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ABSTRACT The minimum k-dominating set (MKDS) problem, a generalization of the classical mini-
mum dominating set problem, is an important NP-hard combinatorial optimization problem with various
applications. First, to alleviate the cycling problem in the local search, a MKDS two-level configuration
checking (MKDSCC?) strategy is presented. Second, we use the vertex cost scheme to define the scoring
mechanism and to improve the solution effectively. Third, by combining MKDSCC? strategy and the scoring
mechanism, we propose a vertex selection strategy to decide which vertex should be added into or removed
from the candidate solution. Based on these strategies, an efficient local search algorithm (VSCC?), which
incorporates a two-level configuration checking strategy, scoring mechanism, and vertex selection strategy,
is proposed. We compare the performance of VSCC? with the classic GRASP algorithm and the famous
commercial solver CPLEX on the classical instances. The comprehensive results show that the VSCC?
algorithm is very competitive in terms of solution quality and computing time.

INDEX TERMS Heuristic, local search, minimum k-dominating set problem.

I. INTRODUCTION

Given an undirected graph G = (V, E), where V is the vertex
set and E is the edge set, a dominating set (DS) of G is a
subset D C V such that every vertex in V\D is adjacent
to at least one vertex in D. The minimum dominating set
(MDS) problem aims to find the dominating set with the
minimum size. A k-dominating set (KDS) of G is a subset
Dy C V such that every vertex in V\ Dy is adjacent to at least
k vertices in Dy [1]. The minimum k-dominating set problem
aims to find the k-dominating set with the minimum size. The
MKDS problem can be viewed as a generalized version of
the MDS problem. Specifically, the minimum 1-dominating
set problem is equivalent to the minimum dominating set
problem.

The minimum dominating set problem has various appli-
cations in real-word domains such as routing in wireless
networks [2]-[4], document processing [5], [6], and social
networks [7]. Whereas sometimes the dominating set prob-
lem cannot better model the actual application problems. For
example, in a wireless ad-hoc network, the level of service
required by a dominatee cannot be accomplished by only
one dominator, and they call for collect services from sev-
eral dominators to meet the dominatee’ needs. Even if any

k -1 dominator fails, each dominatee is guaranteed to con-
nect to at least one dominator [8], [9]. The problem can be
modelled as minimum k-dominating set problem. Therefore,
MKDS problem has a stronger modeling capability and has
wider applications in several diverse areas [10]-[12].

In the past two decades, various algorithms have been
proposed to solve the MDS problem, and they can be
mainly classified into exact and heuristic algorithms. Exact
algorithms [13]-[16] are mostly based on branch-bound
method or branch-cut algorithm. Exact algorithms have the
advantage of ensuring the optimal solutions, but they require
a computing time, in general, exponential growth with the
size of the problem. So various heuristic algorithms have
been devised to handle the minimum dominating set prob-
lem. Hedar and Ismail [17] proposed an algorithm HGA-
MDS, which is based on genetic algorithm (GA) to handle
the MDS problem. After that Giap and Ha [18] designed a
good parallel genetic algorithm (PGAs) model for MDS prob-
lem. Chalupa [19] presented an order-based randomized local
search (RLSo) algorithm to compute MDS problem indirectly
by employing a representation based on permutations of
vertices, which are transformed into dominating sets using
a greedy algorithm. Hedar and Ismail [20] again proposed a
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method SAMDS based on simulated annealing (SA) to solve
the minimum dominating set problem. Compared with the
minimum dominating set problem, there are relatively few
algorithms to solve the minimum k-dominating set problem.

In this paper, a new local search framework is proposed
for the minimum k-dominating set problem based on some
new ideas. Firstly, during the local search process, most
local search algorithms are subject to the cycling problem.
To tackle this problem, two-level configuration checking
strategy (CC?) is recently proposed in [21]. The CC? strategy
has been successfully used in the minimum weight dominat-
ing set problem. In this strategy, the configuration of a vertex
v is the state of the neighborhood N (v) and the neighborhood
of each vertex in N(v). For a vertex, if its configuration
has not been changed after the last time it was removed
from the candidate solution, it will be banned from being
added into the candidate solution. On this basis, we adapt the
two-level configuration checking strategy into the minimum
k-dominating set problem during the local search process.

Secondly, the scoring strategy has a significant role dur-
ing the local search [22]-[28]. In our work, we propose a
new scoring strategy based the vertex cost to obtain more
promising solutions and increase the diversity of solutions.
For the scoring strategy, the score value of each vertex can be
modified dynamically.

Furthermore, by integrating the scoring strategy with two-
level configuration checking strategy, we design a vertex
selection strategy to decide which vertex should be added
into or removed from the candidate solution.

Finally, by merging all the above strategies, we develop
a local search algorithm named VSCC? to solve the MKDS
problem. To measure the efficiency of VSCC?, the experi-
mental results of our algorithm are compared with those of
commercial solver CPLEX and the classic GRASP algorithm,
and our algorithm obtains better solutions than or same solu-
tions as CPLEX and GRASP on almost all instances.

