, then the proof is done. If ∃|zi| > η > 1,

we can always find a z′i ∈ Z satisfying
n∑
i=1

z′i = 0 such that

|zi − z′i| ≤ 1 by Theorem 3. Thus,

n∑
i=1

riEbi −
n∑
i=1

fiEbi =
n∑
i=1

ziEbi

=

n∑
i=1

(zi − z′i)Ebi +
n∑
i=1

z′iEbi and

n∑
i=1

riEbi −
n∑
i=1

(fi + z′i)Ebi =
n∑
i=1

(zi − z′i)Ebi.

Note that:

1) Let Ew′ =
n∑
i=1

(fi + z′i)Ebi be the output of our algorithm

on the plane E since
n∑
i=1

(fi + z′i) =
n∑
i=1

fi.

2) Since Ew and Ew′ are on E and Ev′ is perpendicular to E ,

‖Ew‖22 = ‖Ev
′
‖
2
2 + ‖

n∑
i=1

ziEbi‖2 and ‖Ew′‖22 = ‖Ev
′
‖
2
2 +

‖

n∑
i=1

(zi − z′i)Ebi‖
2.
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FIGURE 5. The schematic diagrams of P1 and P2.

3) Since Ew is the shortest vector.

⇒ ‖Ev′‖22 + ‖
n∑
i=1

ziEbi‖2 = ‖Ew‖22

< ‖Ew′‖22

= ‖Ev′‖22 + ‖
n∑
i=1

(zi − z′i)Ebi‖
2.

This means that if ∃|zi| > η, then the inequality ‖
n∑
i=1

ziEbi‖2 <

|

n∑
i=1

(zi−z′i)Ebi‖2 must hold for all (z′1, z
′

2, . . . , z
′
n) chosen from

Theorem 3.
Let P1 =

n∑
i=1

(zi − z′i)Ebi, P2 =
n∑
i=1

ziEbi, T1 = {Ey | ‖Ey‖∞ ≤

1, Ey ∈ Rn
} and T2 = {Ey | ‖Ey‖∞ > 1, Ey ∈ Rn

}. The basis
B = {Eb1, Eb2, . . . , Ebn} can be viewed as a map M (B). Thus
we have P1 ∈ M (B)T1 and P2 ∈ M (B)T2 (Figure 5). Since
each component of an element in T1 is bounded, we can find
a upper bound of ‖P1‖2. That is, we set a sphere C whose
center is 0 and radius is γ = max

ϕ∈T1
‖M (B)ϕ‖2. It is obvious

that if P2 ∈ M (B)T2 ∩ C , then ‖P1‖2 may be greater than
‖P2‖2. Finally, we use the pseudoinverse mapM (B)−1 to find
the region T3 = M (B)−1(M (B)T2 ∩ C). We can find that

• If Ez = (z1, z2, . . . , zn) ∈ T3, then the inequality

‖

n∑
i=1

ziEbi‖2 < |
n∑
i=1

(zi − z′i)Ebi‖2 may hold.

• If Ez ∈ T2 − T3, then the inequality doesn’t hold. That
is, we always can find another lattice point Ew′ such that
‖Ew′‖2 < ‖Ew‖2, this is a contradiction.

Now,we should find the upper bound of vector which in T3.

max
Eζ∈T3
‖Eζ‖2 = max

Eζ∈M (B)−1(M (B)T2∩C)
‖Eζ‖2

= max
Eζ∈M (B)−1C

‖Eζ‖2

= max
Eζ∈C
‖M (B)−1Eζ‖2

≤ max
Eζ∈C
‖M (B)−1‖2‖Eζ‖2

= max
Eζ∈T1
‖M (B−1)‖2‖M (B)Eζ‖2

≤ max
Eζ∈T1
‖M (B)−1‖2‖M (B)‖2‖Eζ‖2

≤ ‖M (B)−1‖2‖M (B)‖2‖
√
n

=
σ1

σn

√
n,

where σ1 and σn are the square roots of maximum and mini-
mum eigenvalues of M (B)TM (B).
Remark:
• The point P1 is not unique. That is, if P1 is on the
boundary ofM (B)T1, then theremay exists another point
P chosen from Theorem 3 in the interior ofM (B)T1, but
we can prove it exactly.

• In fact, since
n∑
i=1

(zi − z′i) = 0, P1 ∈ M (B)T1 ∩M (B)E ′,

where E ′ = {[t1, t2, . . . , tn] |
n∑
i=1

ti = 0, where ti ∈

R∀i = 1, 2, . . . , n}.

