
Received August 25, 2018, accepted September 26, 2018, date of publication October 16, 2018, date of current version November 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2876201

Accelerating BFS via Data Structure-Aware
Prefetching on GPU
HUI GUO 1, LIBO HUANG1, YASHUAI LÜ2, JIANQIAO MA1, CHENG QIAN1,
SHENG MA 1, AND ZHIYING WANG1, (Member, IEEE)
1National University of Defense Technology, Changsha 410073, China
2Space Engineering University, Beijing 101416, China

Corresponding author: Libo Huang (libohuang@nudt.edu.cn)

This work was supported in part by the NSF of China under Grant 61433019, Grant 61472435, Grant 61572058, Grant 61672526,
Grant 61202129, and Grant U14352217, in part by YESS under Grant 20150090, and in part by the Research Project
of NUDT under Grant ZK17-03-06.

ABSTRACT Breadth First Search (BFS) is a key graph traversing algorithm for many graph analytics
applications. In recent decades, as the scale of the graph analytics problem has become larger and larger,
it has raised many interests to accelerate graph traversing on GPU. However, due to the irregular memory
access pattern of BFS, a great number of the memory divergent accesses harm the efficiency of GPU
dramatically. Data prefetching can fetch useful data into the on-chip memory in advance to reduce the
latency of accessing the off-chip memory. However, traditional prefetching techniques on GPU cannot deal
with irregular memory accesses efficiently. By analyzing BFS algorithms for GPU, we find an opportunity
to design an efficient prefetching mechanism by using the explicit information of the graph data structure.
In this paper, we proposeDSAP, a data structure-aware prefetcher onGPU that generates prefetching requests
based on the well-defined data structure access pattern of BFS. Also, we introduce an adaptive fine-grain
prefetching management to adjust the status of the prefetching granularity dynamically to balance the cache
resource contention and data prefetching based on the utilization of the prefetched data.We implement DSAP
on a GPGPU-sim simulator and evaluate six data sets from three different kinds of applications. DSAP can
achieve a geometrical mean IPC improvement of 28%, up to 48.4%, compared with that of GPU with no
prefetching technique, while in contrast, a stride-based global history buffer prefetching mechanism makes
no effects on improving BFS performance for these data sets. Also, we use the GPUWattch to estimate the
power consumption, and the power increases 8.3% in average and up to 11.8%, but the total energy cost
drops 15.1% in average.

INDEX TERMS Accelerator architectures, breadth first search, data structure aware, GPGPU computing,
prefetching mechanism, irregular memory access.

I. INTRODUCTION
In the big data era, GPU has been successfully applied to
solve big data problems for many applications. As the scales
of graphs are increasingly larger, it has raised many inter-
ests to accelerate graph analytics applications on GPU, such
as Single Source Shortest Path (SSSP) and Graph Color-
ing (GC). Because most of the graph analytics applications
have uncomplicated arithmetic calculations, the biggest cost
comes from memory accesses generated by graph traversing.
Breadth First Search (BFS) is the most widely used graph
traversing algorithm. However, GPU cannot accelerate BFS
efficiently due to the irregular memory access pattern of
BFS. GPU has to issue more than one memory requests for

one irregular memory access, which dramatically impacts its
efficiency. Moreover, GPU has a bad caching behaviour for
the data structures of the graph, the miss rate of which is even
greater than 80%. Fig. 1 shows that GPU has a relatively
high miss rate for the data structures of the graph, due to
the irregularity of access pattern of BFS. As a result, all the
threads have to spend many cycles to wait for data and even
worse, GPU cannot achieve the latency hiding through its
massive parallelism due to the insufficient arithmetic calcu-
lations of BFS.

Data prefetching is one of the promising techniques
to improve the efficiency of memory accesses and cache
efficiency. Typical prefetchers on GPU, such as stream

60234
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5131-0437
https://orcid.org/0000-0003-1710-4060


H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 1. The GPU L1 cache miss rates of accessing the different graph
data structures for different data sets respectively.

prefetchers [1], [2], stride prefetchers [3], [4] and GHB
prefetchers [5], [6], can effectively reduce the mem-
ory latency for applications with regular access patterns.
MT-prefetching [7] proposes an inter-thread prefetching
mechanism with a hardware prefetcher training to reduce
the negative effect of prefetching on GPU. APRES [8] com-
bines warp scheduling and prefetching to improve cache
efficiency. These prefetching techniques reduce the latency
of accesses to off-chip memory efficiently and effectively.
However, for irregular memory accesses, the error rate of
prefetching prediction based on typical prefetching mecha-
nisms is much higher than that for regular memory accesses.
The high error rate of prediction causes severe cache pollu-
tion and memory bandwidth waste due to the useless data
prefetching. Also, typical pattern-detected based prefetch-
ing mechanisms are too inefficient to identify complicated
and various access patterns of irregular memory accesses.
And, due to the inefficient pattern detection, these prefetch-
ing mechanisms almost make no contributions to reduce
the latency of memory accesses and improve the efficiency
of GPU. Therefore, the recent proposed GPU prefetch-
ing mechanisms based on typical prefetching mechanisms
are not able to deal with data-dependent memory accesses
of BFS.

By analyzing the BFS algorithm for GPU, although its
memory accesses are data-dependent and highly irregular,
its access pattern to the graph data structure is well-defined
and predictable. The order of accessing the graph data struc-
ture is fixed, according to the definition of the breadth first
search. For example, assuming a node is to be searched,
the next step of BFS is to find all the edges the node connects.
With this information, a prefetcher can fetch the data of all the
edges in advance as long as the ID of the node to be searched
is known. Based on this observation, we propose a Data
Structure-Aware Prefetching (DSAP) mechanism, which is
explicitly informed of the knowledge of the graph data struc-
ture access pattern of BFS. With the information of the node

being searched, DSAP can prefetch the necessary graph data
for the next node to be searched. Although, we only discuss
the usage of DSAP for BFS in this paper, but it also benefits
other graph analytics applications that have the same data
structure access pattern with BFS.

Besides, where to store the prefetched data needs to be
considered, due to the restricted on-chip storage resources
of GPU. Because L1 cache has a relative sufficient mem-
ory space and has the advantage of data management,
DSAP selects L1 cache as the storage for the prefetched data.
However, cache pollution and early eviction are common
problems caused by prefetching for caches. Many works tend
to use metrics of the cache miss rate and early eviction rate
to determine whether to do data prefetching or not. Although
this can avoid the harm of data prefetching, but the perfor-
mance degrades dramatically at the same time. According to
the knowledge of the data structure access pattern of BFS,
DSAP adopts an adaptive fine-grain prefetching management
to balance the cache resource contention and data prefetching.
DSAP sets up multiple prefetching statuses that represent
different prefetching granularities, and DSAP can control the
number of the generated prefetching requests by dynamically
switching the status based on the cache early eviction rate.

In this paper, we propose a Data Structure-Aware Prefetch-
ing (DSAP) that generates prefetching requests based on the
well-defined data structure access pattern of BFS and the
knowledge of the graph data structure. DSAP can prefetch
the graph data accurately with the explicit graph data struc-
ture information and improve the cache efficiency by the
adaptive fine-grain prefetching management. For six datasets
from three different applications, DSAP improves the IPC
by 28% in geometric mean, and up to 48.4% with an aver-
age of 15.1% energy cost reduction, compared to the GPU
without prefetchers, while the stride-based GHB prefetcher
cannot improve the performance. The following summarizes
our most important contributions:
• We first analyze the shortcomings of typical prefetching
mechanisms on GPU for irregular memory accesses and
the irregularity of memory accesses of BFS. We demon-
strate that typical prefetching mechanisms have high
error rates and cannot detect the irregularmemory access
patterns of BFS.