The remainder of this paper is constructed as follows.
In Section 2, some useful notations are introduced. The
two-level configuration checking strategy for the minimum
k-dominating set problem is proposed in Section 3. Fur-
thermore, the scoring strategy is introduced in Section 4.
And then a new vertex selection strategy is proposed in
Section 5. Then, a detailed description of VSCC? is described
in Section 6. In Section 7, the experimental results will be
listed. Finally, conclusions and future directions are shown in
the last section.

Il. PRELIMINARY

At first, we shall introduce some background information for
MKDS problem. An undirected graph G = (V, E) consists
of a vertex set V.= {v1,v2,...,v,} and an edge set £ =
{e1,ea, ..., en}, where each edge e = (v, u) connects two
vertices u and v, and we say that vertices u and v are the
endpoints of edge e. We shall use dist (u, v), which is the
number of edges in a shortest path from u to v, to denote
the distance between two vertices u and v. Given a candidate

VOLUME 6, 2018

TABLE 1. Different values of k.

k Value

kmin 2

Komax [max{degree(v), for v € V}/2]
kmed [(kmin + kmax)/z]

TABLE 2. Different values of p.

Instance k p

General graphs komin 0.15
General graphs Kmed 0.15
General graphs Kmax 0.85
UDG Komin 0.15
UDG kmea 0.15
UDG Kimax 0.85
DIMACS Komin 0.15
DIMACS kiea 0.75
DIMACS Konax 0.95

solution Dy, s; € {1, 0} denotes the state of vertex v;, where
s; = 1 means v; € D, and s; = 0 means v; ¢ Dy. We shall
use m(Dy) to denote the number of vertices in Dy. For a
vertex v, we shall use N;(v) = {u|dist(u, v) = i} to denote
the ith level neighborhood of the vertex v, and we denote
N* (v) = U_|N; (v) . And the first-level neighborhood N (v)
is the same as N (v), and we shall use N [v] = N (v) U {v} to
denote the closed neighbor set of v.

Definition 1 (Dominating Set, DS): Given an undirected
graph G (V, E), the dominating set of G is a vertex subset D C
V such that every vertex in V\D has at least one neighbor
in D.

Definition 2 (Minimum Dominating Set, MDS): Given an
undirected graph G(V, E), the minimum dominating set
problem calls for finding a dominating set D with minimum
cardinality.

Definition 3 (k-Dominating Set, KDS): Given an undi-
rected graph G (V, E), the k-dominating set of G is a vertex
subset Dy C V such that every vertex in V\Dy is adjacent to
at least k vertices in Dy.

Definition 4 (Minimum k-Dominating Set, MKDS): Given
an undirected graph G(V, E), the minimum k-dominating
set problem calls for finding a k-dominating set Dy with
minimum cardinality.

The definitions show that dominating set problem can be
viewed as a special problem of the k-dominating set when
k equals 1. During the local search process, our algorithm
maintains a candidate solution D; < V. For a candidate
solution Dy, vertices that belong to Dy are called dominating
vertices. If a vertex v which is adjacent to at least k vertices in
Dy, is called k-dominated vertex, otherwise it’s called non-k-
dominated vertex. For a vertex, its age denotes the number of
steps when it is selected.

IlIl. TWO-LEVEL CONFIGURATION CHECKING STRATEGY
Local search algorithms often visit a candidate solution
repeatedly during the search process. This phenomenon is

62063



IEEE Access

R. Li et al.: Efficient Local Search Algorithm for the MKDS Problem

TABLE 3. The comparative results of CPLEX, GRASP, and VSCC2 with kp,;,, on the general graphs benchmarks.
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GRASP vscC?
Instance Konin CPLEX Min Avg Avgtime Min Avg Avgtime
50_50 2 26 26 26 8.54 26 26 0.01
50_100 2 21 21 21 51.2 21 21 (1}
50_250 2 10 10 10 0.11 10 10 0
50_500 2 6 0.83 0
50_750 2 4 4 0.08 4 0
50_1000 2 3 3 3 0.01 3 3 0
100_100 2 51 52 52 56.17 51 51 0.01
100_250 2 34 36 36.2 220.71 34 34 0.03
100_500 2 20 21 21 1.64 20 20 0.01
100_750 2 15 15 15 2.53 15 15 0
100_1000 2 12 12 12 32.53 12 12 0
100_2000 2 7 7 7 293 7 7 0
150_150 2 76 87 87.8 466 76 76 0.02
150_250 2 65 70 70.9 304.54 65 65 0.13
150_500 2 42 45 46.1 194.9 42 42 0.04
150_750 2 31 34 34.8 24491 31 31 0.68
150_1000 2 25 27 27.9 243.08 25 25 0.37
150_2000 2 15 16 16.4 200.6 15 15 0.01
150_3000 2 10 11 11.3 211.89 10 10 0.08
200_250 2 96 105 107.3 334.98 96 96 0.07
200_500 2 67 78 79 518.71 67 67 18.39
200_750 2 52 60 61.9 339.36 52 52 0.05
200_1000 2 <=42 47 47.8 163.34 42 42 0.03
200_2000 2 <=25 28 28 145.69 24 24 0.04
2003000 2 <=18 20 20.5 251.95 17 17 0.91
250 250 2 126 151 151.2 481.1 126 126 0.03
250_500 2 97 112 113.5 291.48 97 97 5.65
250_750 2 75 89 89.8 411.82 75 75.3 62.09
250 1000 2 <=63 72 73.5 352.32 61 61 9.63
2502000 2 <=37 43 433 317.09 36 36 4.94
2503000 2 <=28 30 30.9 461.79 26 26 0.8
250_5000 2 <=18 20 21 249.41 18 18 0.03
300300 2 151 182 183 347.69 151 151 0.04
300_500 2 127 148 148.7 403.09 127 127.7 188.75
300_750 2 101 121 121.4 175.64 101 101.7 53
300_1000 2 <=83 98 98.6 480.04 83 83 5.25
300_2000 2 <=51 57 57.4 554.22 49 49 0.36
3003000 2 <=38 43 43.9 323.19 36 36 29.11
300_5000 2 <=25 28 29.8 225.58 24 24 20.92
500_500 2 251 310 311.4 568.01 251 251 0.14
500_1000 2 <=195 230 231.8 471.26 196 196.1 150.09
500_2000 2 <=123 147 149.1 344.71 121 1211 58.67
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TABLE 3. (Continued.) The comparative results of CPLEX, GRASP, and VSCC? with ki, on the general graphs benchmark.

