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ABSTRACT Lattice is widely used in cryptography since it has potential for defending quantum attacks.
One of the significant problems in such cryptography is the shortest vector problem (SVP). This problem is
to find the non-zero shortest vector in lattice. The SVP is an NP-hard problem under randomized reductions
proven by Ajtai, and many cryptosystems are secure under the assumption that SVP is hard, such as NTRU.
On the other hand, some primitives of lattice-based cryptography require relatively short vectors. In this
paper, we propose a new SVP algorithm that can be performed in time complexity O(n>). We also prove that
the Hermite factor of the proposed algorithm is polynomial-bounded.

INDEX TERMS Shortest vector problem, algorithm analysis, optimization theory, lattice, lattice-based

cryptography.

I. INTRODUCTION
Lattice is a discrete set consisting of some linearly indepen-

d -
dent vectors, L(B) = {v|v = Y_ ¢;b; where b; € Band ¢; €

Z, Vi}. It has been widely Stlll_d]ied in cryptography [1], [2]
since it is believed that lattice-based cryptography has poten-
tial to resist the attacks from quantum computers. One of
the core hard problems in lattice-based cryptography is the
shortest vector problem (SVP). That is, given a linearly inde-
pendent basis B = {by, by, ..., by} € Z™*", find a non-zero
vector v such that ||V]| = rpilgl IZll. SVP is proved to be an

NP-Hard problem under ralifiomized reductions by Ajtai [3]
in 1998. In 2001 Micciancio [4] proved that the SVP problem
is NP-Hard within any factor less than V2. The researches
on solving the SVP play an important role in cryptography.
In some lattice-based cryptosystems, the user needs to find
a short vector, such as [5]. On the other hand, when we
are constructing a lattice-based cryptosystem, we can derive
the most appropriate security parameters according to the
time/space complexity of the best algorithm in solving the
SVP. Given an algorithm in solving the SVP, one can evaluate
the algorithm by its time complexity, space complexity, and
approximation factor «. An algorithm with approximation
factor ¢ means that it is able to compute a short vector whose

length is not greater than oA (L), where A1 (L) is the length of
the shortest vector. If « = 1, then the algorithm is able to find
the shortest vector. The existing algorithms can be divided
into two types, where one can be run in polynomial time while
the approximation factor is exponentially large; the other is
able to find a vector with approximation factor exponentially
close to 1, i.e. « = 1, however its time and space complexity
are exponential.

A. RELATED WORKS

In 1982, Lenstra, Lenstra and Lovasz proposed a lattice
reduction algorithm LLL [6], [7] which can be performed in
Om>) with o < (4/3)"~D/2 where n is dimension. In 1983,
Kannan [8], [9] proposed an exact algorithm HKZ which can
be performed in n2etOm n 1994, Schnorr and Euchner
proposed a blockwise algorithm BKZ-g [10] where B is the
block size, and it was implemented in NTL [11]. The block
size B is an important parameter for the time complexity and
o in BKZ. However, there is no good upper bound of time
complexity about 8 and n. The experiment [12]-[14] showed
that the performing time is sub-exponential in n as 8 < 25
and exponential in n as § > 25. In 2001, Ajtai ez al. [15]
proposed a sieve algorithm AKS which required exponen-
tially large time and space complexity, and showed that o
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is exponentially close to 1. Nguyen and Vidick [16] showed
that the time complexity of AKS is O(2>2"+0M) with the
space complexity O(22%"+0M)  Moreover, Nguyen also
proposed another sieve algorithm, called Listsieve, which is
performed in time O(23-199"+0M) and space O(2!-32"+0),
In 2008, Nguyen et al. used Mordell’s inequality to propose
slide-reduction algorithm and proved o = (yx (1 + 8))%.
We can classify these algorithms into four types:
o Approximation algorithm (non-blockwise) [6]:
It can be performed in polynomial time, but « is expo-
nentially large in n.
o Approximation algorithm (blockwise) [10], [17]-[19]:
It can be performed in sub-exponential time with appro-
priate k and « is exponentially large in .
« Exact algorithm (polynomial space complexity) [8]:
It can be performed in time complexity 2001027,
« Exact algorithm (exponenial space complexity) [15],
[16], [20]-{24]
It can be performed in time complexity 200",