• We find that the graph data structure access pattern of
BFS is well-defined and predictable. We propose the
Data Structure-Aware Prefetching mechanism (DSAP)
that uses the explicit knowledge of the graph data struc-
ture access pattern to help it improve the prefeching
accuracy.

• We observe that simple metric-based prefetching man-
agements result in performance degradation. We pro-
pose an adaptive find-grain prefetching management to
balance cache efficiency and prefetching efficiency.

• We design and implement the proposed DSAP on
GPGPU-sim simulator, and demonstrate that DSAP can
improve the performance of BFS by prefetching data
with the explicit information of the graph data structure

VOLUME 6, 2018 60235



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 2. The designs of the three typical prefetching mechanisms. (a) Stride prefetching. (b) Stream prefetching. (c) GHB prefetching.

and memory access pattern of BFS, and balance the
cache efficiency and the data prefetching by the adaptive
fine-grain prefetching management.

II. BACKGROUND AND MOTIVATION
A. GPU PREFETCHING
Prefetching mechanisms on GPU have been widely
researched. Generally, there are three kinds of typical
prefetching mechanisms: stride prefetcher, stream prefetcher
and GHB prefetcher. Fig. 2 shows the designs of the three
typical prefetching mechanisms.

1) STRIDE PREFETCHER
The stride prefetcher (Fig.2 (a)) uses a table to record the
local history information of memory accesses, including the
program counter (PC, as the index of the table), the last
address (for the computation of the next local stride), the most
recent stride (the difference between two recent addresses)
and the status of the recent stride [3], [4]. If the constant offset
is found for the same PC, the stride prefetcher will generate
prefetching requests by using the constant stride and the last
accessed address.

2) STREAM PREFETCHER
The stream prefetcher (Fig.2 (b)) usually tracks the accessing
direction of a memory region [1], [2]. When the accesses
have the same direction, the stream prefetcher will prefetch
data in this direction cache line by cache line. The prefetched
cache lines are stored in the stream buffers not in the cache
to avoid polluting the cache. If an access misses in the cache,
the prefetched cache line will be fetched into the cache. If the
sequential access pattern changes, the stream buffers will be
flushed.

3) GHB PREFETCHER
The global history buffer (GHB) prefetcher (Fig.2 (c)) uses
the global history buffer to store all the global addresses of
the missed accesses and the global history buffer is organized
as a FIFO table [5], [6]. Each of the GHB entries stores a miss
address and a pointer. The pointers link the GHB entries in
the time-ordered sequence. Another table is the index table.

It stores the keys as the index of each entry and the keymay be
the PC of an instruction or amiss address. The index table also
stores the pointers into the global history buffer for the entries.
TheGHB prefetcher canwork together with other prefetching
mechanisms, like stride prefetching and stream prefetching,
to identify various memory access patterns.

Many research works are based on these prefetching mech-
anisms. Jog et al. [9] propose a prefetching technique on
memory side to improve L2 cache hit rates for general pur-
pose GPU applications. Inter-thread L1 data prefetching [10]
combines prefetching mechanism with warp scheduling pol-
icy to improve the efficiency of prefetching. Koo et al. [11]
use a leading warp to compute the starting address early for
prefetching the data accessed in stride pattern. These works
demonstrate that prefetching mechanisms can benefit general
purpose GPU applications with regular memory accesses.
However, for applications with irregular memory accesses,
like BFS, the typical prefetching mechanisms have a poor
performance. We implement a Next Line prefetcher and a
stride-based GHB prefetcher on GPGPU-Sim, which repre-
sent the implementations of the streaming prefetcher and the
combination of the stride prefetcher and the GHB prefetcher
respectively. For BFS, both of the two typical prefetchers
are not able to improve the performance of GPU. The per-
formance of the stride-based GHB prefetcher almost equals
to that of GPU without prefetchers, while the performance
even gets 8% worse on average when using the Next Line
prefetcher. The aggressive Next Line prefetcher pollutes the
caches with useless prefetched cache lines and wastes the
memory bandwidth. The stride-based GHB prefetcher has
an extremely low coverage (<1%) for the memory accesses
of BFS and is hard to find the constant stride access pat-
tern for BFS. Therefore, as the irregular applications, such
as graph computing applications, becomes more and more
popular, the need of the prefetching mechanisms for irregular
applications becomes more urgent.

B. PROGRAMMING MODELS FOR BFS
In general, breadth first search includes two basic opera-
tions on graph data structure: (1) modifying the visited sta-
tuses of nodes and (2) generating the frontier for the next

60236 VOLUME 6, 2018



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

iteration of search. Two common models are used to map-
ping BFS onto GPU: topology-driven and data-driven [12].
The topology-driven implementation (Algorithm 2) uses the
thread index to decide which node to be searched. Every
thread checks the indexed node to see whether the node is
in the frontier. Corresponding threads apply compute oper-
ators (accessing all the edges the node connects, checking
the visited statuses of the neighbor nodes and updating the
frontier for the next iteration) to the nodes in the frontier,
while threads corresponding to nodes not in the frontier do
none of compute operators. The kernel is called iteratively
until the frontier is empty. The data-driven implementation
(Algorithm 1) introduces a new data structure, called work
list, as the frontier of each iteration to store the IDs of the
nodes to be searched and shares the work list across all the
threads. Each warp is assigned a small chunk of the work list
to search every iteration and threads in the same warp search
a node ID from the work list each time. Threads from the
same warp access all the edges the node connects, check the
visited statuses of the neighbor nodes in parallel and push
the unvisited neighbor nodes into the work list for the next
iteration.

Algorithm 1 The Data-Driven Implementation of BFS
1: function BFS_kernel(graph,worklist, curr_level)
2: tid ← blockIdx.x ∗ blockDim.x + threadId .x
3: lane_id ← tid%WARP_SZ
4: warp_id ← tid/WARP_SZ
5: task_start ← warp_id ∗ CHUNK_SZ
6: task_end ← task_start + CHUNK_SZ
7: for id = task_start → task_end do
8: v← worklist[id]
9: edge_ptr ← graph.vertexlist[v]

10: num_edge← graph.vertexlist[v+1]− edge_ptr
11: for i = lane_id → num_edge do
12: vid ← graph.edgelist[i+ edge_ptr]
13: if graph.visitedlist[vid] == INFINITY then
14: graph.visitedlist[vid]← curr_level + 1
15: end if
16: end for
17: end for
18: end function

In general, the data-driven implementation is more effi-
cient to process BFS than the topology-driven implementa-
tion on GPU. For the topology-driven implementation, if a
large proportion of nodes are not in the frontier, this will
lead to inefficient parallel processing and performance degra-
dation, while for the data-driven implementation, threads
working on different chunks of the work list exploit more
parallelism and avoid useless work. For BFS, the proportion
of nodes in the frontier is always small. The topology-driven
implementation allocates a great number of threads equal to
the number of nodes in the graph, but only a few threads do
the computation of search actually for each iteration, which
decreases the efficiency of GPU. However, the data-driven

Algorithm 2 The Topology-Driven Implementation of BFS
1: function BFS_kernel(graph, curr_level)
2: tid ← blockIdx.x ∗ blockDim.x + threadId .x
3: if graph.visitedlist[tid] == curr then
4: start ← graph.vertexlist[tid]
5: end ← graph.vertexlist[tid + 1]
6: for i = start → end do
7: vid ← graph.edgelist[i]
8: if graph.visitedlist[vid] == INFINITY then
9: changed ← true
10: graph.visitedlist[vid]← curr_level + 1
11: end if
12: end for
13: end if
14: end function

implementation only needs to spawn a number of the threads
equal to the number of neighbors of the nodes in the frontier
and all the threads release their computing power to improve
the performance. Therefore, in this paper, we select the
data-driven implementation of BFS to study the prefetching
mechanism.

