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ABSTRACT Decolorization aims at converting color images into grayscale images while preserving
their original contrast and color discriminability. In this paper, we introduce an original fusion-based
decolorization approach. Our algorithm employs as inputs the three color channels R, G, and B, and an
additional input related to the Helmholtz-Kohlrausch effect. To blend those inputs, we adopt a multiscale
fusion strategy to prevent the artifacts arising from a pixel-wise application of weight maps and use several
weight maps that respectively control saliency, exposure, and saturation. The new operator has been tested
successfully on a large data set of both natural and synthetic images. It is competitive compared with modern
optimization-based methods in terms of decolorized image visual quality while offering the advantage of
being computationally simple, and temporally consistent when decolorizing video sequences.

INDEX TERMS Image decolorization, multi-scale fusion, color-to-grayscale, perception.

I. INTRODUCTION
Nowadays, digital cameras are commonplace and the pic-
tures/images are most often captured and represented in
color. However, there are still important applications such
as display to viewers with color-deficient vision, compres-
sion, visualization of medical imaging, aesthetical styliza-
tion, and black and white printings that require reliable
grayscale/monochrome versions of the images. The stan-
dard color-to-grayscale conversion employs the luminance
channel only and is still widely used for common purposes
(e.g. printing, various image processing algorithms). In many
cases, however, a decolorized image obtained by mapping
isoluminant pixels to the same gray level intensity is not able
to preserve the original appearance of the color input, as the
global appearance and original spatial distribution are not
well preserved (illustrated in FIGURE 1). This limitation of
the standard transformation is mainly due to the fact that iso-
luminant locations are mapped onto the same gray intensity
in the output.

The operation of color-to-grayscale conversion has thus
been addressed with more sophisticated approaches, based
on a variety of perspectives: gamut-mapping [1], color
dimensionality reduction [2]–[4], finding the color axis with
predominant chromatic contrast [5], [6], decolorization tar-
geting contrast/saliency preservation [7]–[13]. Beyond their

FIGURE 1. In contrast with a standard color-grayscale approach that
would just keep the luminance as the decolorized grayscale image, our
method seeks to preserve the global appearance and contrast present in
the initial color image.

diversity, previous methods follow either a global or a local
strategy to derive the mapping function converting color pix-
els into gray-level values.

In this paper we present a novel decolorization method,
that builds on the fusion of multiple images derived from
the initial colored input. Image fusion combines several input
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FIGURE 2. Overview of the proposed fusion-based decolorization
approach. We derive four input images (R, G, B and H − K lightness) from
the original color image and, for each of them, three weight maps that
are combined in a single normalized map. Employing a multi-scale image
fusion approach, those four inputs yield the decolorized output.

images into a single output one. This is done by associating a
weight map to each input so as to only transfer its relevant fea-
tures to the output. Our algorithm employs four input images.
The first three correspond to the three R, G, B channels.
As a fourth input, our method derives an image that reflects
the color contrast in a way that accounts for the Helmholtz-
Kohlrausch (H-K) effect, i.e. the property of human per-
ception that makes colored light appear brighter than white
light of same luminance. This fourth input helps to better
preserve the global appearance of the image, as it enforces
distinct gray-shades for (adjacent) distinct colors. The weight
maps associated to each input image are computed from
three popular local contrast metrics: (a) a saliency map that
preserves the most prominent pixels, i.e. the pixels that differ
from the image average; (b) an exposedness weight map that
advantages well-exposed regions; and (c) a chromatic weight
map which favors the color saturated regions. Moreover,
to reduce the local distortions that might be introduced by
the weight maps discontinuities, our approach is designed in
a multi-scale fashion.

In final, our method provides a straightforward technique
that avoids employing color quantization or cost function
optimization (whichmay be computationally expensive while
risking not converging to a global extremum, and generally
lacking of temporal consistency). In terms of image quality,
our method appears to be competitive with state-of-the-art
optimization-based image decolorization methods. It how-
ever offers the additional and unique (among high quality
methods) advantage of providing both spatially and tempo-
rally consistent decolorization. Moreover, with single scale
approximation of the multiscale fusion [cite here your single
scale fusion paper], the pixel-wise processing of inputs and
weight maps makes it computationally efficient, and suited
to parallel implementation. Together, all those features make
it especially suited to video processing.

The presented fusion-based decolorization strategy builds
on our previous conference paper [14] presenting a more
detailed and coherent body of work. In addition, here we
demonstrate quantitatively that our technique is able to pre-
serve important global and local features of the color image.
We also perform a comprehensive perceptual validation based
on the preference of real observers. Moreover, in this work we

introduce for the first time a quantitative strategy to assess the
temporal coherence for video decolorization.

The remainder of the paper is structured as follows.
Section II surveys the related work. Section III introduces
our decolorization method. Section IV validates our approach
and provides a quantitative and qualitative analysis of recent
decolorization operators, including for video sequences.
Finally, Section V concludes.

II. RELATED WORK
Recently, the problem of decolorization or grayscale image
conversion has received an increasing amount of attention.
Various local and global mapping techniques have attempted
to solve this dimensionality reduction problem.