B. CONTRIBUTION

In this paper, we propose a new approximation algorithm
for solving the SVP. Our algorithm is motivated from some
techniques in the optimization theory. That is, add some
noise and find the critical point of a distance function. The
time complexity of the proposed algorithm is O(n>) and only
polynomially large space is needed. The most special feature
of the proposed algorithm is that the Hermite factor of our
algorithm is a polynomial-bounded function in the number
of the dimensions. With the best of our knowledge, it is the
first algorithm with polynomial-bounded Hermite factor and
polynomial time complexity.

Il. PRELIMINARY
In this section, we introduce the shortest vector problem and
some theorems on lattice.

A. LATTICE

Lattice is a set containing all integer linear combinations of a
basis. Given a basis B = {by, by, ..., b,} € Z™*", define the
lattice of B as follows.

n

LB)={|v=) cbi. Vb € B,Ve; € Z,i=1,2,....n).
i=1

B. MATRIX FORM

LetB = {131 , 132, e, 13,,} € Z"*" then we denote the matrix
form of B as M (B) where

M(B) = [ b1|ba|b3]- - -|bu |-
C. THE SHORTEST VECTOR PROBLEM

Given a basis B = {51, Zz, ol Zn} € Z™ " the shortest
vector problem is to find a vector v satisfying

IVl = _ min ||ul| = A1 (L(B)).

ieL(B)/0
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FIGURE 1. Example of the shortest vector problem. Let
B = {[19, —6], [31, —11]}, then the nonzero shortest vector is
5 x [19, —6] — 3 x [31, —11] = [2, 3].

For example, given B = {[19, —6], [31, —11]}, then we can
generate the lattic set (Figure 1), and the shortest vector is
[2, 3]. SVP is an NP-hard problem under randomized reduc-
tions proved by Ajtai [3]. Currently, there is no polynomial
time algorithm to verify whether a vector is the solution of
SVP or not. Therefore, we will use Minkowski’s theorems
or Hermite factor to test the solution. Note that the shortest
vector might not be unique in lattice.

D. MINKOWSKI'S THEOREM

Theorem 1 (Minkowski’s First Theorem): Let B be a basis
in R" and XA (L(B)) be the first Minkowski’s minimum in oo-
norm of L(B), then A1(L(B)) < det(L(B))'/".

Theorem 2 (Minkowski’s Second Theorem): Let B be a
basis in R” and A;(L(B)) be the i-th Minkowski’s minimum in
oo-norm of L(B) fori = 1,2,...,n, then [/, Li(L(B)) <
2" % det(L(B)?,‘

Letw = ). f,f)i be the shortest vector of L(B) for some

i=1
Vectorf = [fil,. We can estimate the upper bound of |[]?||OQ
by Minkowski’s theorems. Then we have

Flloo = IMB)™ Wlloo
< IMB) HloollWlloe < IM(B)™" [locdet(L(B))'/".

Remark: M (B)~! is the pseudoinverse of M (B).
E. NORM SPACE

Definition 1: Let X be a vector in R” and ¢ € R, then we
define its g-norm and co-norm as follow:

Fly = {4+ xd 4
¥ llco = max [x;].
l
Definition 2: Let M(B) be a matrix in R™*" and g € R,
then we define its g-norm as follow:

M (B)X||
IMB)|; = max ———12
IX1g20  lxllg
X
= max |[M(B)—=—I,= max [[M(B)xl,
[1X]14#0 lx1l4 Ix14=1
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Algorithm 1

Algorithm 2

Input: A basis B = {l_;l , 1_52, e, l;n}, where Z),- e 7.
Step 1: Sete; = 1fori=1,2,...,n
Step 2: Construct a distance function

S = Z(Z(b )ix): + (=1 + Zejxj

i=1 j=1

aS
Step 3: Compute 8_ fori=1,2,.

Step 4: Get x; = ¢; by solving the linear system below.

o
dxq

S
=0

S
3, = 0

Step 5: Choose t = max |c;|, compute u; =
1<i<n

Step 6: Fori = 1,2, ...,
noo
Vi = Y rijbj, where rjj =
j=1
Step 7: output v, where ||V |2 = min ||v;]|2.
L

1M (B)~! IImdet(L(B))%, compute

[uj*ij.