C. COMPRESSED SPARSE ROW FORMAT GRAPH
DATA STRUCTURE
Adjacent matrix is a popular data structure for graphs that
GPU can efficiently operate on. Adjacent matrix stores the
weight of the edge indexed by row index and column index.
However, as the scale and sparsity of the graph increases,
the memory space used to store the adjacent matrix grows
explosively and most of the space stores useless information.
For example, assuming a graph has 1 million nodes and
1 million edges and the data size is 4B, a adjacent matrix
needs a 4TB storage space to store the whole graph and
only 0.0001% of data are useful. Compressed sparse row
format (CSR) graph data structure is one of the popular
compressed graph data structures used to represent large and
sparse graphs. CSR format represents a adjacent matrix with
three arrays. The indices array stores column indices and the
data array stores the nonzero values in the matrix. The third
array stores the start of the row in column indices and data,
called ptr. Therefore, the item in the matrix indexed by i row
and j column can be accessed as data[ptr[i]+k] and k is the
index of j in the indices[ptr[i]:ptr[i+1]]. Comparing with the
adjacent matrix, CSR format only needs a 12MB space to
store that graph.

The algorithm of BFS we use for evaluation is from the
benchmark GraphBig [13] and it adopts CSR as the graph
data structure, shown in Algorithm 1. According to the
Algorithm 1, the graph data structure includes vertex list,
edge list and visited list, and the vertex list and the
edge list refer to the arrays of ptr and column indices in
CSR respectively. The visited list stores the visiting infor-
mation of each node and the work list is introduced by the
data-driven implementation to store the vertex frontier of

VOLUME 6, 2018 60237



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 3. An example of graph data structure access pattern of the
data-driven implementation of BFS. (a) An example abstract graph.
(b) The order of accessing each data structure to complete
a breadth first search for one node.

each iteration. Fig. 3 shows an example of graph data struc-
ture access pattern of the data-driven implementation of BFS.
The order of accessing data structures to complete a breadth
first search for one node is shown in Fig. 3(b). First, the warp
fetches an item from the top of the work list to get the vertex
ID of the node to be searched. Second, the warp accesses the
vertex list to get the row length and the start index of the
edge list. Third, threads in the warp process different edges in
parallel to get the frontier of the next iteration. Lastly, threads
check the value of each frontier node in the visited list and put
the unvisited nodes in the work list. This process is executed
iteration by iteration until the work list is empty.

According the well-defined graph data structure access
pattern of BFS, what to access next is predictable upon
the data structure currently accessed. Therefore, a prefetch-
ing mechanism with such an information can easily gener-
ate prefetching requests for BFS. Although the prefetching
mechanism proposed in this paper aims at boosting BFS using
CSR format, it still can be applied to other graph data struc-
ture easily. And for other graph analytics applications with
the same access pattern of BFS, such as SSSP and GC, this
prefetching mechanism also can improve their performance.

III. DATA-STRUCTURE AWARE PREFETCHING
BFS has a well-defined and predictable data structure access
pattern. By using the knowledge of graph data structure and
the access pattern of BFS, a prefetching mechanism could
precisely fetch the necessary graph data in advance to reduce
the long latency of irregular memory accesses to graph data
structure. Also, according to the order of accessing graph data

FIGURE 4. The integral GPU hierarchy detail with DSAP supports. Each
SM contains a distributed DSAP unit.

structure of BFS, an adaptive fine-grain prefetching manage-
ment can be applied to balance the efficiency of L1 cache and
data prefetching. In this section, we propose a data-structure
aware prefetching mechanism, called DSAP. First, we show
the architecture overview of DSAP and how it works with
other components in GPU. Second, we describe hardware
supports for DSAP to generate prefetching requests to the
graph data structure. Third, we introduce the adaptive fine-
grain prefetching management to guarantee the efficiency of
L1 cache andDSAP, and show how the hardware control logic
works. Lastly, we introduce the software supports for DSAP
with extra CUDA APIs.

A. OVERVIEW
A GPU contains many Streaming Multiprocessors (SMs)
and every SM consists of many simple single-thread cores.
In GPU, every 32 threads are grouped into a small unit,
called warp, for scheduling. All the threads in the same warp
execute the same instruction at the same time. For the data-
driven implementation of BFS, because each warp needs to
process a unique small chunk of the work list, the information
of graph data structure for each warp and SM is different.
Therefore, DSAP uses distributed DSAP units to generate
prefetching requests for each SM. Fig. 4 shows the integral
GPU hierarchy detail with the supports of DSAP. The on-
chip memory of each SM consists of register file, texture
cache, constant cache, L1 cache and shared memory. Texture
cache and constant cache are read-only, which cannot be
used to store prefetched data. Moreover, storing prefetched
data into register file will exacerbate the resource contention.
Shared memory has a sufficient space to store data, but
it needs programming supports to manage the prefetched
data, which may increase the complexity. Therefore, DSAP
chooses L1 cache as the storage for the prefetched data
and also L1 cache is responsible for processing prefetching
requests.

Fig. 5 shows a local overview of how to generate prefetch-
ing requests and how to process these requests among

60238 VOLUME 6, 2018



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 5. A local overview of how to generate prefetching requests and
how to process these requests among Load/Store unit (LDST unit),
L1 cache and DSAP unit.

Load/Store unit (LDST unit), L1 cache and DSAP unit.
DSAP unit receives the information of memory accesses
to the graph data structure from two components of the
LDST unit, memory access monitor and response FIFO. The
memory access monitor is responsible for monitoring normal
loads to the work list. By monitoring loads to the work
list, DSAP unit knows the new start of a search iteration
and prepares to prefetch the graph data used in the next
search iteration. The response FIFO stores the requested data
and the information of the processed memory requests from
L1 cache. Since the prefetching requests are also processed
by L1 cache, the response FIFO can monitor the prefetching
requests and send the requested data and information of the
requests to DSAP unit. By using the information from LDST
unit, DSAP unit can generate prefetching requests for graph
data based on the graph data structure access pattern of BFS.
After receiving the information from LDST unit, DSAP unit
updates the entry of the runtime information table according
to warp ID and chooses a corresponding request genera-
tor to generate prefetching requests based on the source of
the received information (from the memory access moni-
tor or the response FIFO) and the data structure the monitored
load accesses. At last, DSAP unit puts the new generated
prefetching requests into the prefetching request queue. The
adaptive prefetching unit in DSAP unit is responsible for
controlling the number of the prefetching requests gener-
ated. L1 cache processes both normal loads and prefetching
loads, and treats prefetching loads as normal loads when
processing.

B. HARDWARE SUPPORTS FOR DATA-STRUCTURE
AWARE PREFETCHING
DSAP unit receives graph data information from two sources,
the memory access monitor and the response FIFO, and
chooses the request generator based on the source type of
the information (from the memory access monitor or the
response FIFO) and the data structure the monitored load
accesses. The received information includes the requested
address and data of the monitored memory request, the ID of

the warp that issued this memory requests and the source
type.