With a global mapping scheme, pixels with the same color
are converted to the same grayscale. Global adjustment meth-
ods typically compute the mapping either (i) to maximize
the grayscale image variance, or (ii) to minimize the differ-
ence between the contrasts measured in the graylevel and
colored images. Among the first class of methods, the works
in [15] and [16] define the global mapping to be a lin-
ear combination of RGB channels that is optimal in the
sense that it maximizes the variance of the output grayscale
image, while preserving the image brightness. Compared
to [15] and [16] adds an additional term to the objective
function so as to promote a mapping that selects the mini-
mum norm solution among all feasible solutions. Among the
methods preserving the contrast between color and grayscale
images, the method of Rasche et al. [3] formulates the opti-
mization based on a set of landmarks whose colors have
order-constrained luminance values. The method is known
to scale poorly with the number of landmark colors [17].
Kim et al. [18] do not consider landmarks. They optimize
a nonlinear parametric global mapping function so as to
minimize, over the whole image, the difference between the
local color and the grayscale image gradients. The mapping
function is chosen to achieve lightness fidelity, thereby favor-
ing the preservation of brightness ordering. Lu et al. [7], [19]
adopt a similar global energy functional minimization. They
use a second order multivariate polynomial parametric model
as a global mapping function, and explicitly relax the strict
preservation of brightness ordering constraint while maxi-
mizing the preservation of the original color contrast. Ref-
erence [8] fundamentally follows [7], [18], and [19] in the
sense that it computes an optimal global mapping that pre-
serve the gradient between color and gray images. Overall,
the comparative analysis provided in our validation section
also reveals that, beyond their computational complexity,
those optimized global mapping fail in rendering properly
the colored scene where local chromatic contrasts have a
strong perceptual impact (see FIGURE 11, sets 2/18 for
Kim et al. [18], and sets 5/21 for Lu et al. [7], [19]).

Still among the global mapping techniques, the approach
of Grundland and Dodgson [5] does not target grayscale
image contrast maximization but employs a dimensionality
reduction using predominant component analysis aiming at
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identifying the axis with optimal chromatic contrast rather
than the axis with maximal variance. Alternatively, to reduce
the three colors to a single dimension channel, Yoo et al. [4]
fundamentally rely on the derivation of a sequence of colors
by clustering the colors along an elongated curve with locally
maximal saturation in the CIELab color space. They then
map this curve to a monotonic sequence of gray levels. Our
validation reveals that those approaches might occasionally
fail in capturing significant color contrasts (even for the very
good and effective method in [5] see set 23 in FIGURE 11).
Differently from contrast-based optimization and dimen-

sionality reduction, [12] simply proposes to enhance the
luminance contrast based on some well-chosen chrominance
information. The approach accounts for the opponency the-
ory, which states that our vision is dominated by black/white,
red/green, and yellow/blue perception processes.

At the opposite of global approaches, the local adjustment
methods adapt the color-to-gray mapping as a function of
the local distribution of colors. As for global approaches,
a first category of local methods aims at maximizing the
variance or preserving the contrast in the grayscale image.
The approach in [20] combines the values of the red, green,
and blue channel pixel by maximizing the local variance and
in the same time preserving the brightness of the color image.
The differences among the local transformations at nearby
pixel locations are minimized based on an total variation
(TV) approach. Gooch et al. [2] attempt to preserve the
initial image contrast by adjusting the gray values in each
pixel position to minimize the sum of squared difference
between the grayscale and color contrast computed in each
pixel. The gradient descent convergence process, initiated by
the conventional luminance image, is likely to remain stuck
in a local optimum in presence of highly textured images.
Reference [9] follows [2] in that it minimizes an energy
function reflecting the difference between grayscale and color
contrast, but differs from [2] in that it derives the color
contrast from the perceptually dominant channel among hue,
saturation, and luminance, and in that it estimates the energy
function on a subset of pixels, before propagating the result to
other pixels thereby limiting the perceptual impact of spatial
inconsistencies. Lau et al. [21] first project the color image
to the luminance space, and adopt a cluster-based approach
to improve the luminance contrast. Therefore, the method
groups pixels into clusters according to their color and spatial
similarities, solves for new cluster grayscale values in the
target space with an optimization that aims at preserving
original chromatic contrast, and transfers those changes of
cluster values back to each pixel.When the number of clusters
increases, the method reduces to [2], and suffers from the
same drawbacks.

A second category of local approaches reconstructs
the grayscale image through gradient field integration.
Neumann et al. [17] compute a chromatic gradient field
both from the CIELab and Coloroid [22] color spaces.
They then compute the integral-consistent gradient field that
is the nearest to the chromatic one, and reconstruct the gray

FIGURE 3. a. The derived four inputs (R, G, B and H − K ) and the
corresponding Gaussian pyramids of the weight maps (b. saliency;
c. exposedness; d. chromatic).

image by simple integration. In final, the consistency con-
straint however appears to limit the local adaptation of the
color to gray mapping. The multispectral method of Alsam
and Drew [23], defines the gray image gradient based on
the maximum gradient among the color channels gradient,
which is a simplification of the dominant eigenvalue consid-
ered in [24], and derives the gray image through an iterative
procedure. Reference [25] follows a similar approach, using
a Poisson equation solver to derive the mapping from the
gradient field. Finlayson et al. [26] also process the image in
the gradient domain and then re-integrate the gradient field
to reconstruct the image. To avoid the artifacts inherent to the
ill-pose nature of reconstructing a non-integrable field, they
propose to learn a relationship to map the gradients of the
3 colors and their 6 pairwise products onto the desired chro-
matic gradient, and use this relationship to map the colors and
pairwise products directly to the output gray value. In final,
the approach results thus in a global mapping strategy, and
does not benefit from the advantages of local approaches.