Note: [-] is a round function.

Let B be a basis in R"™*" and oy > 0y > ... > 0, > 0 be
the singular values of M (B). Since M (B)" M(B) is Hermitian

matrix, it can be written as M(B)YM(B) = VAVT, where
VVT = I. Then we have
IMB)|3 = B IMB)X |3
x|2=1
= max ¥ (M(B) M(B))X
Ixl2=1
= max XVAVTY
[%]2=1
= max y Ay
[¥l=1
= ”nﬁax ylo'] +y202 + e +y%0'nz
yla=1
< max 0?3+ ... +y2)
I¥ll2=1
2
= o‘l
Remark:

T2 = 3T T T3 2112
o VI3 =1VIEI; =3TVWIX =33 = ||%); = 1.

o The equality is hold asy = [1,0,0,...,0]. Thus
IM(B)|l2 = o1.

o It is obvious that |[M(B)" !, = % since A7l =
dmg( 1 , —22 ., é).

We give some properties of norms. Let x,y € S, and then
p: S — Risanorm if and only if

e p(x) > 0and p(x) = 0if and only if x = 0.

e Foralla € F, p(ax) = |a|p(x).

o p(x +y) = px) + p(y).
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Input: A basis B = {7)1, Z)z, e, l;n}, where I;i e 7"
Step 1: Sete; = 1fori=1,2,...,n
Step 2: Construct a distance function

S = Z(Z(b )ix): + (=1 + Ze,x,

i=1 j=1

aS
Step 3: Compute 8_ fori=1,2,.

Step 4: Get x; = ¢; by solving the linear system below.

as _
ox;
A
dxp

A
3 = 0

Step 5: If Acje; < 0, then ¢; < —e; and go to Step 2.

Step 6: Choose t = 1max |cil, compute u; =
<<

L IMB)! ||ooder<L<B>)%, compute

[uj*i].

Step7 Fori = 1,2,.

Z r,,bj, where rij =
j=1
Step 8: output V', where |||l = min [|V;|2.
1

Ill. OUR ALGORITHM

This section presents a new algorithm (Algorithm 1) for the
shortest vector problem. The details of the algorithm will
be shown in Section III-A. Our main concept is based on
finding the critical point of a distance function and then we
find the ratio between each component of the shortest vector.
However, we will just get the trivial solution if we solve it
directly. Hence in the initial step (Step 1), we add some noises

n

= 1 for each vector such that > cje; ~ 1. In Step 2 and

Step 3, in order to simplify the plrz)lcedure we construct the
linear system by computing a -, but it can be computed by
performing the inner product i in the implementation. That is,
for each component of the matrix M = [a;j]nxn, a;j is equal
to < l;i, Z)j > +ejej. In Step 4, we can find the critical
point by Gaussian elimination or any effective algorithm.
In Step 5 to Step 7, we will recover the ratio from a rational
number to an integer. Moreover, we improve Algorithm 1
and give Algorithm 2. For the simplicity of the analysis,
we analyse the algorithm under some assumptions, as shown
in Section IV-C.

A. DISCUSSION

1) COST OF STEP 3

Consider a basis B = {7)1, Z)z, e,
corresponding distance function

S = Z(Z(b )ixp)? + (=1 + Ze,xj

i=1 j=1

byl € Z™<" with its

VOLUME 6, 2018
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Input: B={by, by, ... by}

Sete; = 1foralli

Construct the corresponding
matrix M by partial differentiation

Choose t = maxx; , and
Solve x such that Mx = 0 —> i

I

x
=2 i
u=7 for all j

Output: v, where v = Xfq Round(u; * k) for
4 P < 1
111z = min [[vi]l, k=1.2,...,||B7Y||det(B)n

FIGURE 2. The flowchart of Algorithm 1.

Input: B={by, by, ... b}

Sete; = 1foralli

Construct the corresponding

< Sete; « —e;
matrix M by partial differentiation
T No
Solve x such that Mx = 0 —_— If x;e; is greater than or equal 0

l YES

Choose t = maxx; , and
i

I

Vi = Xfq Round(u; * k) for
k=12,..,||B™||det(B)n uj = forallj

Output: v, where
11112 = min [v]],

FIGURE 3. The flowchart of Algorithm 2.