500_5000 2 <=63 75
500_10000 2 <=37 44
800_800 2 401 505
300_1000 2 384 451
300 2000 2 <=271 326
800_5000 2 <=147 173
800_10000 2 <=87 104
1000_1000 2 501 631
1000_5000 2 <=216 252
1000_10000 2 <132 155
1000_15000 2 <=96 114
1000_20000 2 <=79 92

76.3 465.81 61 61 2.18
44.8 665.66 36 36 1.55
506.6 392.48 401 401 0.43
452.4 406.2 386 386.1 39.36
329.5 433.18 272 273 280.92
173.9 275.61 141 141.2 154.53
105.4 433.14 82 82.8 31.34
635.3 400.33 501 501 0.85
254.8 344.21 209 210 147.28
156.7 453.83 124 124.8 151.94
1154 358 90 90.1 151.81
92.9 356.79 72 72.7 89.41

called the cycling problem, which not only wastes time, but
also makes the algorithm often fall into the local optimum
and reduces the performance of the algorithm. To alleviate
the cycling problem, the two-level configuration checking
(CC?) strategy was proposed to handle this problem in local
search. The CC? strategy has been successfully used to solve
the minimum weight dominating set problem. Therefore,
we adapt this strategy to the minimum k-dominating set
problem during the local search process.

Furthermore, we shall introduce the definition of two-
level configuration checking in minimum k-dominating set
problem, and we call it minimum k-dominating set two-level
configuration checking (MKDSCC?). For the MKDSCC?
strategy, the configuration of a vertex is represented as a
vector consisting of the states of all vertices in N2(v). For
a vertex v ¢ Dy, if at least one vertex in N2(v) has changed
its state since the last selection, then the configuration of v is
changed.

To implement MKDSCC? strategy, we introduce a Boolean
array MKDSCC? whose size equals the number of vertices
in the graph. For a vertex v, the value of MKDSCC? means
whether its configuration has changed since the recent state
change of v. If MKDSCC?[v] = 1, it means that v is a
configuration changed vertex and could be picked in the next
adding procedure, otherwise MKDSCC?[v] = 0. Based on
this, the MKDSCC?[v] array is maintained as follows.

MKDSCC2-RULEL. In the initial process, for each vertex
v, MKDSCC?2[v] is initialized as 1.

MKDSCC?-RULE2. When a vertex v is removed from
Dy, MKDSCC?[v] is reset to 0 immediately. Then for each
vertex u € N2(v), MKDSCC?[u] is set to 1.

MKDSCC2-RULE3. When a vertex v is added to Dy, for
each vertex u € Nz[v], MKDSCCz[u] is set to 1.

IV. SCORING STRATEGY
In the local search process, deciding which vertex should be
added into or removed from the candidate solution Dy plays
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an important role during the process of local search. Fortu-
nately, the MKDSCC? strategy can contribute to alleviate the
cycling problem. We shall introduce a scoring mechanism
for the MKDS problem. And we use this strategy together
with MKDSCC? strategy, random walk [29], [30] and tabu
strategy [31], [32] to decide which vertex should be picked
as a solution component.

In a graph, each vertex v is associated with a vertex cost
property, denoted by cost(v). In the initialization process,
the cost of each vertex is set to be 1. After each iteration
of local search, each vertex v will be checked whether v
is k-dominated by the candidate solution Dg. If v is non-k-
dominated, cost(v) is increased by one. Based on this, we pro-
pose a new score function for the minimum k-dominating set
problem. It is defined as below.