The third and last category of local methods drives local
contrast enhancement based on some chromatic filtering
process [1], [6], [10], [11]. The strategy introduced in [1]
combines the luminance channel with a high-pass filtered
chroma channel. Reference [6] also merges the luminance
and a chromatic contrast/gradient information, but esti-
mate the color contrast/gradient by computing difference of
Gaussians according to an image-dependent predominant
chromatic orientation. Smith et al. [11] build on the Lapla-
cian pyramid to adjust the grayscale conventional luminance
image according to the local chromatic contrast. It relies on
the lightness measure of Fairchild and Pirrotta [27] to account
for the Helmholtz-Kohlrausch effect when estimating the
local chromatic contrast. In that sense, it is close from our
approach. Our validation section however demonstrate that
our way to weight the color and H-K components generally
performs better than Smith et al. [11].

Some more previous works address a related but distinct
problem than visually consistent decolorization. For exam-
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ple, [28] challenges the inverse problem of estimating the
original RGB image from a black-and-white halftone image
with homogeneously distributed dot patterns. Besides, de
Queiroz and Braun et al. [29] map the color information onto
imperceptible high-frequency textures of the output graylevel
image, so that they can be recovered with an appropriate
decoder. Their work has proven to be a practical solution for
office documents, but obviously does not preserve the initial
color contrast in the grayscale image. As a last example,
the work in [30] considers document segmentation, by earn-
ing a filter that maximizes the output on text pixels while
minimizing it on background pixels.

In contrast with most previous techniques, our decoloriza-
tion algorithm does not require an optimization step before
mapping colors to gray values. It employs a straightforward
multi-scale fusion strategy. When computational complexity
and data transfer become an issue, the multi-scale process
can be effectively approximated with a single scale pro-
cedure [31]. Fusion-based decolorization has initially been
considered in [32] to merge the three R, G, and B color
components. In contrast, by introducing an additional input
that accounts for colored lightning perception and adopt-
ing appropriate weight maps, our approach preserves visual
appearance and demonstrates spatial and temporal consis-
tency when decolorizing both images and videos. The quali-
tative and quantitative analysis provided in Section IV reveals
that our method compares favorably to a representative set of
the above methods.

Image fusion is a technique that blends data from mul-
tiple sources. It has been successfully applied in different
fields [14], [24], [33]–[47], and significant efforts have been
made in recent years to develop efficient and effective image
fusion methods for a variety of applications from all-in-focus
imagery to dehazing and HDR imaging. Even though we built
on the fusion principle, our approach presents several distinc-
tive features that allow compressing the three-dimensional
color image in a grayscale version that preserves the original
contrast and details, by employing inputs and image quality
measures that are specifically designed for our decolorization
task.

III. FUSION-BASED DECOLORIZATION APPROACH
In this work we start from the principle that the presentation
of an image in black-and-white should be tightly connected
to color perception. However, notions like color saliency
and color contrast are difficult to measure and integrate in a
mapping of pixels color values. For this reason, we have opted
for an image fusion approach, combining the Helmholtz-
Kohlrausch (H−K ) lightness predictor [27] with the three R,
G, B color components, based on a set of pixel weights that
are determined by the product of saliency, pixel exposure, and
chromatic quality metrics. An overview of our approach is
given in FIGURE 2. The pixel-wise locality of our approach
makes it both spatially and temporally consistent. This is
in contrast with region-based local approaches, which pro-
cess colors differently in case of distinct neighborhood, but

FIGURE 4. Importance of the Helmholtz-Kohlrausch (H − K ) input to
improve the contrast of our decolorized result.

also with global approaches, which derive different mapping
schemes when the image (partly) changes, thereby inducing
temporal inconsistencies.

The rest of this section introduces theH−K input formally,
defines the weight maps, and surveys the fusion process.

A. HELMHOLTZ-KOHLRAUSCH CHROMATIC ADAPTED
LIGHTNESS
The Helmholtz-Kohlrausch (H − K ) effect results from the
human visual system behavior when facing a colored lighting.
It refers to the entoptic phenomenon that makes colored light
appears brighter to us than white light of the same luminance.
Basically, the intense perceived saturation of spectral hue is
interpreted as part of the original luminance of the color.

As observed in [11], the H − K effect is useful to solve
ambiguities introduced by the isoluminant colors. In prac-
tice, the most colorful patch among two isoluminant ones
is mapped onto a brighter intensity. Formally, to define
the associated fusion input channel, we propose to use the
Fairchild’s chromatic lightness metric [27], which predicts
the H − K effect, by defining a perceived luminance LH−K
in the CIE L∗c∗h color space by the expression:

LH−K

= L∗ + (2.5− 0.025L∗)(0.116

∣∣∣∣sin(h− 90
2

)∣∣∣∣+ 0.085)c∗

(1)

where L∗, c∗, h respectively denote the luminance, chroma
and hue color components. This LH−K predictor has been
employed previously in the work of Smith et al. [11]. How-
ever, as discussed, we used this predictor in a different fashion
and Section IV reveals that our way to exploit the LH−K
predictor performs generally better than Smith et al. [11]
(see sets 2, 8, 12 in FIGURE 11).