Let Z); = [B,-, eilfori=1,2,...,n Then we compute

EN
x4

= D 207 By x B2A-1+ Y epxe
=2 Z;l:l(z:il(l;j)i(zq)ixj) + 2(2;:1 ejeqXj) — 2eq
= Z[Z;;] (Zlm:](i)/)l(i)q)l + 6jeq)xj — 6‘4]

n oo
= Z[Zj:l < b}, b; > xj — eql.

It means that we can perform the inner product to compute
each component of M.

VOLUME 6, 2018

2) THE UPPER BOUND OF COEFFICIENT
Letw = i ﬁl;i be the shortest vector in L(B), thenf =
f1./2, ... ,if:,:] can be written as follow.
wi
IR
Wy

By Minkowski’s first theorem, we have | W]/ oo < det(L(B))%.
Thus, the inequality will hold.

IFlloo = IIMB) ™ Wlloo
IMB)™ ool oo 1
IM(B)™" || odet(L(B))n

INTA

3) CHANGE THE SIGN IN STEP 5
In algorithm 2, we want to minimize the distance function S
in our main concept. It can be shown as S = Dy + D;, where

{Dl = ZZI(ZJZI(EJ')WJ)Z
Dy=(-1+ ijl eix;)2.

In D, there exist two kinds of situations by Step 4, (a) Ic;e; <
0 or (b) che;. > 0. Since the goal is i ciej =~ 1, we predict
that the variability of (¢, c2, ..., cp) i? 1relatively large in (a).
That is, i(c,-)2 > f(cg)z.

i=1 i=1
Now, we consider D1, the upper bound of D is

2 _ T 72
Di =| Znizlxllzln
=> . xilbl?
n 2 n —>. )
< QDO 1B,

It can be found that the upper bound in (b) is better than (a).
Therefore, we require the situation of (b).

4) THE SUM OF ¢;e; IS IN [0, 1]

In geometric meaning, we generate a plane & which contain-
ing all vector (V| v = Y7, ;[b;, ¢;] forall 7; € Rand b; € B}.
Since 0 € E, the plane of Z can be written as

Txi+nx+...+0x+y=0.

Through optimization theory, we find a point ¢ on E such
that ||¢ — ¢||» has the minimum, where ¢ = [0,0,...,0, 1].
That is, the vector ¢ — ¢ is perpendicular to E. Thus, ¢ can be
written as

c1=0+174
c=0+1t1
c, =0+t1,
Cn+1:l+t

Stf 4+ tti 1+ =0.
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Finally, we have ¢t = 7,1 .
1+y <7
i=1
S
2T
n i=1
Zi_l ciei = Cpp] = ————.
1+Y 7?7

IV. ANALYSIS

A. CORRECTNESS

In the proposed algorithm, we can find a ratio (u1, ua, . . ., up)
between each component of the shortest vector. Let V' =
Zukb and w = Z fib; be the shortest vector. Now,

i=1 =1
we prove that 3k such that Vi, luixk —fil <n = ZL/nwhere

o1 and o, are the maximum and minimum singular value of
M(B).

First, letk = %’ 1fi - and r; = u;xk. Thus Z ri— Zf,- =0.
= i=1 i=1
n - - -
Let Y ribi— Zfibi = Z zib; where z; = r; —f;. It is obvious
i=1 i=1 i=1
that

n n n
ZZ[ = Zri - Zfi
i—1 i1 i—1

Deﬁnmon 3: LetE, be the plane which contain the vector
set {g|lg = Z gieib; with Z gi = p}, where ¢; is chosen in

=1
step 1 of our algorlthm 1 or step 5 of our algorithm 2 for all i.
The optimization theory ensures that ¢ = {cy, ¢, ..., cn},
which is the corresponding ratio vector, satisfy v/ = Z uik; b

1
will perpendicular to E, for all k and p, wherle up =

c¢i/ max |c;| (Figure 4).
1

Remark: There is an exact p’ > 0 such that w € E,,
we denote this plane as E. For example, in algorithm 1, if B =
{b1 bz, bg, b4} with the shortest Vector W= b1 — 3b2 + 4b4

in L(B), thenw € E; = {g|g = Z %bzy where Z qi = 2}.
i=1
Theorem 3: Let z; € R for each i = 121
Z zi = 0. Then 3z; € Z such that |z; — z}| < 1 for each i.
i=1

n with

Proof: Let z; € [oj, a; + 1) where o; € Z for all i.