Definition 5 Given an undirected graph G(V, E), and a can-
didate solution Dy, the cost based scoring function denoted
by score, is denoted in formula (1) and formula (2).

foru ¢ Dy:

score(u) = Z cost (v) "
vEMNZ,<k
foru € Dy :
=Y g COSL )i Zu>
score (u) = § — Z . cost (v) — cost (u) , )
v 2 yv=

otherwise

Where M| = N [u]\Dy, Mo = Nu)\Dy, Z, represents the
number of neighbors of the vertex v in the candidate solution,
and Z,, represents the number of neighbors of the vertex u in
the candidate solution. When a vertex u ¢ Dy, the score of u
is the sum of the costs of vertices which are not in D; and non-
k-dominated in the closed neighbor set of u. When a vertex
u € Dy, we shall consider two situations. If Z, > k, the score
of u is the opposite number of the sum of the costs of vertices
(not in the Dy) whose Z, are equal to k in the neighbor set
of u. Otherwise the score of u is the opposite number of the
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TABLE 4. The comparative results of CPLEX, GRASP, and VSCC? with ky,eq on the general graphs benchmarks.
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GRASP VSCC?
Instance Kimea CPLEX Min Avg Avgtime Min Avg Avgtime
50_50 2 26 26 26 6.27 26 26 0
50_100 3 28 28 28 105.16 28 28 0
50250 6 25 26 26.9 29.35 25 25 0.01
50_500 8 19 19 19.7 181.5 19 19 0
50_750 10 16 17 17 0.17 16 16 0.01
50_1000 12 15 15 15 0.1 15 15 0
100_100 2 51 52 52 75.19 51 51 0.01
100_250 4 59 62 62.2 348.77 59 59 0.03
100_500 5 44 46 46 237.22 44 44 0.02
100_750 7 43 46 46.2 280.07 43 43.4 297.16
100_1000 9 <=43 45 454 204.6 42 42 0.04
100_2000 14 <=35 37 37.6 195.23 35 35 0.02
150_150 2 76 87 87.8 479.35 76 76 0.01
150_250 3 90 92 92.8 312.79 90 90 0.02
150_500 4 <=74 80 80.6 193.32 73 73 5.87
150_750 5 <=65 72 72.6 197.51 65 65 0.3
150_1000 7 <=70 78 78.9 168.44 70 70 91.4
150_2000 11 <=61 69 70 462.03 60 60.1 357.59
150_3000 15 <=57 62 62.9 233.5 55 55.3 313.03
200_250 2 96 105 107.1 422.13 96 96 0.12
200_500 4 116 126 127.2 321.21 116 116 0.12
200_750 5 <=109 122 122.7 525.27 109 109 0.79
200_1000 6 <=105 118 119.5 317.59 103 103.8 417.36
200_2000 9 <=87 96 96.9 586.67 85 85.1 247.07
200_3000 12 <=80 88 88.8 287.33 77 77 302.77
250 250 2 126 151 151.2 394.16 126 126 0.04
250_500 3 134 149 149.7 517.59 134 134.1 2.59
250_750 4 <=132 148 149.5 443.33 131 131 172.98
250_1000 5 <=132 150 150.9 485.77 131 131.2 76.64
250_2000 8 <=117 136 136.9 232.34 116 116.7 161.53
250_3000 10 <=103 114 1153 368.78 100 100.7 174.33
250_5000 16 <=103 113 113.8 385.04 98 98 158.12
300_300 2 151 182 183 293.66 151 151 0.05
300_500 3 182 193 193.9 422.12 182 182 0.18
300_750 4 <=178 196 197.3 337.37 178 178 4.06
300_1000 4 <=148 168 169.7 339.74 146 146.1 75.63
300_2000 8 <=161 187 187.4 371.82 161 162.1 283.01
300_3000 10 <=146 163 165.3 415.78 139 139.9 242.19
300_5000 14 <=129 140 140.6 307.84 123 123 58.79
500_500 2 251 310 311.8 466.39 251 251 0.14
500_1000 3 <=270 308 309.9 188.28 269 269.3 71.17
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TABLE 4. (Continued.) The comparative results of CPLEX, GRASP, and VSCC? with ky,eq on the general graphs benchmarks.

500_2000 5 <=264 304
500_5000 9 <=221 256
500_10000 15 <=200 218
800_800 2 401 505
800_1000 2 384 451
800_2000 4 <=480 531
800_5000 8 <=451 527
800_10000 11 <=363 405
1000_1000 2 501 631
1000_5000 6 <=528 610
1000_10000 9 <=450 520
1000_15000 13 <=463 506
1000_20000 16 <=440 469

307.8 481.44 259 260.2 215.88
258.2 515.71 214 214.3 177.8
220.9 458.48 188 188.3 193.96
506.6 397.95 401 401 0.4

452.4 402.45 386 386.1 40.66
5332 366.94 478 478.5 185.76
531.7 428.24 450 452.5 117.54
409.3 399.02 340 341 309.17
6353 441.81 501 501 0.84

612.8 492.49 519 519.6 399.23
521.6 291.92 433 433.4 248.69
507.9 363.71 426 428.8 420.94
473.3 276.97 402 402.1 149.57

sum of the costs of vertices (not in the Dy ) whose Z, are equal
to k in the neighbor set of u and cost(u).

V. VERTEX SELECTION STRATEGY

To improve the efficiency of the local search and forbid
the cycling problem, we propose a vertex selection strat-
egy by combining the scoring strategy, MKDSCC? strategy,
random walk and tabu strategy. To implement tabu strategy,
we employ a list named tabu_list to prevent removing the
vertices which are just added in the last step. Specifically, the
vertex selection strategy is based on the following four rules:

REMOVE-RULEL. For each vertex in Dy, select one
vertex v with the greatest score(v) value. If more than one
exists, the vertex with the greatest value of age[v] will be
selected, and then update the MEKDSCC? values of this vertex
and its neighbors.