Fig. 6 shows the main components of the DSAP unit and
how the prefetching mechanism works. There are four com-
ponents: address space classifier, runtime information table,
request generator unit which includes generators for each
data structure and prefetching request queue. The address
space classifier has two parts, address range table and eight
comparators. The address range table stores the start and end
addresses for each data structure. The comparators compare
the requested address with the address range of each data
structure in parallel and tell which data space the requested
address is from. The runtime information table updates
the entry of the graph data structure information with the
requested data, according to the warp ID. The request genera-
tor unit has a generator selector and four types of request gen-
erators, and is responsible for generating prefetching requests
to each graph data structure. The prefetching request queue
stores all the generated prefetching requests and L1 cache
fetches the prefetching requests when it is free.

1) GENERATOR SELECTION
Because the access pattern to each graph data structure is
different, DSAP unit adopts four request generators to gen-
erate prefetching requests for each data structure. Generally,
these generators can be grouped into two types, generator
for the work list and generator for the other data structures
(the vertex list, the edge list and the visited list). This is
because the information they need to generate requests is
from different components (thememory accessmonitor or the
response FIFO). Generating the prefetching request to the
work list is triggered by the normal load to the work list,
which is monitored by the memory access monitor, while
generating prefetching requests to other data structures is
based on the prefetching requests to the graph data structure,
which is monitored by the response FIFO.

Besides, DSAP unit uses the requested address of the
monitored prefetching request to choose the generator for
the vertex list, the edge list and the visited list. Accord-
ing to the graph data access pattern of BFS, the order of
accessing each data structure is predictable. Therefore, when
monitoring a prefetching request to the work list, DSAP unit
can generate a prefetching request to the vertex list, while
if the monitored prefetching request accesses the vertex list,
prefetching requests to the edge list will be generated. Also,
when monitoring the prefetching request to the edge list,
DSAP unit will generate requests to the visited list. Therefore,
both the source of the received information and the requested
address determine which request generator to use.

For example, in Fig. 6, DSAP unit receives an information
fromL1 cache. The source type is 1, meaning this information
is sent by the response FIFO. According to the requested
address and the warp ID, this monitored request is a prefetch-
ing request to the vertex list from warp 0. Based on the
value of the vertex index in the runtime information table
for warp 0, which is 1, the address of data for the vertex 1

VOLUME 6, 2018 60239



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 6. The main components of the DSAP unit and how the prefetching mechanism works.

is 0x90021f04. Since DSAP unit needs to get the values of
the two adjacent nodes of the vertex list for the start index and
end index of the edge list, DSAP unit reads out the two values
(1090,4043) from the 128B requested data, the addresses of
which are 0x90021f04 and 0x90021f08. The two values are
then written in the runtime information table as the start index
and end index for warp 0 and sent to the request generator unit
to generate prefetching requests to the edge list.

2) REQUEST GENERATORS
Due to the differences of the access patterns between each
data structure (the work list, the vertex list, the edge list and
the visited list), DSAP unit adopts four prefetching request
generators for each data structure.

The work list request generator is responsible for gen-
erating a prefetching request to the work list, when DSAP
receives the information of a normal load to the work list. The
requested address of the prefetching request is the address
of the next item of this normal load requested in the work
list. Therefore, the requested address is calculated with the
address of the normal load requested and the size of the data
in the work list. For example, if the normal load requests the
data at the address of 0x88021d00, then the generator will
generate a prefetching request to the address of 0x88021d04.

Two adjacent nodes in the vertex list point out the start and
end edge index of the edges in the edge list, according to the
CSR graph data structure. The previous prefetching request to
the work list fetches the vertex ID. Therefore, the vertex list
request generator can calculate the addresses of the two nodes
in the vertex list, when the response FIFO sends back the
information of the previous prefetching request to the work
list. Usually, one memory request can fetch the data of the
two nodes, when they are in the same cache line, while if the
values are not in the same cache line, DSAP has to issue two
memory requests. For example, in Fig. 6, according to the

runtime information table, warp 1 only gets the start index
from the monitored request. That means the values of the start
index and the end index are not in the same cache line and
DSAP unit is waiting for the other request to the vertex list.

The edge list request generator generates prefetching
requests to the edge list based on the corresponding start and
end edge index in the runtime information table. Since all
the edges for one node is stored continuously in the edge
list, the number of generated prefetching requests depends on
how many cache lines could hold all the data and the case of
unaligned addresses should be considered.

The visited list uses the data in the edge list as the vertex
index. Therefore, the visited list request generator depends
on the requested data of the previous prefetching requests to
the edge list to generate request addresses of the visited list.
Since the node IDs in the edge list are not adjacent, the visited
list request generator needs to generate one memory request
for each value of the requested data. That means if the cache
line size is 128B and the data size is 4B, the visited list request
generator needs to generate 32 memory requests to the visited
list for each requested data of the edge list.

C. ADAPTIVE FINE-GRAIN PREFETCHING MANAGEMENT
Cache pollution and early eviction are common problems
caused by prefetching. Many works tend to use metrics of the
cache miss rate and early eviction rate to determine whether
to do data prefetching or not. These strategies can quickly
resume the efficiency of cache, but loss the performance
improvement from data prefetching. Reducing the number of
generated prefetching requests is an effective way to avoid
cache pollution and early eviction. The graph data structure
access pattern of BFS provides an opportunity to design an
adaptive fine-grain prefetching management to control the
number of generated prefetching requests. For BFS, the order
of accessing the graph data structure is well-defined, which

60240 VOLUME 6, 2018



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 7. Hardware design for the adaptive fine-grain prefetching management. (a) Hardware design of the adaptive fine-grain prefetching
management. (b) Status transition of the adaptive conttroller.

is the work list, the vertex list, the edge list and the vis-
ited list. Therefore, DSAP unit can have five statues for its
prefetching granularity: no prefetching, prefetching to the
work list, prefetching to the work list and the vertex list,
prefetching to the work list, the vertex list and the edge list,
and prefetching to the work list, the vertex list, the edge list
and the visited list (full prefetching). Initially, each DSAP
unit is at the full prefetching status. However, as long as the
early eviction rate is higher than the threshold, DSAP unit can
downgrade its prefetching status from the full prefetching to
no prefetching gradually. And when the cache early eviction
rate is lower than the threshold, DSAP unit also can upgrade
its prefetching status dynamically.

Fig. 7(a) shows the hardware design of the adaptive fine-
grain prefetching management. The prefetched data utiliza-
tion is the ratio of the used prefetched data to all the
prefetched data in L1 cache, which reflects the early evic-
tion rate, and DSAP unit uses it as the metric of switch-
ing the status of the prefetching granularity. The adaptive
controller periodically receives the prefetched data utiliza-
tion from L1 cache and adjusts the prefetching status of
DSAP unit. Fig. 7(b) represents the status transition of the
adaptive controller. The partial prefetching represents the
other three statuses of the prefetching granularity, except the
prefetching to the work list, the vertex list, the edge list and
the visited list, which is called the full prefetching, and no
prefetching status. At the partial prefetching status, if the
new received prefetched data utilization is higher than the
threshold, the adaptive controller will upgrade the prefetch-
ing status to allow DSAP unit to generate more prefetching
requests. Otherwise, the adaptive controller will downgrade
the prefetching status.

The generator mask stores the status of the prefetching
granularity and points out which request generators can

generate prefetching requests at present status. What needs
illustration is that the work list request generator is always
allowed. Therefore, the three bits of the generator mask
respectively refer to the vertex list, the edge list and the visited
list. For example, in Fig. 7(a), the value of the generator
mask, 110, means the vertex list request generator and the
edge list request generator are allowed to generate prefetching
requests, while the visited list request generator is not. The
value of the generator mask and the result of the address
space classifier do a bitwise AND operation to get the final
mask for the generator selector. In Fig. 7(a), the result of
the address space classifier is 001, which means the received
information can be used to generate prefetching requests
to the visited list. However, the generator mask blocks out
the visited list request generator and the visited list request
generator will not generate any prefetching requests at this
status.