We have

B = Zai =
i1

61482

n n n
Dlwi—m+ ) m=) (@—z)=-n
i=1 i=1 i=1

FIGURE 4. The schematic diagrams of Ep and v'.

Choose a set Q@ = {ij,i2,...,i—p} € {1,2,...,n} with
iy # i; Vs # t. Finally, set
, ai+1 ,ieQ
Z. =
! o , 1€ Q
= Zz =D (@+D+) o
ieQ igQ
= (Zai)+(—ﬂ)=ﬂ—ﬂ =0.
i=1
This concludes the proof. ]

If each |z;| < n, then the proof is done. If J|z;| > n > 1,
n
we can always find a z; € 7Z satisfying )" z. = 0 such that
i=1
|zi — zi] < 1 by Theorem 3. Thus,

n n n
Y ribi— Y fibi =Y zubi
i=1 i=1 i=1
n n
= Z(zi — Db+ ) zbi and
i i=1
n n

rlzl (f+Z)b _Z(Zl_ Z; b;.

i=1 i=1

Note that:

n -
1) Letw' = Y (fi + z/)b; be the output of our algorithm

i=1

n n
on the plane E since ) (fi +2) = Y _ fi.
i=1 i=1
2) Since w and W' are on E and V' is perpendicular to E,

n -
W3 = IVI5 + 1| 3 zbill* and [W113 = IIV]5 +

i=1

n -
[ _Z:I(Zi — Z2)bil%.
=

VOLUME 6, 2018
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Ty

(a1) (a2)

B12110)

Ty

]

(as) (a0)

FIGURE 5. The schematic diagrams of P; and P,.

3) Since w is the shortest vector.

n

>/12 72 =12

= V154 1) zbill* = [wl13
i=1

=72

< 113

n
= V15 + 1) (i — bill*.

i=1
n -
This means that if 3|z;| > 7, then the inequality || > z;b;ll2 <

i=1
| Z(Zt
Theorem 3. ; ;
Let Pi = Y (zi — 2)bi, P2 = Y zibi, Tt = {¥ ] [I¥lloo <
i=1 i=1
1,y € R'yand Ty = {y|[Vllc > 1,V € R"}. The basis
B = {b1, b, ..., by} can be viewed as a map M (B). Thus
we have Py € M(B)T| and P, € M(B)T, (Figure 5). Since
each component of an element in 77 is bounded, we can find

a upper bound of ||P1]|2. That is, we set a sphere C whose
center is 0 and radius is y = max [IM(B)p||>. It is obvious

z’.)B |2 must hold for all (z}, 25, . . ., z,) chosen from

pe
that if P, € M(B)T, N C, then ||P1 |l may be greater than
| P2 ||2. Finally, we use the pseudoinverse map M (B)~! to find
the region 73 = M(B)~'(M(B)T> N C). We can find that

o If Z z = (z1, zz, ...,Zy) € T3, then the inequality
l Z zibill2 < | Z(Zl z; )I; |2 may hold.

. If z e T, — T3, then the inequality doesn’t hold. That
is, we always can find another lattice point #’ such that
[W]l2 < ||w]|2, this is a contradiction.

Now, we should find the upper bound of vector which in 73.
max [|Zl2 = _ max £ 12
(€T3 ¢eM(B)~H(M(B)T2NC)
=_ max ]2
teM®B)-'C

VOLUME 6, 2018

= max [[M(B)~ ¢ |
teC

< max [[MB)"[121¢]l2
ceC

= max [[M(B™ VI IMB) ||
¢el

< max [MB) MBIl 2
¢eTy

< IMB) 2 IMB)l2[lv/n
o1
= — n,
Op
where o1 and o, are the square roots of maximum and mini-
mum eigenvalues of M(B)! M (B).