B. WEIGHT MAPS DEFINITION
In the following, we define and motivate the weights used by
our fusion technique. First, since image decolorization aims
at maintaining the distinctiveness of local differential struc-
tures depicted by initial color images, our approach detects
the visually important features based on a saliency measure-
ment. We have considered the metric defined in [48] to esti-
mate the saliency. The second weight map of the algorithms
detects and maintains the overall image appearance into the
final result by estimating the exposedness for each input.
This gain map ensures the preservation of the achromatic
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FIGURE 5. The weights impact (for three set of images) when considered
separately in our fusion-based framework.

tones presented in the color input as demonstrated in the
validation section.

Finally, the third weight map is motivated by the obser-
vation that the luminosity perceived by human subjects is
affected by the color of light and also by the saturation.
More saturated colors are perceived brighter. This adaptation
of the visual-human system has been exploited by artists to
compensate for the difference between the real world wide
range luminance and the reflectance of existing pigments.
Increasing color saturation can produce illusory sensations of
brightness, since details visibility changes when regions are
presented more saturated [11]. Based on these observations
it is desirable that more saturated regions appear brighter in
decolorized images.

In the rest of the section, we present a formal definition of
each of those three weight maps.
The saliency weight map (WS ) refers to the the degree of

prominence with respect to the linked regions. Among the
numerous works dealing with saliency estimation, we have
been interested in solutions that are able to extract a full
resolution saliency maps with well-defined boundaries of
salient objects while being also computationally effective.
As a result, for this measurement, we opted for the recent
saliency algorithm of Achanta et al. [48]. In this approach the
saliency weight at pixel position (x, y) of input I k is expressed
on a per-pixel basis as:

WS (x, y) = |I kωhc (x, y)− I
k
µ| (2)

where I kµ is the arithmetic mean pixel value of the input I k

while I kωhc is the blurred version of the same input (see [48]
for more details). This map prevents introducing artifacts
since neighboring comparable values are assigned to similar
saliency weights. The fact that the saliency map depends
on the image average (a global parameter) could potentially
induce a lack of temporal consistency when decolorizing
videos. To circumvent this potential issue, and to preserve
the temporal coherence in our decolorized sequence, instead
of computing a mean value for each frame, we propose to
simply compute a global mean value for the entire sequence.
For long sequences, the average on a large sliding window
could of course be considered.

The exposedness weight map (WE ) aims at avoiding an
over- or underexposed location appearance by giving more
weight to the inputs lying around their mid-range. Inspired by
the approach of Mertens et al. [42], who employs a similar
measure but in the context of multi-exposure fusion, this
weight map is expressed as a Gaussian-modeled distance to
the average normalized range value:

WE (x, y) = exp
(
−
(I k (x, y)− 0.5)2

2σ 2

)
(3)

where I k (x, y) is the value of the pixel location (x, y) of the
input image I k , and the parameter σ = 0.25. This map-
ping conserves those tones that are characterized intermediate
exposedness, neither over- or under-exposed, keeping the
original appearance of the input.
The chromatic weight map (WC ) enables our conversion

algorithm to adapt to the chromatic information by boosting
the color of the highly saturated regions. Basically, for each
pixel chromatic weight is computed as follows:

Wk
C (x, y) =

[
I k (x, y)+ δ.S(x, y)

]2
(4)

where k indexes the input, S(x, y) denotes the saturation in
position (x, y) for the HSI color space, and δ denotes a small
percentage value, set to one percent in all the results pro-
vided in this manuscript. In consequence, for each channel,
the pixels with high values on that channel will be identified
as higher contributors for the chromatic weight associated to
that particular channel. This can be observed in FIGURE 7.
Note that, because the product of the weights are normalized
across the inputs (see next section), the relative values of
the chromatic weights assigned to the different inputs are
more meaningful/relevant than their actual absolute values.
For example, white pixels assign a same chromatic weight to
all color components, and the actual impact of the chromatic
weight for those pixels actually vanishes after normalization.

C. COMBINING THE WEIGHT MAPS
We have processed and analyzed a large and diverse set
of images. It appeared that none of the weight map was
significantly and constantly more relevant than the others.
Hence, an aggregated weight map Wk for input k is simply
computed by multiplying the processed weight maps Wk

S ,
Wk

E ,W
k
C . This ensures that the weight of a pixel will be small

as soon as one of theweightmap is small in that pixel. To yield
consistent results that exploit the entire image dynamic range,
we normalize the resulted aggregated weight maps across
inputs (W̄k (x, y) =Wk (x, y)/

∑
k Wk (x, y), see FIGURE8).

This operation imposes that the sum of the normalized weight
maps is equal to one in each pixel location.