The value of the generator mask changes based on the
current value of the generator mask, the control signal of
the adaptive controller and two mask shift table. The adap-
tive controller issues an upgrade or downgrade signal to the
corresponding mask shift table based on the status transition
in Fig. 7(b). The mask shift table matches the entry with
the current generator mask and reads out the corresponding
value to update the value of the generator mask. For example,
in Fig. 7(a), the current value of the generator mask is 110,
but the sampled data utilization is 0.5 which is lower than the
threshold (0.8). In this case, the adaptive controller issues a
downgrade signal to the mask shift table (for downgrade) and
reads out the corresponding value of the next generator mask
(100) based on the value of the current generator mask (110).
Then the value of the generator mask changes to 100, and that
means only the prefetching to the work list and the vertex list
is allowed at this status.

VOLUME 6, 2018 60241



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

TABLE 1. Basic simulator configurations.

D. EXTRA CUDA API SUPPORTS
DSAP provides two extra CUDAAPIs, cudaMallocMark and
cudaUpdateWl, to help the hardware get the static informa-
tion of the graph data structure before launching kernels on
SM cores. DSAP uses a modified cudaMalloc, cudaMalloc-
Mark, to mark the memory allocations for the graph data
structure and send the allocated address spaces of the data
arrays to the address range table. DSAP calls the cudaUp-
dateWl before entering the kernel to update the address range
of the work list each time. Algorithm 3 shows an example
of how to use the extra CUDA APIs to make DSAP work.
The cudaMallocMark uses a parameter to specify the entry id
of the address range table to store the range of the allocated
addresses for each data array of the graph data structure. The
cudaUpdateWl updates the address range of the work list
based on the value of the variable wl_size every iteration.

IV. METHODOLOGY
We implement DSAP onGPGPU-sim simulator [14]. And the
parameters of the simulator are based on GTX-480, shown
in Table 1. For the L1 cache size, we choose the largest con-
figurable size (48KB) for GTX-480. Also, we compare the
performance of DSAP with a smaller L1 cache size (16KB)
to show the impact of the cache size on DSAP. The BFS
algorithm is selected from the GraphBig benchmark [13].
The datasets we test are chosen from the SNAP datasets [15]
and their features are listed in Table 2. Moreover, we use the
GPUWattch [16] and McPAT [17] integrated in GPGPU-sim
simulator to estimate the power consumption and chip area of
DSAP respectively.

Algorithm 3 CUDA API Supports for DSAP
1: function main
2: cudaMallocMark(worklist, sizeof (worklist), 0);
3: cudaMallocMark(vertexlist, sizeof (vertexlist), 1);
4: cudaMallocMark(edgelist, sizeof (edgelist), 2);
5: cudaMallocMark(visitedlist, sizeof (visitedlist), 3);
6: wl_size← 1
7: while wl_size! = 0 do
8: cudaUpdateWl(wl_size);
9: BFS Kernel function

10: end while
11: end function

V. EVALUATION
A. PERFORMANCE
To demonstrate the effectiveness of DSAP, we compare the
performance of DSAP with two prefetching mechanisms,

TABLE 2. The features of the tested datasets.

FIGURE 8. Speedups of the Next Line Prefetcher, the stride-based
GHB prefetcher and the DSAP. The baseline is the performance
of GPU without prefetchers.

a Next Line prefetcher and a stride-based GHB prefetcher
standing for the stream prefetching and the combination of
the stride prefetching and the GHB prefetching respectively.
TheNext Line prefetcher fetches data from the next cache line
relative to the address of the last load. The stride-based GHB
prefetcher uses GHB to maintain the global miss addresses
and tries to find the constant stride accesses for the same PC.
Both of the prefetchers benefit the memory accesses of BFS
theoretically, because memory accesses to the work list and
the edge list have some localities.

Fig. 8 compares the speedups on IPC of the Next Line
prefetcher and the stride-based GHB prefetcher with those
of DSAP and the baseline is the performance of GPU with-
out prefetchers. In general, we test six datasets from three
different applications, which are road networks, autonomous
systems graphs and citation networks. DSAP improves the
performance of IPC by 28% in geometric mean, while the
Next Line prefetcher gets the worst performance for all the
datasets and the stride-basedGHBprefetcher is slightlyworse
than the GPU without prefetchers. The Next Line prefetcher
aggressively prefetches the next cache line according to the
last address of load, but these prefetched cache lines are
useless for BFS and pollute the L1 cache. As a result, the Next
Line prefetcher degrades the performance for nearly 8%.
On the other hand, the stride-based GHB prefetcher cannot
detect sufficient constant-strided access patterns from the
memory accesses of BFS. Therefore, the stride-based GHB
prefetcher does not issue any prefetching requests without
a constant stride detected and its performance is nearly
the same with GPU without prefetchers. On the contrary,
DSAP can get a relative high coverage for the memory

60242 VOLUME 6, 2018



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 9. Miss rates of each prefeching mechanisms for each dataset.

accesses of BFS, which is nearly 60%. With the effective
prefetching, DSAP gets the best improvement for 48.4%
for the USA dataset. This demonstrates that DSAP is more
effective than the typical prefetching mechanisms for BFS.

Fig. 9 shows the miss rates of L1 cache for the three
prefetching mechanism. Obviously, DSAP greatly reduces
the miss rates for all the datasets and the biggest decrease
is 26.7%, while the smallest is 11.9%. This demonstrates
that the big performance improvement of DSAP comes from
reducing the miss rate of data accesses and the prefetching
mechanism of DSAP can detect the memory access pattern of
BFS and fetch useful graph data in advance. Fig. 10 compares
the miss rates of accesses to each graph data structure of
DSAP with those of the baseline GPU. In general, DSAP
reduces the miss rate of the accesses to all the graph data
structures compared with the baseline GPU. Specifically, due
to the good locality, the miss rates reduction of the work
list for all the datasets are the smallest compared with the
other three data structures. Moreover, for the vertex list,
the edge list and the visited list, the miss rate reduction of the
vertex is the biggest, while the smallest is from the visited
list. This is because in some cases, the threads have issued
the normal loads to the visited list, but the corresponding
prefetching requests to the visited list are still in flight in the
memory pipeline. As a result, these loads cause the misses in
L1 cache. However, even though the data are not fetched in
time, prefetching requests also benefit the normal loads to the
graph data structure, since the requests have been processed
in advance.

The performance of DSAP varies for different datasets,
shown in Fig. 8. For example, for the USA dataset,
the speedup of DSAP reaches to 48.4%, while for the
OR dataset, DSAP only is 16% faster. Two reasons cause the
performance variety. The first reason is that the miss rates
of each data structure for the OR dataset is much lower than
those for the USA dataset. In Fig. 10, the miss rates of the
vertex list, the edge list and the visited list for the OR dataset
are 40.8%, 67.5% and 55.2%, while the miss rates for the
USA dataset are 82.6%, 90.9% and 81.8% respectively.
The second reason is that the miss rate reductions of each
data structure for the USA dataset is much larger than those
for the OR dataset. From Fig. 10, the miss rate reductions of
each data structure for the USA dataset are 73.78%, 64.49%

and 41.81%, while the miss rate reductions for the OR dataset
are 16.51%, 24.9% and 17.66% respectively.