B. QUALITY
In this section, we will show that the Hermite factor of the
proposed algorithm is less than (

√
n+(σ1

σn
)2 n). First, we have

shown that a ratio (u1, u2, . . . , un) can be found such that
there exists a k satisfying |kui − fi| < η for all i, where the

shortest vector is Ew =
n∑
i=1

fiEbi.

Let σ1 ≥ σ2 ≥ . . . σn ≥ 0 be the square roots of the
eigenvalue of M (B)TM (B). The following inequality holds.

σ1 ≤ σ1(
σ1

σn

σ2

σn
· · ·

σn

σn
)
1
n ≤

σ1

σn
det(L(B))

1
n

Hence, we have

‖Ew+
n∑
i=1

(kui − fi)Ebi‖2 ≤ ‖Ew‖2 + ‖
n∑
i=1

(kui − fi)Ebi‖2

≤
√
ndet(L(B))

1
n +

‖M (B)‖2‖
n∑
i=1

(kui − fi)‖2

≤
√
ndet(L(B))

1
n + σ1

σ1

σn
n

≤
√
ndet(L(B))

1
n+(

σ1

σn
)2 ndet(L(B))

1
n

= (
√
n+ (

σ1

σn
)2 n)det(L(B))

1
n .

C. TIME COMPLEXITY
We have shown that the inner product can be applied to
construct the matrix M in Section III. On the other hand,
it requires O(n3) to solve the linear system in Step 4. Thus,
the algorithm 1 can be performed in O(n3) obviously.
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However, we will change the sign of ei if ciei < 0 and
go to step 2 in step 5 in algorithm 2. Now, we will show
that the probability of that the ‘‘go to Step 2’’ condition (in
Step 5) happens more than twice is negligible with some
assumptions. Let M = [aij]n×n. In order to simplify the
analysis, assume that:

1. The components aij’s of matrix M are independent and
aij ∼ µ, where µ is a symmetric distribution.

2. For two linear systems, MEx = Ee and (M −

[(−1)k ]n×n)Ex ′ = Ee for some k ∈ {0, 1}, xix ′i ≥ 0 for
all i.

First, we construct a matrix M = [< Ebi, Ebj > +eiej]n×n
from a basis B = {Eb1, Eb2 . . . , Ebn} ∈ Rm×n. By the second
assumption, the sign of the solution ofMEx = Ee is the same as
the sign of the solution of M ′ = [< Ebi, Ebj >] = [aij]n×n.
Then we get a matrix M ′′ = M ′/max

i,j
|aij|. By the first

assumption, each component of M ′′ = [a′ij] with a′ij ∼
µ′, where µ′ is a symmetric distribution in [−1, 1]. By the
Cramer’s rule, a solution Ex = (x1, x2, . . . , xn) can be
obtained, where

xj =
1

max
i,j
|aij|

a′11 · · · a
′

1 j−1 e1 a
′

1 j+1 · · · a
′

1n
a′21 · · · a

′

2 j−1 e2 a
′

2 j+1 · · · a
′

2n
...

...
...

...
...

...
...

a′n1 · · · a
′

n j−1 en a
′

n j+1 · · · a
′
nn

a′11 a
′

12 a
′

13 · · · a
′

1 n−1 a
′

1n
a′21 a

′

22 a
′

23 · · · a
′

2 n−1 a
′

2n
...

...
...

...
...

...

a′n1 a
′

n2 a
′

n3 · · · a
′

n n−1 a
′
nn

=
1

max
i,j
|aij|

n∑
i
(−1)i+jeiYji

Det(M ′′)
with

Yji =

a′11 · · · a
′

1 j−1 a′1 j+1 · · · a′1n
a′21 · · · a

′

2 j−1 a′2 j+1 · · · a′2n
...

...
...

...
...

...

a′i−1 1 · · · a
′

i−1 j−1 a
′

i−1 j+1 · · · a
′

i−1 n
a′i+1 1 · · · a

′

i+1 j−1 a
′

i+1 j+1 · · · a
′

i+1 n
...

...
...

...
...

...

a′n1 · · · a
′

n j−1 a′n j+1 · · · a
′
nn.