REMOVE-RULE2X. For each vertex in Dy, select one ver-
tex v which is not in tabu_list with the greatest score(v) value.
If more than one exists, the vertex with the greatest value
of age[v] will be selected, and then update the MKDSCC?
values of this vertex and its neighbors.

ADD-RULEL. For each vertex not in Dy, select one vertex
v randomly. And then update the MKDSCC? values of this
vertex and its neighbors.

ADD-RULE2. For each vertex not in D; with
MKDSCCZ[V] = 1, select one vertex v with the greatest
score(v) value. If more than one exists, the vertex with the
greatest value of age[v] will be selected, and then update the
MKDSCC? values of this vertex and its neighbors.

In detail, when VSCC? finds a solution, it removes a
vertex from the solution and continues to search for a bet-
ter k-dominating set. In this phase of removing vertices,
we use REMOVE-RULEI to remove a vertex from Dy.
During the search for a solution, \Nee swaps some vertices,
i.e., removing one vertex from Dy according to REMOVE-
RULE2 and then iteratively adding vertices into Dy. In the
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process of adding vertices, to increase the diversity of
search, our algorithm selects one vertex according to ADD-
RULEI with probability p, or selects one vertex according to
ADD-RULE2 with probability 1- p.

VI. VSCC? ALGORITHM

In this section, our algorithm framework VSCC? is proposed
by integrating these strategies discussed above. The pseudo
code of VSCC? is displayed as Algorithm 1.

At first, preprocessing is very necessary for the minimum
k-dominating set. There are some vertices whose degrees are
less than k in the graph, then these vertices must be added into
in the candidate solution Dj. And in this case, we mark such
vertices so that they will not be removed from the candidate
solution Dy during the local search.

In the initialization process, VSCC? initializes tabu_list,
MKDSCC?, and the cost and score of vertices. Then the
candidate solution Dy is constructed greedily by iteratively
picking one vertex with the greatest score. The best solution
Dz is initialized as current solution Dy.

After initialization, the main outer loop from lines 5 to 23 is
executed until stop criterion is satisfied. When a better solu-
tion is obtained, the algorithm updates the DZ. After then, our
algorithm chooses one vertex in Dy and removes it according
to REMOVE-RULEI until Dy is not a k-dominating set.
At the same time, the MKDSCC? array should be updated
according to MKDSCC2-RULE2.

Then our algorithm selects one vertex and removes it
from Dy according to REMOVE-RULE2. After removing
a vertex, VSCC? updates MKDSCC? array according to
MKDSCC?-RULE2. The inner loop is from lines 14 to
22 until a k-dominating set is constructed. To increase the
diversity of the search, our algorithm proposes a valid random
walk strategy. In detail, VSCC? selects one vertex according
to ADD-RULEI with probability p, or selects one vertex
according to ADD-RULE2 with probability 1- p. When the
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TABLE 5. The comparative results of CPLEX, GRASP, and VSCC2 with kmax on the general graphs benchmarks.
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GRASP vsce?
Instance Kmax CPLEX Min Avg Avgtime Min Avg Avgtime
50_50 2 26 26 26 7.26 26 26 0
50_100 4 37 37 37 5.5 37 37 0
50250 9 36 37 37 116.2 36 36 0
50_500 13 29 31 31.7 167.32 29 29.3 193.13
50_750 18 27 28 28.6 184.46 28 28 0.01
50_1000 22 26 26 26.9 3.34 26 26 0.01
100_100 2 51 52 52 57.05 51 51 0.01
100_250 6 83 83 83 0.28 83 83 0
100_500 9 70 73 73.9 109.8 70 70 0.07
100_750 13 72 74 74.5 291.4 72 72 0.05
100_1000 16 68 72 72.8 210.83 68 68 0.9
100_2000 25 <=58 63 63.8 178.73 58 58.8 123.17
150_150 2 76 87 87.7 476.99 76 76 0.02
150_250 4 119 119 119 0.71 119 119 0
150_500 102 104 104.5 286.97 102 102 0.03
150_750 9 106 111 111.4 263.79 106 106 0.03
150_1000 12 108 114 114.5 218.05 108 108 24.99
150_2000 21 <=104 114 115.5 308.79 104 104 122.89
150_3000 29 <=100 110 110.5 253.46 100 100 97.76
200_250 3 156 156 156 43.88 156 156 0.01
200_500 5 141 145 1454 509.62 141 141 0.03
200_750 7 142 150 151.2 23591 142 142 0.13
200_1000 11 163 166 166.6 365.07 163 163 0.02
200_2000 17 <=145 154 155.1 559.64 143 143 19.63
2003000 23 <=137 154 154.1 399.96 136 136.9 4.97
250_250 2 126 151 151.2 389.31 126 126 0.13
250_500 4 174 180 180.7 359.73 174 174 0.05
250_750 6 183 189 190.5 298.81 183 183 0.09
2501000 8 186 195 195.9 418.5 186 186 1.03
250 2000 14 <=184 195 196.6 413.7 180 180 3.15
2503000 19 <=176 194 195.1 300.82 173 173.1 202.74
2505000 30 <=174 191 191.9 366.04 173 173.4 207.34
300_300 2 151 182 183 281 151 151 0.14
300_500 4 239 242 242.4 4345 239 239 0.01
300_750 5 215 224 224.5 167.84 215 215 0.08
300_1000 7 229 238 238.7 224.89 229 229 0.05
300_2000 14 244 252 252.7 303.94 244 244 0.29
300_3000 17 <=217 238 238.3 262.75 214 214.8 1.78
300_5000 25 <=207 230 231.4 583.34 202 205.1 55.95
500_500 2 251 311 312 397.42 251 251 0.55
500_1000 5 412 418 418.7 472.08 412 412 0.15
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TABLE 5. (Continued.) The comparative results of CPLEX, GRASP, and VSCC2 with kmax on the general graphs benchmarks.