D. MULTI-SCALE FUSION OF THE INPUTS
Having defined the inputs (R,G, B color channels andH −K
chromatic adapted lightness) and the weight maps, we now
present how this information is blended through a multiscale
fusion strategy. As previously mentioned, the purpose of
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FIGURE 6. Saliency preservation of different decolorization strategies. This figure is based on the saliency metric defined in [48].

FIGURE 7. The impact of each weight map (top row) and the weight maps
computed for each input separately.

the fusion process is to transfer each input image to the
output, in proportion to its associated weight map value.
A naive and straightforward implementation of this principle
would consist in computing the fused image F every pixel
location (x, y) as:

F(x, y) =
K∑
k=1

W̄k (x, y)Ik (x, y) (5)

where k ≤ 4 is the input index and W̄k are the normalized
weight maps that influences the inputs.

However, applying Eq. 5 directly may introduce impor-
tant haloing artifacts (see FIGURE 9), mainly in locations
close to strong transitions between weight maps. This issue
is solved by multi-scale decomposition strategies that use
linear [49], [50] or non-linear filters [51]–[53]. Even though
the class of non-linear filters are competitive to preserve
edges, the linear filters are computationally more effective.
In this work we have opted for the multi-scale Laplacian
pyramid decomposition [49].

In the multi-scale Laplacian pyramid decomposition, every
input image Ik , is decomposed into a Laplacian pyra-
mid while the normalized weight maps W̄k are decom-
posed using a Gaussian pyramid. Assuming that both the
Gaussian and Laplacian pyramids have the same number
of levels, the mixing of the Laplacian inputs with the
Gaussian normalized weights is performed independently
at each level, yielding finally the l th fused pyramid level
to be:

F l(x, y) =
K∑
k=1

Gl−1
{
W̄k (x, y)

}
L l
{
Ik (x, y)

}
(6)

when l < N and

FN (x, y) =
K∑
k=1

GN−1
{
W̄k (x, y)

}
LN

{
Ik (x, y)

}
+

K∑
k=1

GN
{
W̄k (x, y)

}
GN

{
Ik (x, y)

}
(7)

when l = N , with l denoting the pyramid level
index.

The final decolorized image is obtained by summing the
fused contribution of all levels, each level being upsampled
at the native image resolution:

D(x, y) =
N∑
l

F l(x, y) ↑d (8)

where ↑d is the upsampling operator with factor d = 2l−1.
A similar fusion process has been applied previously
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FIGURE 8. From color to gray: from the original color image (a), we obtain our decolorized result (b) by applying an image fusion approach, using the
four inputs (c), weighted by the corresponding normalized weight maps (d).

FIGURE 9. Compared with the multi-scale fusion, the naive approach
introduces haloing artifacts.

for other applications such as image enhancement [40],
HDR imaging [42], underwater imaging [44], [47] and image
dehazing [43].

Applying the fusion process independently at every scale
level the potential artifacts due to the sharp transitions of
the weight maps are significantly reduced since it somehow
respects simplistic models of the human eye.

IV. EXPERIMENTAL RESULTS
This section validates our approach. After having motivated
the use of our multiple weight maps, we present a number
of results that demonstrate that our approach is competitive
with recent state-of-the-art optimization-based approaches in
terms of still image decolorization quality. Therefore, an ini-
tial qualitative assessment (Section IV-B) is completed by
a quantitative evaluation (Section IV-C) and a perceptual
study (Section IV-D). In a second step, temporal consistency
is investigated in synthetic and natural video decoloriza-
tion scenarios (Section IV-E). When dealing with video, our
approach appears to outperform the previous approaches that
are equivalent in terms of still image decolorization quality.
This is a strong advantage of our approach, in addition to its
simplicity.

FIGURE 10. Consistent color-to-gray mapping. Please observe how
differently the considered methods map the leaves and the flower. Our
operator is more consistent compared with the techniques of [3] and [5]
being able to mapinto the same grayscale level the leaves while the
flower is converted into different grayscale levels.

A. WEIGHT MAP ASSESSMENT
To motivate our weight maps merging process, and assess the
impact of each weight map we have decolorized the entire set
of 24 color images considered in our evaluation by using only
oneweight map at a time (please refer to FIGURE 5) and have
compared them to the decolorized image obtained based on
the combined weight maps. We observe that the combination
of weight maps achieves the more consistent results by being
themost accurate in reproducing the structures/textures/edges
that are visible in the color image. In contrast, the chromatic
and exposedness weight maps fail in rendering some signif-
icant color differences, while the saliency map misses some
details and textures by inducing some undesired saturation.

B. QUALITATIVE VISUAL ASSESSMENT
In FIGURE 10 are presented several versions of the same
image, in which the flower has been colored differently at
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FIGURE 11. Comparative results. From left to right the grayscale results obtained by applying CIEY , Bala and Eschbach [1],
Gooch et al. [2], Rasche et al. [3], Neumann et al. [17], Grundland and Dodgson [5], Smith et al. [11], Kim et al. [18],
Lu et al. [19] methods and our fusion-based operator.

each instance. As can be observed, the global approach of
Grundland and Dodgson [5] generate dissimilar gray levels
for the same region on different instances (note the leaves
and the background mapping). Differently, our technique
and [11] yield more consistent outputs, while still differenti-
ating the flower colors. We conclude that our strategy has the
advantage to preserve both global and local characteristics,
therefore being consistent for this challenging case.