Remark:

o The point P; is not unique. That is, if Py is on the
boundary of M (B)T, then there may exists another point
P chosen from Theorem 3 in the interior of M (B)T}, but
we can prove it exactly.

n
o In fact, since ) (z; — z}) = 0, Py € M(B)T} N M(B)E',
i=1

n
sl Yt = 0, where 1; €
i=1

where E' = {[t1, 1, ...
RVi=1,2,...,n).

B. QUALITY
In this section, we will show that the Hermite factor of the

proposed algorithm is less than (y/n+ (%)2 n). First, we have

shown that a ratio (uy, up, ..., u,) can be found such that
there exists a k satlsfymg |ku, — fil < n for all i, where the

shortest vector is w = Z fibi.
i=1
Let o1y > o2 > ...04 = 0 be the square roots of the

eigenvalue of M (B)T M(B). The following inequality holds.
o1 <o (X2 2y < 2 den(L(B))»
o

On Opn n n

Hence, we have

n n
o+ kg = fdbilla < 102 + 11> ki — f)bill2

=1 =1
< Jndet(L(B))" +
MBS ki — )12
i=1
< Jndet(L(B))" + 01Z—In

< Jndet(L(B))" +(Z—‘>2 ndet(L(B))
= (Vi + )2 nder(L(B) .

C. TIME COMPLEXITY

We have shown that the inner product can be applied to
construct the matrix M in Section III. On the other hand,
it requires O(n) to solve the linear system in Step 4. Thus,
the algorithm 1 can be performed in O(n?) obviously.
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However, we will change the sign of ¢; if cije; < 0 and
go to step 2 in step S5 in algorithm 2. Now, we will show
that the probability of that the “go to Step 2”’ condition (in
Step 5) happens more than twice is negligible with some
assumptions. Let M = [a;jlyx,. In order to simplify the
analysis, assume that:

1. The components a;;’s of matrix M are independent and
ajj ~ |, where p is a symmetric distribution.
2. For two linear systems, Mx = ¢ and (M —
[(=DFlaxn)X’ = @ for some k € {0, 1}, xix{ > 0 for
all i.
First, we construct a matrlx M = [< b,, b > +eiejluxn
from a basis B = {b1 b2 b } € R™7, By the second
assumption, the sign of the solutlon of MX = s the same as
the sign of the solution of M/ = [< l;i, l;j >] = [ajjlnxn-
Then we get a matrix M” = M’/ max |a;|. By the first
1

J
assurnption each component of M" = [a;] with aj; i
w', where u' is a symmetrlc distribution in [ 1, 1]. By the

Cramer’s rule, a solution X = (x1,x2,...,X,) can be
obtained, where
/ / / /
ap ot Ayjog €1 Ay Ay
/ / / /
Ay "t dgjg €2 Gy Ay,
/ / / /
o 1 App 7 Gpjy €n Gpjpy " Gy
= max |a;| |dy, '\, dj5 - d a
i Y /11 /12 /13 lln—l lln
Ayy pp Gyz =" - Ay Gy
/ / / / /
Ay G Az~ Ay g A
n
| > (=D)'Ve;Yj;
= ’ - with
max |a;j|  Det(M")
L]
/ / / /
air o Qo Y4 a1y
/ / / /
A o Gy G4qy Ay
/ / /
Vi =|a;_14 Gi_1j—1 %i—1j41 " Gic1n

/ / /
A1 Q=1 %k 7 G

’ ’ ’ ’
nl 0 -1 i1 0 e

Let H = {1,2,...,n} and H, = {i|eix; < 0 where
M"x = ¢/ max |au|} In Step 5, we will change the sign of
ij

e; if i € H). For xy, in order to satisfy x,e, > 0, we expect
that the sign of xj is fix after changing the sign of e; for
all i € Hlf. WLOG, we assume the each component of ¢
. .. . /s 1

is positive and e;x; < O for j € H,. Since Derh ™ ma T

n .
is a constant, we only consider Z(—l)h+’eiYhi. On the

i
other hand, since each component of M” is a symmet-
ric distribution, Y; is also a symmetric distribution. Thus,
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P(Z( Ditie Yy > 0) = P(Z e;Yn > 0). Now we have
probablhty as follows:

pr=PC Y Y=Y Yi<O0]) Y<O0)

ieH—H) icH) ieH
PO Y Yni— 2 Yi<OAY Yp<O0)
ieH—H) ieH) ieH
- P(Y. Yy < 0)
ieH
PC Y Yu<—|X Yub
ieH—H) icH)
B P(Y_ Y < 0)
ieH