Let H = {1, 2, . . . , n} and H ′e = {i | eixi < 0 where
M ′′x = Ee/max

i,j
|aij|}. In Step 5, we will change the sign of

ei if i ∈ H ′e. For xh, in order to satisfy xheh ≥ 0, we expect
that the sign of xh is fix after changing the sign of ei for
all i ∈ H ′e. WLOG, we assume the each component of Ee
is positive and ejxj < 0 for j ∈ H ′e. Since

1
Det(M ′′) max

i,j
|aij|

is a constant, we only consider
n∑
i
(−1)h+ieiYhi. On the

other hand, since each component of M ′′ is a symmet-
ric distribution, Yhi is also a symmetric distribution. Thus,

P(
n∑
i
(−1)h+ieiYhi > 0) = P(

n∑
i
eiYhi > 0). Now we have

probability as follows:

ph = P(
∑

i∈H−H ′e

Yhi −
∑
i∈H ′e

Yhi < 0 |
∑
i∈H

Yhi < 0)

=

P(
∑

i∈H−H ′e

Yhi −
∑
i∈H ′e

Yhi < 0 ∧
∑
i∈H

Yhi < 0)

P(
∑
i∈H

Yhi < 0)

=

P(
∑

i∈H−H ′e

Yhi < −|
∑
i∈H ′e

Yhi|)

P(
∑
i∈H

Yhi < 0)
.

Since Yhi is a symmetric distribution, P(
∑
i∈H

Yhi < 0) = 1
2 . Let

Q1 =
∑

i∈H−H ′e

Yhi andQ2 =
∑
i∈H ′e

Yhi. To facilitate the analysis,

assume that Q1 and Q2 are independent. Then we have

ph = 2 ∗ P(Q1 − Q2 < 0 ∧ Q1 + Q2 < 0)

= 2 ∗ P(Q1 + |Q2| < 0).

P(Q1 + |Q2| < 0)

=

∫
−∞

0

∫ q1

−q1
f(Q1,Q2)(q1, q2)dq2 dq1

=

∫
−∞

0

∫ q1

−q1
fQ1 (q1)fQ2 (q2)dq2 dq1

=

∫
−∞

0
fQ1 (q1)

∫ q1

−q1
fQ2 (q2)dq2 dq1

=

∫
−∞

0
fQ1 (q1)(FQ2 (q1)− FQ2 (−q1))dq1

=

∫ 0

−∞

fQ1 (q1)(FQ2 (−q1)− FQ2 (q1))dq1

=

∫ 0

−∞

fQ1 (q1)(1− 2FQ2 (q1))dq1

=

∫ 0

−∞

fQ1 (q1)dq1 − 2
∫ 0

−∞

fQ1 (q1)FQ2 (q1)dq1

=
1
2
− 2

∫ 0

−∞

fQ1 (q1)FQ2 (q1)dq1

≥
1
2
− 2

∫ 0

−∞

fQ1 (q1)dq1

∫ 0

−∞

FQ2 (q1)dq1

=
1
2
−
r
2
σQ2 .

Remark:

1) Since we predict that the mean of covariance of Q1 and
Q2 is close to 0 under large numbers of independent
random variables, we assume that Q1 and Q2 are inde-
pendent.

2) Card(H ′e) is at most n2 .
3) Since Q2 is a symmetric distribution, FQ2 (x) +

FQ2 (−x) = 1.
4) r is a constant.
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TABLE 1. Property comparison.

5) Since each Yhi is the determinant of submatrix
M ′′, Var(Yhi) ≈ Var(a′ij)

n−1. Then Var(Q2) ≈
Card(H ′e)Var(Yhi) ≤

n
2Var(a

′
ij)
n−1.

Thus, we find the probability P(∀h ∈ H , xheh ≥ 0) ≥ (1 −
rσQ2 )

n
≥ (1− r

√
n
2σ

n−1
a′ij

)n. Let Z = (1− r
√

n
2σ

n−1
a′ij

)n. Now,

we will prove that Z is close to 1 as n→∞. Let Z1 = (1 −
rσ n−1a′ij

)n and Z2 = (1 − r
√
2
nσ n−1a′ij

)n. It is obvious that Z1 ≥

Z ≥ Z2.

lim
n→∞

lnZ1 = lim
n→∞

n ln(1− rσ n−1a′ij
)

= lim
n→∞

ln(1− rσ n−1a′ij
)