C. QUANTITATIVE EVALUATION
Our approach has been tested extensively for a large set
of images. FIGURE 11 shows comparative results against
several state-of-the-art decolorization operators, including
the ones of Bala and Eschbach [1], Gooch et al. [2],
Rasche et al. [3], Grundland and Dodgson [5],
Neumann et al. [17], Smith et al. [11], Kim et al. [18], and
Lu et al. [19]. As a general observation, despite its relative

simplicity, our proposed solution compares favorably to all
other operators.

An in-depth critical analysis of those figures reveals that
our method fails to properly render the color contrast on
set 6 in FIGURE 11. However, most other methods suffer
from the same problem for this image, and the method of
Grundland and Dodgson [5], which performs reasonably well
on this image, suffers from other kinds of artifacts (see the
lack of contrast on the top-right corner in set 4 or the lack of
grayscale variety in the flowers depicted in set 23). We con-
clude that no other method is constantly better than ours when
dealing with still image decolorization. Hence, our method
is certainly a good alternative, given its computational
simplicity.

Even whether the visual perception of decolorized image
investigated through a subjective perceptual study in the
next subsection remains the definitive argument to evaluate
a method, for practical reasons, measuring quantitatively the
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FIGURE 12. Black and white preservation of different operators. As can
be observed the operators shown in the bottom row distort significantly
the original white color regions.

most significant factors that affect the visual perception of
transformed images is relevant.

Since in the literature there is no specialized metric gener-
ally accepted to measure the accuracy of a color-to-grayscale
transformation. We first introduce and motivate the metrics
we have considered in our quantitative comparative study.
In short, we propose to define two quality indices that mea-
sure, in the decolorized image, the preservation of the extreme
pixel values and of the color saliency map between the color
and decolorized images.

We first define the extreme values index δe to verify
the preservation of the location of achromatic values (black
and white pixels) between the original and the decolorized
image. This index is relevant because the most evident and
undesirable visual distortion of a decolorization transform
is probably the conversion of the original black and white
values (extreme values that appear in the original color
image) into mid-tones (this kind of conversion error is shown
in FIGURE 12).

This index δe is defined as:

δe = NGBW /NCBW (9)

where NGBW is the number of pixels in the original color
image that are black or white and NCBW counts the number
of those pixel locations that present black and white values in
the converted grayscale image. The results have been inter-
preted statistically through variance analysis (ANOVA) [54]
in FIGURE 13 for the 24 images the have been used in [55],
and for the same SoA decolorization methods considered
in FIGURE 11.

Our second metric is based on the observation
(see FIGURE 6) that the saliency map appears to provide a
good reference cue to evaluate the perceptual quality of the
decolorization. A conversion that loses most of the saliency
structure is definitely not appropriate (see the standard con-
version in FIGURE 6). Moreover, the preservation of the
saliency clearly facilitates fast image understanding since
it impacts the way our brain speeds-up the localization and
selection of relevant items in a scene. Therefore, we pro-
pose to introduce a second decolorization quality index
to complete the extreme value index. This second index
assesses saliency preservation during decolorization, and is

FIGURE 13. Quantitative evaluation using the index δe that verifies the
preservation of the extreme values (black and white colors) in the
decolorised image versions. The results have been interpreted
statistically using analysis of variance (ANOVA) [54].

FIGURE 14. Quantitative evaluation using the index δs that estimates the
level of saliency preservation by comparing the saliency maps of the
reference color image with the saliency maps of decolorised versions.
The results have been interpreted statistically using analysis of
variance (ANOVA) [54].

denoted δs. As a preliminary step to the δs computation,
first we compute a saliency map [48] for both the original
and decolorized images. In color images, the saliency map
Sal(x, y) computation is performed in L∗a∗b∗ color space
using:

Sal(x, y) =
∥∥Iωhc (x, y)− Iµ

∥∥ (10)

where Iµ is the mean image feature vector, Iωhc (x, y) is
the corresponding image pixel vector value in the Gaussian
blurred version (using a 5 × 5 separable binomial kernel) of
the original image, and ‖.‖ is the L2 norm.

The saliency index δs is then simply defined as:

δs = NSalG/NSalC (11)

where NSalC represents the number of pixels of the color
image saliency map that lie above 70% of the maximal
saliency value, whileNSalG characterizes the number of pixels
of the decolorized image saliency map that lie above 70% of
the maximal saliency value.

Analyzing the results of the extreme value index δl (the
graphic shown in FIGURE 13) it can be observed that our
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FIGURE 15. Perceptual evaluation. The frequency matrices and the accuracy scores with 95% confidence
intervals obtained by applying Thurstone’s law for every of the 24 images. The 95% confidence intervals
CI = ±0.2778.

operator together with CIE Y but also the operators of
Grundland and Dodgson [5], Gooch et al. [2], Kim et al. [18]
preserve the white and black pixel values. This characteristic
can be observed in FIGURE 12 but also by a close inspection
of the results corresponding to the 24 images part of them
shown in FIGURE 11. On the other hand, the saliency
index δs (the graphic shown in FIGURE 14), divides roughly
the considered operators in two main classes: those that
preserve quite well the saliency (Grundland and Dodgson [5],
Gooch et al. [2] and our operator) and those that
lose significantly this important global information
(e.g. Neumann et al. [17], Bala and Eschbach [1],
Smith et al. [11]).