Since Yy; is a symmetric distribution, P(Y_ Yy < 0) = % Let

ieH
Q1= Y YpandQr = > Y. To facilitate the analysis,
icH—H] icH,
assume that Q1 and Q» are 1ndependent Then we have

Ph=2%xP(Q1 -0 <0AQ01+ 02 <0)
= 2% P(Q1 + 02| <0).
P(Q1 +102] < 0)

—00  rqi
= f f(Q] 0)(q1, q2)dq> dq;

f ) fgl (1)for(a2)dg2 day

q1

fo,(q2)dq> dq
—q1

= fQ.(QI)
0

= A fo1(@)Fo,(q1) — Fo,(—q1))dq
0

= / foi (gD (Fo,(—q1) — Fo,(q1))dq;

0
= / fo, (g1 — 2Fg,(q1))dq1

0 0
/ Joi(g1)dq: —2/ f0,(@1)Fo,(q1)dq:

| 0
~ - 2/ Joi(q1)Fg,(q1)dq:

2
1 0 0
z 5 —2/ fo (ql)dqlf Fo,(q1dq
—00 —0o0
_ 1 r
2 2%
Remark:

1) Since we predict that the mean of covariance of Q1 and
(O is close to 0 under large numbers of independent
random variables, we assume that Q| and Q» are inde-
pendent.

2) Card(H}) is at most 5.

3) Since @, is a symmetric distribution, Fp,(x) +
Fg,(—x) = 1.

4) r is a constant.
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TABLE 1. Property comparison.

Time Space Approximation Factor
4 IL
[6] Approximation Oo(n®) polynomial ( ) 2 .
[9] Exact 236 7O polynomial 1
k. n
[19] Approximation O(n3kk olynomial =)k
pp poly’ 3
[10] Approximation polynomial polynomial 1.0109™ [25]
[15] Exact 2090 [16] | 229500 l+e
NS
[26] | Approximation O(n®logn) polynomial ( 5 )&
[18] Approximation olynomial olynomial Ye(l+e =
pp poly poly:
[20]-1 Exact 23.199n+O(n) 21.325n+O(n) 1+e
[20]-2 Exact exponential 20-41n+0(n) 1+e
[23] Exact 20r3778n+0(n) 2Or2883n+0(n) 1+e
[24] Exact 20r3717n+0(n) 20r1887n+0(n) 1 + €
Ours | Approximation 0(n®) 0(n?) (Vn + ( )2 )2
n is the dimension of the basis. k is the block size. € is a small number

5) Since each Yj; is the determinant of submatrix
M, Var(Yp) = Var(a;j)n—l. Then Var(Q,) =~
Card(H))Var(Yy;) < rilvar(a;'j)"_l.

Thus, we find the probability P(Yh € H, xpe;, > 0) > (1-—
rog, )">(1—r\f Y LetZ =(1—r 'yt Now,
we w1ll prove that Z i is close to 1 as n — oo. Let Z1=(1-

2‘7/

ro, )" and 2, = (1 — \/Lino:fl)". It is obvious that Z; >
Z>2. !
lim InZ = lim nln(l —ro’™")
n—00 n—o00 aj;
In(1 — ro”~")
= lim : %
n— oo =
n
1 n—1
—r)o Ino,,
1 rog,jl( ) a;j 4
= lim il :
n—0oo _-
nZ
2
. n
= lim rinoy,
nr00 o —(1=1)
/
4j
li 2n 1
= lim rino,
n—00 0.7(’1 l)an'a{_ aj
IJU ij
li 2 1
= lim rinoy,
n—00 o (n 1)(1no ,)2 ij
ij
=0
= lim Z; =1
n— oo
. r
lim InZ, = hm nin(l — —na" )
n— 00 ﬁ
In(1 — Zpo""!
— lim 4= v )
n— oo l
n
1 —r n—1 r 1
1_%7171(750"1/ + ﬁnO' ’ Ino /)
4.
= lim Y :
n—oo -
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2
n-(1 +nlnoa::/_) -