From the above results, we conclude that DSAP can detect
the memory access pattern of BFS with the knowledge of
the data structure access pattern of BFS, reduce the cache
miss rate and achieve an obvious performance improvement.
Fig. 11 depicts the increase of the memory bandwidth of GPU
and the utilization of the prefetched data after introducing the
data prefetching of DSAP. For all the datasets, the memory
bandwidth increases no more than 7% and at least 75% of
prefetched data benefit BFS.

Fig. 12 and Fig. 13 compares the performance improve-
ment and the L1 cache miss rates of DSAP with and with-
out the adaptive fine-grain prefetching management for each
dataset. The difference between DSAP with and without the
adaptive fine-grain prefetching management is that DSAP
without the adaptive fine-grain prefetching management
stops generating any prefetching requests when the utilization
of the prefetched data is lower than the threshold, while
DSAP with the adaptive fine-grain prefetching management
can continue to generating prefetching requests, but the
requests to some data structures are banned. From the results
in Fig. 12, DSAP with the adaptive fine-grain prefetching
management performs better than DSAPwithout the adaptive
fine-grain prefetching management for an average of 2%.
The miss rates of each data structure in Fig. 13 show that
DSAP with the adaptive fine-grain prefetching management
achieves lower cache miss rates, especially for the vertex
list and the edge list. The adaptive fine-grain prefetching
management not only prefetchesmore data, but also keeps the
utilization of the prefetched data at a relative high level, which
makes DSAP balance the performance and cache efficiency
effectively.

To estimate the power consumption of DSAP, we use the
GPUWattch [16], a tool integrated with GPGPU-sim simu-
lator, to calculate the increment of power and the results are
shown in Fig. 14. The results show that the power of thewhole
GPU when running BFS for different datasets increases
slightly for an average of 8.3% and up to 11.8%. Also, we cal-
culate the energy the whole GPU spends, and it shows that
due to the big performance improvement on IPC, the energy
costs for all the datasets are decreased. Fig. 14 shows
that the energy cost decreases 15.1% in average and up
to 27%.

B. SENSITIVITY STUDY
In this section, we test DSAP with some important factors.
The cache volume determines how many cache lines can
be prefetched and stored in the L1 cache. The threshold of
the adaptive fine-grain prefetching management affects the
efficiency and flexibility of DSAP. The scheduling policy of
GPU considers the commonality of DSAP.

1) CACHE VOLUME
The cache volume limits the performance of DSAP. Since
DSAP brings the necessary data of the next iteration for

VOLUME 6, 2018 60243



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 10. The miss rates of accesses to each graph data structure for DSAP and the baseline GPU.

FIGURE 11. The increase of the memory bandwidth when using DSAP and
the utilization of prefetched data for each dataset.

everywarp in advance, the contention for the on-chipmemory
space becomes more severe. And as a result, DSAP has to
prefetch fewer cache lines to reduce the early eviction rate.
Fig. 15 shows the speedups of DSAP with two different
L1 cache volumes. For all the datasets, the small cache vol-
ume (16KB) degrades the performance of DSAP for 20%
in average, compared with the large cache volume (48KB).
There are two possible solutions. One solution is to increase
the size of on-chip memory, but it will increase the hardware
cost as well. Another solution is to adopt the fine-grain cache
management for the L1 cache. The sizes of the data for
each memory access to the vertex list and the visited list are
4B or 8B and far smaller than the size of L1 cache line (128B).
Also, the accesses to the vertex list and the visited list have
few localities, therefore most of the data in the cache line will
be wasted. Fine-grain cache management allows data from
different cache lines to be stored in the same L1 cache line
by splitting the large L1 cache line into small chunks. Many
works have researched fine-grain cache management and we
have proposed a dynamic multi-grain cache management for
general purpose GPU applications with irregular memory
accesses. Since it is out of scope of this paper, more details
can be found in [18].

FIGURE 12. The speedups of DSAP with and without adaptive fine-grain
prefetching management for each dataset.

2) THE THRESHOLD FOR THE ADAPTIVE FINE-GRAIN
PREFETCHING MANAGEMENT
Fig. 16 shows the speedups of DSAP with different thresh-
olds for the adaptive fine-grain prefetching management.
UT means the Utilization Threshold. DSAP periodically
receives the utilization of the prefetched data from L1 cache
and the adaptive fine-grain prefetching management changes
the status of the generator mask according to the data uti-
lization, which is described in Section III. From the results,
the performance gaps among the different utilization thresh-
olds for each dataset are not obvious, except the CIT dataset.
The difference between the best and the worst for the
CIT dataset is only 3%. This demonstrates the adaptive fine-
grain prefetching management can make a good balance
between the data prefetching and the cache efficiency and
make the performance change smoothly when the utilization
of the prefetched data varies.

3) SCHEDULING POLICY
Fig. 17 shows the performance of DSAP when GPU uses
the Loose Round-Robin scheduling policy (LRR) and the

60244 VOLUME 6, 2018



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

FIGURE 13. The miss rates of DSAP with and without adaptive fine-grain prefetching management for each dataset.

FIGURE 14. The rates of power and energy increment for GPU with DSAP
for each dataset.

FIGURE 15. Speedups of DSAP with different cache volumes for each
dataset.

baseline is that GPU uses the Greedy Then Oldest schedul-
ing policy(GTO). From the results, scheduling policies have
different impacts on different datasets, but the impacts
of scheduling policies are negligible. For all the datasets,
the fluctuations of the performance for different scheduling
policy are between −1.5% and 1.5%. Therefore, it demon-
strates that the performance of DSAP does not depend on the
scheduling policies of GPU.

FIGURE 16. Speedups of DSAP with different thresholds for the adaptive
fine-grain prefetching management.

FIGURE 17. Speedups of DSAP when GPU adopts Loose Round-Robin
scheduling policy. The baseline is that GPU uses GTO scheduling policy.

C. HARDWARE COST
Because DSAP does not have complex computations, its
arithmetical logic is very simple. The biggest cost for DSAP
is the on-chip storage for saving the information of the
graph data structure and runtime statuses. For basic BFS,
the address range table needs 8 64-bit registers and each
entry of the runtime information table costs 36B. Since
GTX-480 supports at most 48 warps per SM core, the runtime

VOLUME 6, 2018 60245



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

information table needs an extra 1728B memory space and
costs only 2.6% of the on-chip shared memory/L1 cache.
Therefore, the extra memory space can be allocated in shared
memory easily. Even if GPU supports more warps per core in
future, we can introduce an allocating mechanism to control
the size of the runtime information table. Also, we estimate
the area cost of the DSAP unit for each SM by using the
McPAT [17]. The chip area cost slightly increases 0.53% for
each SM, which is a moderate cost in comparison to the big
performance improvement.

VI. RELATED WORKS
A. GPGPU PREFETCHING
Sethia et al. [19] propose a per-warp stride prefetching to
reduce the power consumption of GPUs. Lee et al. [7] pro-
pose a many-thread aware prefetching mechanism based on
the stride prefetching. Lakshminarayana and Kim [20] pro-
pose a prefetching mechanism for graph applications. And
it stores the prefetched data in the register files to reduce
the overhead in caches. Ryoo et al. [21] demonstrate that
prefetching into registers can benefit the performance by
binding operations. Also, Yang et al. [22] introduce a com-
piler method for prefetching into registers and several com-
piler optimizations for applications. Sadrosadati et al. [23]
propose a two-level hierarchical register structure to reduce
the long latency and the high power consumption of register
files by prefetching the register working-set. Kim et al. [24]
present a warp pre-execution method that a warp can pre-
execute successive independent instructions in P-mode, while
waiting for long-latency operation and the P-mode results
are stored in renamed registers. Neves et al. [25] design
a low-profile prefetcher for L1 caches with a data-pattern
description specification. Michelogiannakis and Shalf [26]
propose a prefetcher for the last-level cache that detects the
correlated access patterns of data parallel applications.