500_2000 8 <=376 393 394.1 543.19 374 374 1.73
500_5000 17 <=365 396 397.6 525.1 356 3575 45.04
500_10000 29 <=341 386 386.6 4522 337 338.7 177.63
800_800 1 267 328 329.2 377.12 267 267 8.07
800_1000 3 636 645 646.5 297.06 636 636 0.12
800_2000 6 646 661 662.9 284.86 646 646 0.15
800_5000 13 <=640 672 673.5 351.32 637 637 11.76
800_10000 20 <=570 643 643.8 317.27 556 558.7 0.98
1000_1000 2 501 631 635.3 437.28 501 501 2.82
1000_5000 10 <=770 815 815.8 373.37 764 764.8 189.46
1000_10000 17 <=738 808 813.8 352.1 715 719.3 148.01
1000_15000 23 <=701 802 803.4 517.85 685 690.3 0.86
1000_20000 30 <=717 804 809.8 760.4 689 694.6 0.76
TABLE 6. The comparative results of CPLEX, GRASP, and VSCC2 with kp,;,, on UDG benchmarks.
GRASP vscc?
Instance Komin CPLEX Min Avg AvgTime Min Avg AvgTime
50_150 2 23.1 23.5 23.52 49.94 23.1 23.1 0
50_200 2 17.5 17.7 17.7 19.04 17.5 17.5 0
100_150 2 31.5 32.6 32.86 114.01 31.5 31.5 0.06
100_200 2 19.9 20.4 20.85 102.64 19.9 19.9 0.01
250_150 2 34.3 38 38.75 259.6 34.3 343 3.26
250_200 2 21.3 23.5 23.99 226.12 21.3 21.3 0.55
500_150 2 <=35.9 42.6 43.23 314.08 35.9 35.96 34.08
500_200 2 <=22 26.2 26.8 198.86 22 22 2.35
800_150 2 36.8 45.9 46.43 341.92 36.9 36.95 110.04
800_200 2 22.3 27.6 28.16 243.17 22.3 22.3 31.46
1000_150 2 37 47 47.64 304.69 37.2 37.42 114.07
1000_200 2 22.8 28.2 28.65 283.77 22.8 22.8 7.82

selected vertex is added into the Dy, we need to update the
MKDSCC? array according to MKDSCC?-RULE3 and this
vertex is added into tabu_list. After adding a vertex each
time, the cost of each non-k-dominated vertex is increased
by one. When reaching the stop criterion, the best solution of
minimum k-dominating set problem will be returned.

VIl. EXPERIMENTAL EVALUATION

In this section, we carry out extensive experiments to evaluate
VSCC? on standard benchmarks. At present, there are few
heuristic algorithms for MKDSP in the literatures as we
know, thus the experimental results of VSCC? are compared
with those of CPLEX, which is a high-performance solver
for linear and mixed integer linear programs. To further test
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the effectiveness of VSCC2, we also implement a classic
GRASP algorithm, which is widely used in solving combi-
natorial optimization problems. And the experimental results
of VSCC? are also compared with those of GRASP.

In our experiments, there are three classic benchmark
instances, general graphs which are got from Typel instance
in [33], unit disk graphs (UDG) which are created by
using the topology generator in [34] and DIMACS which is
downloaded from http://iridia.ulb.ac.be/~fmascia/ maximum
_clique/. For general graphs and UDG, the number of ver-
tices varies from 50 to 1000. In the case of general graphs,
the number of edges varies from 50 to 20000. And in the
case of UDG, there are two transmission ranges of 150 and
200 units. The size of DIMACS ranges from 150 vertices and
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TABLE 7. The comparative results of CPLEX, GRASP, and VSCC2 with ky,eq on UDG benchmarks.