Moreover, by comparing our quantitative validation with
the perceptual study of Cadik [55], we have observed that the
results of the two assessment methodologies are quite corre-
lated and lead to the same conclusions. Indeed, algorithms
with high degree of saliency preservation and small local

distortion of extreme values obtain the highest perceptual
scores in [55]. For example in FIGURE 13 and FIGURE 14,
the methods of Grundland and Dodgson [5] and
Gooch et al. [2] are among the best methods according to our
proposed criteria. They were also preferred ones in the per-
ceptual study of Cadik [55]. In contrast, the approaches such
as the ones of Rasche et al. [3] and Bala and Eschbach [1]
preserve relatively well the original saliency information but
introduce a high degree of extreme values distortion, which
makes them to be classified less perceptually accurate in
the study of Cadik [55]. Similarly, CIEY does not introduce
important local extreme values distortion but is not able to
preserve the global appearance in many cases.

D. PERCEPTUAL EVALUATION
Since the problem of color-to-grayscale transformation is
fundamentally related to image perception, we performed
a validation based on the preference of real observers.
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The proposed perceptual validation is implemented in a sim-
ilar manner as the strategy used in the recent study of Mon-
tagna and Finlayson [56], which consists in a pairwise com-
parison where each decolorized image version is compared to
all the other considered color-to-grayscale versions. For this
validation we used the same set of 24 color images that were
analyzed previously in [55]. Following the results reported by
Cadik [55] we considered the following 5 color-to-grayscale
techniques: Gooch et al. [2], Grundland and Dodgson [5],
Smith et al. [11], Lu et al. [19] and our method.

The number of methods considered in our perceptual
validation has been limited to 5 to limit the load on the
viewers since every volunteer had to observe a number of
n(n − 1)/2 (n = 5 is the number of analyzed color-to-
grayscale techniques). Consequently, there were a number
of 10 comparisons for each of the 24 input color images,
which results in 240 choices performed by each participant.
15 volunteers were involved in our experiment. They declared
to have normal color vision or corrected to normal acuity.
Basically, each participant has been requested to select from a
pair of grayscale images that have been displayed in a random
order and on a large display (ASUS VG248QE 24-inch LED
display) together with the original color image. The setup was
placed in a dark room and the participants had no constraint
related to the time available to perform their selections. For
each pair of grayscale images (displayed together with the
reference color image), the observers had to choose which
version was providing the most accurate reproduction of the
original color image. The participants were asked to analyze
general features of the transformations (e.g. contrast, similar
colors mapping, local artifacts, edges preservation). As an
average, the time required to perform the test was about
80 minutes per participant.

Based on these observations we have built a frequency
matrix, which represents for each technique the number of
time it is preferred during each comparison. For each tested
image the frequency matrices are stored as n × n raw data
matrices where the value at position (i, j) represents the
number of users who preferred the technique of column j
to the method of row i. As in [56], to interpret the obtained
frequency matrices we employ the well-known Thurstone’s
law of comparative judgment, case V [57]. As in the study of
Morovic and Luo [58], the n×n z-score matrix is computed as
a logarithmic transformation of the frequency matrix scaled
with a coefficient χ = 0.667. Finally, for each tested image,
the accuracy score of the evaluated techniques is computed as
a mean score per column of the n×n z-score matrix. Based on
the empirical study ofMontag [59], the 95% confidence inter-
vals are expressed as CI = Âś1.96σobs, where the estimated
observed standard deviation has the value σobs = 0.142.
The frequency matrices and the accuracy scores with 95%

confidence intervals obtained by applying Thurstone’s law
are shown for each of the 24 images in FIGURE 15. The
overall preference score of the tested grayscale techniques
is shown in FIGURE 16. Positive values indicate preferred
grayscale techniques while negative scores, the opposite.

FIGURE 16. Perceptual evaluation. Interpretation of our dataset by
applying Thurstone’s law to preference judgements. On the y axis are
shown the normalized scores for each method with the positive values
representing preferred grayscale techniques. The error bars represent
95% confidence intervals, CI = ±0.2778.

Analyzing the results of the perceptual evaluation, it can be
observed that the technique of Grundland and Dodgson [5]
and ours have been generally preferred over the other
methods.

A second class of preference includes the technique of
Gooch et al. [2] and Lu et al. [19] while the technique
of Smith et al. [11] seems to score lower mainly due to
the poor contrast and local artifacts introduced close to the
edges. Additionally, compared with our quantitative valida-
tion, the perceptual evaluation shown important correlation
mostly with the δl descriptor.

E. VIDEO DECOLORIZATION TEMPORAL CONSISTENCY
ASSESSMENT
Now that we have shown that our method is competitive
compared with recent state-of-the-art approaches in terms of
still image decolorization, we investigate its behavior when
processing video content. Video decolorization, which might
for example be relevant for viewers with color-deficient
vision, adds another dimension to the problem of image
decolorization, as temporal coherence needs to be guaran-
teed for the entire video sequence. Formally, a temporally
consistent mapping assigns similar gray levels to regions that
correspond to the same colored content across time, thereby
avoiding undesired flickering effects. Smith et al. [11] have
shown that local approaches are suitable for this purpose in
the sense that a local area is processed independently of its
location and of the content of the entire image.