B. ADAPTIVE PREFETCHING
Many prior works use the prefetching accuracy as the feed-
back metric to adjust prefetching. Dahlgren et al. [27] adjust
the prefetching distance by measuring the prefetching accu-
racy. Srinath et al. [28] introduce the cache pollution effect
and the timeliness to control the impact of prefetching on
cache. Some researches focus on managing the priority of
prefetching requests. Zhuang and Lee [29] design a cache
pollution filter for both hardware and software prefetching to
classify prefetching requests. Ebrahimi et al. [30] introduce
a prefetch coordination mechanism to consider both local
and global feedbacks to maximize the benefits of prefetch-
ing. Lee et al. [31] propose a prefetch-aware DRAM con-
troller to prioritize between demand and prefetching requests.
Caragea et al. [32] propose a software prefetcher to adjust
the distance of prefetching requests based on the number of
MSHR entries. Liu et al. [33] propose a self-tuning prefetcher
to adjust prefetching modes dynamically with the runtime
feedback. DSAP adopts the adaptive fine-grain prefetching
management to control the prefetching of the graph data

structure depending on the utilization of the prefetched data
and the efficiency of the L1 cache.

C. CACHE UTILIZATION
Chen et al. [34] introduce an adaptive management tech-
niques combining the warp throttling and cache bypassing.
Tian et al. [35] propose a novel technique to determine the
cache bypassing for each static load. Wang et al. [36] propose
DaCache, consisting of a warp scheduling technique, a cache
replacement policy and a cache bypassing method. Komurav-
elli et al. [37] introduce a new local memory that can address
globally and reuse data implicitly. To reduce the overheads of
prefetching, DSAP does not modify the cache and memory
structure. DSAP improves the efficiency of L1 cache and the
prefetched data by dynamically controlling the status of the
prefetching granularity.

VII. CONCLUSION
We propose a data structure-aware prefetching mechanism
for BFS on GPU to prefetch the necessary data into the
L1 cache and reduce the latency of irregular memory
accesses. Typical prefetching mechanisms are not able to
detect the access patterns from the irregular memory accesses
of BFS and perform effectively by prefetching. DSAP gener-
ates prefetching requests based on the explicit information of
the graph data structure and the graph data structure access
pattern of BFS. Considering the relative small on-chip mem-
ory space, DSAP adopts the adaptive fine-grain prefetching
management to maintain the effeciency of L1 cache and the
data prefetching. The adaptive fine-grain prefetching man-
agement unit monitors the utilization of the prefetched cache
lines to adjust the status of the prefetching granularity dynam-
ically. Our experiment demonstrates that DSAP can achieve
a 28% geomentric mean performance improvement for BFS
for six datasets from three different kinds of applications with
an average of 8.3% power increment and 15.1% energy cost
reduction.

REFERENCES
[1] N. P. Jouppi, ‘‘Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers,’’ inProc. 17th Annu.
Int. Symp. Comput. Archit., May 1990, pp. 364–373.

[2] S. Palacharla and R. E. Kessler, ‘‘Evaluating stream buffers as a secondary
cache replacement,’’ ACM SIGARCH Comput. Archit. News, vol. 22, no. 2,
pp. 24–33, 1994.

[3] T.-F. Chen and J.-L. Baer, ‘‘Effective hardware-based data prefetching
for high-performance processors,’’ IEEE Trans. Comput., vol. 44, no. 5,
pp. 609–623, May 1995.

[4] J. W. Fu, J. H. Patel, and B. L. Janssens, ‘‘Stride directed prefetching
in scalar processors,’’ ACM SIGMICRO Newslett., vol. 23, nos. 1–2,
pp. 102–110, 1992.

[5] K. J. Nesbit and J. E. Smith, ‘‘Data cache prefetching using a global history
buffer,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2004, p. 96.

[6] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, ‘‘AC/DC: An adaptive data
cache prefetcher,’’ in Proc. 13th Int. Conf. Parallel Archit. Compilation
Techn., Oct. 2004, pp. 135–145.

[7] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, ‘‘Many-thread
aware prefetching mechanisms for GPGPU applications,’’ in Proc. IEEE
43rd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2010,
pp. 213–224.

60246 VOLUME 6, 2018



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

[8] Y. Oh et al., ‘‘APRES: Improving cache efficiency by exploiting load
characteristics on GPUs,’’ ACM SIGARCH Comput. Archit. News, vol. 44,
no. 3, pp. 191–203, 2016.

[9] A. Jog et al., ‘‘OWL: Cooperative thread array aware scheduling tech-
niques for improving GPGPU performance,’’ ACM SIGPLAN Notices,
vol. 48, no. 4, pp. 395–406, 2013.

[10] A. Jog et al., ‘‘Orchestrated scheduling and prefetching for GPGPUs,’’
ACM SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 332–343, 2013.

[11] G. Koo, H. Jeon, Z. Liu, N. S. Kim, and M. Annavaram, ‘‘CTA-aware
prefetching and scheduling for GPU,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2018, pp. 137–148.

[12] R. Nasre, M. Burtscher, and K. Pingali, ‘‘Data-driven versus topology-
driven irregular computations on GPUs,’’ in Proc. IEEE 27th Int. Symp.
Parallel Distrib. Process. (IPDPS), May 2013, pp. 463–474.

[13] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, ‘‘Graphbig: Under-
standing graph computing in the context of industrial solutions,’’ in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2015,
pp. 1–12.

[14] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
‘‘Analyzing CUDA workloads using a detailed GPU simulator,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2009,
pp. 163–174.

[15] J. Leskovec andA. Krevl. (Jun. 2014). SNAPDatasets: Stanford Large Net-
workDataset Collection. [Online]. Available: http://snap.stanford.edu/data

[16] J. Leng et al., ‘‘GPUWattch: Enabling energy optimizations in GPGPUs,’’
ACM SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 487–498, 2013.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, ‘‘McPAT: An integrated power, area, and timing modeling
framework for multicore andmanycore architectures,’’ inProc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture, Dec. 2009, pp. 469–480.

[18] H. Guo, L. Huang, Y. Lü, S. Ma, and Z.Wang, ‘‘DyCache: Dynamic multi-
grain cache management for irregular memory accesses on GPU,’’ IEEE
Access, vol. 6, pp. 38881–38891, 2018.

[19] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, ‘‘APOGEE: Adaptive
prefetching on GPUs for energy efficiency,’’ in Proc. 22nd Int. Conf.
Parallel Archit. Compilation Techn. Piscataway, NJ, USA: IEEE Press,
Sep. 2013, pp. 73–82.

[20] N. B. Lakshminarayana and H. Kim, ‘‘Spare register aware prefetching for
graph algorithms on GPUs,’’ in Proc. IEEE 20th Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2014, pp. 614–625.

[21] S. Ryoo et al., ‘‘Program optimization space pruning for a multithreaded
GPU,’’ inProc. 6th Annu. IEEE/ACM Int. Symp. CodeGener. Optim., 2008,
pp. 195–204.

[22] Y. Yang, P. Xiang, J. Kong, and H. Zhou, ‘‘A GPGPU compiler for mem-
ory optimization and parallelism management,’’ ACM SIGPLAN Notices,
vol. 45, no. 6, pp. 86–97, 2010.