1
n

= lim
n→∞

1
1−rσ n−1

a′ij

(−r)σ n−1a′ij
ln σa′ij

−1
n2

= lim
n→∞

n2

σ
−(n−1)
a′ij

− r
r ln σa′ij

= lim
n→∞

2n

−σ
−(n−1)
a′ij

ln σa′ij
r ln σa′ij

= lim
n→∞

2

σ
−(n−1)
a′ij

(ln σa′ij )
2
r ln σa′ij

= 0

⇒ lim
n→∞

Z1 = 1.

lim
n→∞

lnZ2 = lim
n→∞

n ln(1−
r
√
2
nσ n−1a′ij

)

= lim
n→∞

ln(1− r
√
2
nσ n−1a′ij

)

1
n

= lim
n→∞

1
1− r
√
2
nσ n−1

a′ij

(−r√
2
σ n−1a′ij

+
−r
√
2
nσ n−1a′ij

ln σa′ij )

−1
n2

= lim
n→∞

n2(1+ n ln σa′ij )

σ
−(n−1)
a′ij

−
r
√
2
n

r
√
2

= lim
n→∞

2n+ 3n2 ln σa′ij

−σ
−(n−1)
a′ij

ln σa′ij −
r
√
2

r
√
2

= lim
n→∞

2+ 6n ln σa′ij

σ
−(n−1)
a′ij

(ln σa′ij )
2

r
√
2

= lim
n→∞

6 ln σa′ij

−σ
−(n−1)
a′ij

(ln σa′ij )
3

r
√
2

= 0

⇒ lim
n→∞

Z2 = 1.

By the squeeze theorem, we find that Z = 1 as n → ∞.
Finally,the expected number of the execution of Step 5 is

E(Step 5) = 1+
1
Z
→ 1asn→∞.

That is, with overwhelming probability, the ‘‘go to Step 2’’
condition in Step 5 only happens one time.

D. SPACE COMPLEXITY
In this subsection, we show that the space complexity is
O(n2). The proposed algorithm needs n2 numbers to store the
basis as a matrix formM (B) at first. Second, we used n num-
bers to store the initial value of ei for i = 1, 2, . . . , n. In Step 2
to Step 4, we stored the result of ∂S

∂xi
for i = 1, 2, . . . , n by

M (B)TM (B), which needs n2 numbers. Third, n numbers are
required to store the vector Eu = [c1, c2, . . . , cn]/t , where
t = max

1≤i≤n
|ci|. Fourth, in Step 6, we need 2n numbers to store

the vector Evi and the minimum vector of ‖Ev‖2 = min
1≤i≤n

‖Evi‖2,

where ‖Ev‖2 is the output of the algorithm. Totally, it is
required to store n2 + n+ n2 + n+ 2n = 2n2 + 4n numbers
in the proposed algorithm.
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TABLE 2. The execution number of step 5 in algorithm 2.

V. COMPARISON
In this section we compare the proposed algorithm and the
existing algorithms in terms of time complexity, space com-
plexity, and approximation factor, where the comparison is
shown in Table 1. The approximation factor is used to eval-
uate the quality of the output of the algorithms. The smaller
the factor is, the better the quality is. As we mentioned in
Section 1, the existing algorithms can be basically classified
into two dual types. One achieves polynomial time/space
complexity with exponentially large approximation factor,
while the other outputs (almost) the shortest vector with
exponential time/space complexity. However, from Table 1,
one can observe that our work falls outside the categories
of the existing works. Interestingly, our algorithm is the first
one achieving polynomially large approximation factor with
polynomial time/space complexity.

VI. IMPLEMENTATION
In this section, we will give the experimental data (1000 times
in each dimensions) to evidence the number of executions
of step 5 in algorithm 2 (Table 2). In low dimension (less
than 300), the execution number is in [2.8, 4.2]. Moreover,
the execution number is in [4.2, 5.6] in high dimension.

VII. CONCLUSION
In this paper, we have proposed a new SVP approximation
algorithm (algorithm 1) which is performed in O(n3) with
Hermite factor at most (

√
n+ (σ1

σn
)2 n) in any case. Our main

concept is based on the optimization theory. Through adding
one dimension to make interference, we find a non-zero
critical point (c1, c2, . . . , cn) such that the length of vec-
tor

∑n
i=1 ciEbi has the minimum value under

∑n
i=1 ci ≈ 1.

Finally, we have found an integer k and computed dkcic
for all i to recover the ratio from a rational number to an
integer. To the best of our knowledge, it is the first algo-
rithm with polynomial-bounded Hermite factor and poly-
nomial time complexity. Moreover, we have also given an
improved algorithm–Algorithm 2, which is analysed under
some assumptions.
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