This observation is important since our approach is primar-
ily local.

In contrast, the methods that compute an optimal map-
ping scheme from the (statistics of the) image to decolorize
generally lack of consistency across time, since a relatively
minor change in the scene might affect the mapping scheme
(see for example FIGURE 13 in [10]). Those arguments in
favor of our approach are confirmed by a number of decol-
orized natural and synthetic video sequences are provided
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FIGURE 17. Decolorization temporal consistency assessment. The top row
shows a sequence of frames that contains isoluminant color patches.
Between two consecutive frames, the patches either keep their
color or switch to a mid-gray tone. The second and third rows depict in
white the pixels that do not change compared to the previous or the first
frame, respectively. The remaining rows present the decolorized images
and the temporal inconsistency metrics obtained when using the standard
luminance-based decolorization, Grundland and Dodgson [5], Smith
et al. [11], Lu et al. [7] and our method. In each of the two rows following
a row of decolorized images, the temporal inconsistency is depicted in
red tones (deep red = high value), and measures -on a patch basis- the
mean absolute difference of the decolorized pixels compared to the
previous or the first frame, respectively. This inconsistency metric is only
computed between pairs of patches that have the same color in the initial
images, as identified by the white pixels in the second and third rows.

at https://www.youtube.com/watch?v=i3rUiVGnTXQ). The
visual observation of those sequences confirms that our
method is temporally consistent. To quantify this statement
compared to other decolorization approaches, Fig. 17 consid-
ers a synthetically generated sequence. The adjacent frames
of the synthetic video contain the same isolluminant color
patches at the same locations, except for the patches that are

transformed to a mid-gray tone. As can be seen, the standard
decolorization approach maps all the color patches to the
same gray tone.Moreover, it can be observed that even though
the technique of Grundland and Dodgson [5] decolorizes
each individual frame properly, it is not able to preserve the
same grayscale level for a given color patch all along the
sequence. A similar observation is valid for the Lu et al. [7]
approach. In contrast, our method decolorizes the sequence in
a temporally consistent manner, while preserving the initial
color contrasts.

As depicted in FIGURE 17, we quantitatively assess the
temporal consistency of video decolorization by measur-
ing the gray level consistency between pairs of decolorized
frames. Therefore, we introduce an original two-step strategy.
The first step identifies the pixel locations where the two
investigated color image have the same color appearance,
as measured by the Euclidean distance in the CIEL∗a∗b∗

color space.
The second step then computes the mean absolute differ-

ence of decolorized pixels over those locations where color
pixels were identical. This mean absolute difference is pre-
sented in FIGURE 17 for a set of methods, including the
technique of Grundland and Dodgson [5], the technique of
Smith et al. [11] the recent approach of Lu et al. [7] and
our method. We observed that, the techniques of Grundland
and Dodgson [5] and Lu et al. [7] are not able to preserve
the grayscale values of corresponding color patches over the
adjacent frames. The method of Smith et al. [11], while being
visually reasonably consistent, reveals some small video
inconsistency when analyzed with the proposed assessment.
In contrast, our approach remains consistent whatever the
pairs of frames that are considered along the time.

To the best of our knowledge the above quantitative assess-
ment methodology is the first one to evaluate the temporal
coherence for video decolorization. Obviously, when con-
sidering real-life natural video sequences, it should ideally
involve some kind of motion compensation between consec-
utive frames. Such investigation is however beyond the scope
of our paper, and is left for future work.

F. DISCUSSION
In our extensive experiments, the fusion-based operator per-
forms generallywell on still images. Compared to othermeth-
ods that also perform very well on still images, it offers the
additional advantage of being temporally consistent. Another
important advantage of our fusion strategy is the computation
time. While our optimized approach processes a 800 × 600
image in approximately 200 ms (Intel Core i7 CPU, 16GB
RAM), Smith et al. [11] method takes 6.7 - 10.8 seconds
for 570 × 593 image, Decolorize [5] -unoptimized code
−3.5 seconds for a 800× 600 image and the optimized code
of Kim et al. [18] converts a 800×600 image in 1-2 seconds).
Also computationally effective, the method of Kim et al. [18]
is not able to solve completely the mapping limitations of [2],
tending to reduce the original contrast and to lose some of the
original saliency (please refer to comparative results).
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V. CONCLUSION
In this work we introduced an effective decolorization
approach built on the multi-scale fusion strategy. Selecting
appropriate weight maps and inputs, our multi-scale fusion
strategy shown to be effective for decolorization of various
color images by transferring the original image saliency and
color contrast in a spatially consistent manner to a visu-
ally pleasant grayscale image. This has been demonstrated
through an extensive quantitative and qualitative validation.
In addition, our method is simple to implement (no opti-
mization required, suited to parallelization) and offers the
advantage of being temporally consistent. To evaluate the
temporal coherence for video decolorization we introduce a
quantitative assessment methodology.
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