[23] M. Sadrosadati et al., ‘‘LTRF: Enabling high-capacity register files for
GPUs via hardware/software cooperative register prefetching,’’ in Proc.
23rd Int. Conf. Architectural Support Program. Lang. Oper. Syst., 2018,
pp. 489–502.

[24] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram,
‘‘Warped-preexecution: A GPU pre-execution approach for improving
latency hiding,’’ in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Mar. 2016, pp. 163–175.

[25] N. Neves, P. Tomás, and N. Roma, ‘‘Stream data prefetcher for the GPU
memory interface,’’ J. Supercomput., vol. 74, no. 6, pp. 2314–2328, 2018.

[26] G.Michelogiannakis and J. Shalf, ‘‘Last level collective hardware prefetch-
ing for data-parallel applications,’’ in Proc. IEEE 24th Int. Conf. High
Perform. Comput. (HiPC), Dec. 2017, pp. 72–83.

[27] F. Dahlgren, M. Dubois, and P. Stenstrom, ‘‘Sequential hardware prefetch-
ing in shared-memory multiprocessors,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 6, no. 7, pp. 733–746, Jul. 1995.

[28] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, ‘‘Feedback directed prefetch-
ing: Improving the performance and bandwidth-efficiency of hardware
prefetchers,’’ in Proc. IEEE 13th Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2007, pp. 63–74.

[29] X. Zhuang and H.-H. S. Lee, ‘‘A hardware-based cache pollution filtering
mechanism for aggressive prefetches,’’ in Proc. Int. Conf. Parallel Pro-
cess., Oct. 2003, pp. 286–293.

[30] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, ‘‘Coordinated con-
trol of multiple prefetchers in multi-core systems,’’ in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2009, pp. 316–326.

[31] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, ‘‘Prefetch-aware dram
controllers,’’ in Proc. 41st Annu. IEEE/ACM Int. Symp. Microarchitecture,
Nov. 2008, pp. 200–209.

[32] G. C. Caragea, A. Tzannes, F. Keceli, R. Barua, and U. Vishkin,
‘‘Resource-aware compiler prefetching for many-cores,’’ inProc. IEEE 9th
Int. Symp. Parallel Distrib. Comput. (ISPDC), Jul. 2010, pp. 133–140.

[33] P. Liu, J. Yu, andM. C. Huang, ‘‘Thread-aware adaptive prefetcher on mul-
ticore systems: Improving the performance for multithreaded workloads,’’
ACM Trans. Archit. Code Optim. (TACO), vol. 13, no. 1, 2016, Art. no. 13.

[34] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu,
‘‘Adaptive cache management for energy-efficient GPU computing,’’ in
Proc. 47th Annu. IEEE/ACM Int. Symp. microarchitecture, Dec. 2014,
pp. 343–355.

[35] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A. Jimenez,
‘‘Adaptive GPU cache bypassing,’’ in Proc. 8th Workshop Gen. Purpose
Process. GPUs, 2015, pp. 25–35.

[36] B.Wang,W.Yu, X.-H. Sun, andX.Wang, ‘‘DaCache:Memory divergence-
aware GPU cache management,’’ in Proc. 29th ACM Int. Conf. Supercom-
put., 2015, pp. 89–98.

[37] R. Komuravelli et al., ‘‘Stash: Have your scratchpad and cache it too,’’
in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2015, pp. 707–719.

HUI GUO received the B.S. and M.S. degrees
in computer science and technology from the
National University of Defense Technology,
China, in 2011 and 2014, respectively, where he
is currently pursuing the Ph.D. degree in computer
science and technology. From 2015 to 2017, he
was a Visiting Student with the University of
Michigan, Ann Arbor, MI, USA. His research
interests include computer architecture, heteroge-
neous computing, and SIMD architecture.

LIBO HUANG received the B.S. and Ph.D.
degrees in computer engineering from the
National University of Defense Technology,
China, in 2005 and 2010, respectively. He is cur-
rently an Associate Professor with the School of
Computer, National University of Defense Tech-
nology. He has authored over 50 papers in interna-
tionally recognized journals and conferences. His
research interests include computer architecture,
hardware/software co-design, VLSI design, and
on-chip communication.

YASHUAI LÜ received the Ph.D. degree in com-
puter architecture from the National University
of Defense Technology in 2009. He is currently
with Space Engineering University, China. He has
authored over 20 papers in internationally recog-
nized journals and conferences. His main research
interests include processor architecture and com-
puter graphics.

JIANQIAO MA received the B.S. degree in soft-
ware engineering from the National University of
Defense Technology, China, in 2016, where he
is currently pursuing the M.S. degree in com-
puter science and technology. His research inter-
ests include computer architecture, big data, and
branch prediction.

VOLUME 6, 2018 60247



H. Guo et al.: Accelerating BFS via Data Structure-Aware Prefetching on GPU

CHENG QIAN received the B.S. and master’s
degrees in computer science and technology from
the National University of Defense Technology
(NUDT), Changsha, China, in 2012 and 2014,
respectively, where he is currently pursuing the
Ph.D. degree. His research interests include 3-D
memory architecture design and memory access
scheduling mechanism.

SHENG MA received the B.S. and Ph.D.
degrees in computer science and technology from
the National University of Defense Technology
(NUDT) in 2007 and 2012, respectively. He visited
the University of Toronto from 2010 to 2012.
He is currently an Assistant Professor with the
School of Computer, NUDT. He has authored over
30 papers in internationally recognized journals
and conferences. His research interests include on-
chip networks, SIMD architectures, and arithmetic
unit designs.

ZHIYING WANG (M’02) received the Ph.D.
degree in electrical engineering in computer sci-
ence and technology from the National University
of Defense Technology, Hunan, China, in 1989.
He is currently the Deputy Dean and a Professor
of computer engineering with the Department of
Computer, National University of Defense Tech-
nology. He has contributed 10 invited chapters to
book volumes, published 200 papers in archival
journals and refereed conference proceedings, and

delivered over 30 keynotes. His current research projects include asyn-
chronous microprocessor design and nanotechnology circuits and sys-
tems based on optoelectronic technology and virtual computer system.
His main research fields include computer architecture, computer security,
VLSI design, reliable architecture, multi-core memory system, and asyn-
chronous circuit. He became a member of the ACM in 2003.

60248 VOLUME 6, 2018


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	GPU PREFETCHING
	STRIDE PREFETCHER
	STREAM PREFETCHER
	GHB PREFETCHER

	PROGRAMMING MODELS FOR BFS
	COMPRESSED SPARSE ROW FORMAT GRAPH DATA STRUCTURE

	DATA-STRUCTURE AWARE PREFETCHING
	OVERVIEW
	HARDWARE SUPPORTS FOR DATA-STRUCTURE AWARE PREFETCHING
	GENERATOR SELECTION
	REQUEST GENERATORS

	ADAPTIVE FINE-GRAIN PREFETCHING MANAGEMENT
	EXTRA CUDA API SUPPORTS

	METHODOLOGY
	EVALUATION
	PERFORMANCE
	SENSITIVITY STUDY
	CACHE VOLUME
	THE THRESHOLD FOR THE ADAPTIVE FINE-GRAIN PREFETCHING MANAGEMENT
	SCHEDULING POLICY

	HARDWARE COST

	RELATED WORKS
	GPGPU PREFETCHING
	ADAPTIVE PREFETCHING
	CACHE UTILIZATION

	CONCLUSION
	REFERENCES
	Biographies
	HUI GUO
	LIBO HUANG
	YASHUAI LÜ
	JIANQIAO MA
	CHENG QIAN
	SHENG MA
	ZHIYING WANG