GRASP vscc?
Instance Kimed CPLEX Min Avgtime Min Avg Avgtime
50_150 2.9 31.6 32 0.12 31.6 31.6 0
50_200 3.5 27.7 28 28.16 89.44 27.7 27.7 0
100_150 42 59.4 61.2 61.67 190.87 59.4 59.4 0.01
100_200 5.8 51.3 54.5 55.02 233.19 51.3 51.3 0.04
250_150 7.8 <=123.5 136 136.9 269.93 113.1 113.58 51.51
250 200 11.6 <=115.1 128.1 129.34 361.61 112.6 113.01 137.87
500_150 13.6 <=235.4 260.8 261.99 349.3 224.2 225 215.84
500_200 21.1 <=223.2 254.9 257.47 442.75 2154 216.07 241.23
800_150 20 <=353.2 403.9 406.45 451.82 339.6 340.23 244.45
800_200 324 <=347 411.5 413.86 437.71 328 339 352.05
1000_150 24 <=431.1 4934 495.69 464.86 411.7 412.89 275.06
1000_200 38.7 <=421.1 500.5 504.5 446.56 408.5 409.87 416.49
TABLE 8. The comparative results of CPLEX, GRASP, and VSCC2? with kmax on UDG benchmarks.
GRASP vSCC?

Instance Konax CPLEX Min Avgtime Min Avg Avgtime
50_150 3.6 36.5 36.8 3.22 36.5 36.6 0
50_200 5.2 37.4 37.9 17.42 37.4 37.4 0
100_150 6.6 79.8 81 55.72 79.8 79.8 0.01
100_200 9.6 74.7 76.9 142.21 74.7 74.7 0.01
250 150 13.5 <=188.1 199.6 200.54 285.06 187.1 187.16 62.77
250 200 214 <=184.6 198.1 198.94 370.27 182.1 182.34 27.56
500_150 25.4 <=376.1 403.2 4123 368.4 368.53 215.79
500_200 40.2 <=363.3 399.6 401.34 422.52 357.1 358.14 187.29
800_150 37.7 <=578.4 632.5 634.99 448.44 568.4 568.95 274.74
800_200 62.7 <=574.9 644.9 647.14 421.29 570 571.99 189.18
1000_150 46 <=714.8 785.9 788.13 497.36 701.2 702.76 211.25
1000_200 75.5 <=703.7 803.8 807.13 391.33 699.4 703.01 123.65

300 edges to over 4000 vertices and 7900000 edges. For the
minimum k-dominating set problem, the different values of k
for each instance are presented in Table 1.

Our algorithm VSCC? and GRASP are programmed in
C++ and compiled by g+ with the -O2 option on the Linux
Ubuntu with 2.3GHZ and 8 GB. For each instance, VSCC?
and GRASP perform ten independent runs with different
random seeds, which one run is stopped until arriving at a
time limit. In this paper, the time limit is set to 1000s for
general graphs and UDG, otherwise the time limit is set to
1800s. And the termination condition of CPLEX is 3600s.
The parameter p value is determined by performing a prelim-
inary experiment, the different p values for each instance are
presented in Table 2.
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In the results of our experiment, we denote the best solution
values (Min), average solution values (Avg), and the average
run time to reach the best solution (AvgTime, in seconds). Itis
worthy to note that the bold value presents the best solution
value or the shortest run time among the different algorithms
compared. For some instances, CPLEX is not capable to find
a k-dominating set, then it is marked as “n/a” for these cases.
And “<="" denotes that CPLEX finds the upper bound of
instances.

A. RESULTS ON GENERAL GRAPH BENCHMARKS

The performance results of algorithms with kyin, Kmeds kmax
on the general graphs are displayed in Tables 3-5. From
three tables, we observe that VSCC? is faster than GRASP
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TABLE 9. The comparative results of CPLEX, GRASP, and VSCC2 with k.,;,, on DIMACS benchmarks.

GRASP vscc?

Instance Komin CPLEX Min Avg Avgtime Min Avg Avgtime
brock200 2 2 6 6 6 7.659 6 6 0.02
brock200_4 2 9 9 9 12.215 9 9 0.02
brock400_2 2 <=14 14 14 4.924 13 13 297.37
brock400_4 2 <=14 14 14 15.104 13 13 88.65
brock800_2 2 <=12 12 12 4.376 11 11 446.46
brock800_4 2 <=12 12 12 2.492 11 11 176.53
C125.9 2 22 23 23 6.132 22 22 0.04
C250.9 2 <=26 26 26 226.12 25 25 0.21
C500.9 2 <=31 31 31.7 336.65 30 30 3.66
C1000.9 2 <=37 36 36.9 122.31 35 35 216.11
C2000.5 2 <=10 9 9.9 97.07 9 9 443.42
C2000.9 2 <=43 43 43 297.03 41 419 104.23
C4000.5 2 n/a 11 11 18.04 10 10.8 212.14
DSJC500.5 2 <=8 7 7.9 83.88 7 7 5.7
DSJ1000.5 2 <=9 8 8 640.99 8 8 29.72
gen200_p0.9 44 2 <=25 26 26 44.94 25 25 0.05
gen200_p0.9 55 2 <=25 25 25 214.63 25 25 0.02
gen400_p0.9 55 2 <=29 30 30 107.78 28 28 1.34
gen400_p0.9_65 2 <=30 29 29.5 384.97 28 28 40.17
gen400_p0.9_75 2 <=29 30 30 513.7 29 29 0.23
hamming8-4 2 8 8 8 0.02 8 8 0.01
hamming10-4 2 <=18 20 20.7 288.99 18 18 27.34
keller4 2 7 8 8 4.13 7 7 0.01
keller5 2 <=14 14 14.9 29.49 13 13 34.98
keller6 2 n/a 25 25 35.19 22 22.6 680.47
MANN_a27 2 142 143 143.6 231.98 142 142 63.71
MANN_a45 2 <=373 374 374 435.62 374 374 6.27
MANN_a81 2 <=1159 1161 1161 34.85 1161 1161 0.08
p_hat300-1 2 4 4 4 4.59 4 4 0.05
p_hat300-2 2 6 6 6 142.76 6 6 0.01
p_hat300-3 2 11 13 13 37.51 11 11 0.1
p_hat700-1 2 4 5 5 7.59 4 4 0.24
p_hat700-2 2 <=7 8 8 151.31 6 6 0.4
p_hat700-3 2 <14 17 17 423.12 13 13 0.38
p_hat1500-1 2 <=5 5 5.7 292.45 5 5 0.48
p_hat1500-2 2 <=9 9 9.6 602.84 7 7 1.09
p_hat1500-3 2 <=16 20 20.6 676.9 15 15 23