= lim —
n—oo ~—(n—=1) _
aa;j N V2
2n+3ntlno 4, -
= lim
n— 00 —(n=1 , — I
—0 Z Ino, G \/_
2+ 6n lna -
= n11>oo o ,(" 1)(111(7 ,)2 \/_
l/
6]n0ag r
— : v I
- n1—1>nolo —O‘_(n_l)(IHO' , )3 ﬁ
al’.j a;;
=0

= lim Z, = 1.
n—oo

By the squeeze theorem, we find that Z = 1 asn — oo.
Finally,the expected number of the execution of Step 5 is

1
E(Step5) =1+ 7 — lasn — oo.

That is, with overwhelming probability, the “go to Step 2
condition in Step 5 only happens one time.

D. SPACE COMPLEXITY

In this subsection, we show that the space complexity is
O(n?). The proposed algorithm needs n> numbers to store the
basis as a matrix form M (B) at first. Second, we used n num-
bers to store the initial value of e; fori = 1,2, ..., n.In Step 2
to Step 4, we stored the result of 3 S fori = 1 2,...,nby
M(B)T M (B), which needs n? numbers Third, n numbers are
required to store the vector u = [c1, c2, ..., cy]/t, where

t = max |c;|. Fourth, in Step 6, we need 2n numbers to store
1<i<n

the vector v; and the minimum vector of ||v||, = 1mln 1V:ll2,
<i<n

where ||V||» is the output of the algorithm. Totally, it is
required to store n*> + n + n> 4+ n + 2n = 2n*> + 4n numbers
in the proposed algorithm.
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TABLE 2. The execution number of step 5 in algorithm 2.

Dimension | Execution number | Dimension | Execution number
30 2.8945 1000 4.733
60 3.278 1200 5.433
90 3.452 1400 4.267
120 3.56 1600 4.767
150 3.746 1800 4912
180 3.937 2000 4.847

210 3.965 2200 4.800
240 4.028 2400 5.503
270 4.101 2600 5.511
300 4.186 2800 5.492
330 4.113 3000 5.504

V. COMPARISON

In this section we compare the proposed algorithm and the
existing algorithms in terms of time complexity, space com-
plexity, and approximation factor, where the comparison is
shown in Table 1. The approximation factor is used to eval-
uate the quality of the output of the algorithms. The smaller
the factor is, the better the quality is. As we mentioned in
Section 1, the existing algorithms can be basically classified
into two dual types. One achieves polynomial time/space
complexity with exponentially large approximation factor,
while the other outputs (almost) the shortest vector with
exponential time/space complexity. However, from Table 1,
one can observe that our work falls outside the categories
of the existing works. Interestingly, our algorithm is the first
one achieving polynomially large approximation factor with
polynomial time/space complexity.

VI. IMPLEMENTATION

In this section, we will give the experimental data (1000 times
in each dimensions) to evidence the number of executions
of step 5 in algorithm 2 (Table 2). In low dimension (less
than 300), the execution number is in [2.8, 4.2]. Moreover,
the execution number is in [4.2, 5.6] in high dimension.

VIl. CONCLUSION

In this paper, we have proposed a new SVP approximation
algorithm (algorithm 1) which is performed in O(n?) with
Hermite factor at most (y/7 + ((‘:—,]1)2 n) in any case. Our main
concept is based on the optimization theory. Through adding
one dimension to make interference, we find a non-zero
critical point (cy, ¢2, ..., cy) such that the length of vec-
tor > 1, ¢;b; has the minimum value under Yo~ L
Finally, we have found an integer k and computed [kc;]
for all i to recover the ratio from a rational number to an
integer. To the best of our knowledge, it is the first algo-
rithm with polynomial-bounded Hermite factor and poly-
nomial time complexity. Moreover, we have also given an
improved algorithm—Algorithm 2, which is analysed under
some assumptions.
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