on all instances. In Table 3, we can observe that our algo-
rithm VSCC? can obtain better solution values than GRASP
for 45 instances, and the same solution values for the rest
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9 instances. Furthermore, we find that the results of our algo-
rithm VSCC? are equal to the optimal solutions of CPLEX
for 31 out of 54 instances, and our algorithm VSCC? can
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TABLE 10. The comparative results of CPLEX, GRASP, and VSCC? with kyeq on DIMACS benchmarks.

GRASP vsce?
Instance Kmea CPLEX Min Avg Avgtime Min Avg Avgtime
brock200_2 31 <=65 65 65 374.01 62 62 8.91
brock200_4 23 <=70 74 74.2 620.63 67 67.9 143.64
brock400 2 32 <=139 138 138.7 485 129 129 429.32
brock400_4 32 <=137 139 139.5 421.47 129 129.7 356.4
brock800_2 83 <=261 258 258.3 512.74 244 244.6 310.27
brock800_4 81 <=253 251 251.9 402.42 238 238.5 208.43
C125.9 7 <=63 69 69.7 280.88 64 64 0.12
C250.9 13 <=125 139 140 731.26 123 123.5 388.67
C500.9 18 <=193 198 199 584.04 182 182.7 465.32
C1000.9 34 <=386 381 382.4 289.28 351 351.8 846.63
C2000.5 271 <=581 577 577.2 588.83 557 558 1047.59
C2000.9 63 <=744 697 697.4 4339 654 654.2 1004.82
C4000.5 527 n/a 1107 1108.4 1081.71 1082 1083.7 28.95
DSJC500.5 71 <=153 152 153 393.36 145 145.8 160.53
DSJ1000.5 139 <=301 298 298 755.95 286 286 532.82
gen200_p0.9_44 10 <=98 111 112.6 568.43 95 95.8 132.5
gen200_p0.9 55 10 <=99 109 109.9 914.56 96 96 47.49
gen400_p0.9_55 17 <=176 204 204.2 438.92 179 180.1 248
gen400_p0.9 65 18 <=186 208 211.3 546.71 185 185.9 243.24
gen400_p0.9_75 17 <=175 204 205.2 857.49 178 178 153.63
hamming8-4 24 <=68 69 69 386.57 67 67.3 496.21
hamming10-4 45 <=304 285 286.1 918.95 271 271 161.29
keller4 18 <=53 56 56 689.79 51 51 141.69
keller5 55 <=245 248 248.5 379.29 229 229.7 597.23
keller6 169 n/a 1053 1056.4 1053.36 961 961.6 765.81
MANN_a27 4 351 351 351 645.87 351 351 20.18
MANN_a45 7 990 990 990 403.91 990 990 8.23
MANN_a81 11 3240 3240 3240 282.01 3240 3240 0.02
p_hat300-1 70 <=96 103 103.8 344.09 96 96 438.42
p_hat300-2 61 <=148 159 159.3 340.81 149 150.7 332.67
p_hat300-3 34 <=157 179 179.9 490.24 159 160.2 137.58
p_hat700-1 157 <=222 239 239.8 746.3 219 219 3.98
p_hat700-2 137 <=350 386 387.2 871.23 354 362.4 1.39
p_hat700-3 74 <=365 431 4333 537.33 372 375.6 0.63
p_hat1500-1 337 n/a 506 511.2 934.13 472 472 236.13
p_hat1500-2 292 <=802 818 820.4 918.17 765 776.6 68.56
p_hat1500-3 148 <=797 854 856.6 726.98 780 783.6 3.48

reach or improve the upper bound of CPLEX for 20 out
of 54 instances. In Table 4, we can observe that VSCC? also
performs better than GRASP. It is encouraging to see that
VSCC? outperforms CPLEX on all the 54 instances except
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for 800 _1000. In Table 5, we can observe that VSCC? per-
forms better than GRASP in 48 out of 54 instances. Compared
to CPLEX, VSCC? obtains better results for all the instances
with one exception, i.e. 50_750.
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TABLE 11. The comparative results of CPLEX, GRASP, and VSCC2 with kmax on DIMACS benchmarks.

GRASP VSCC?
Instance Konax CPLEX Min Avg Avgtime Min Avg Avgtime
brock200_2 61 <=119 123 123.7 368.61 119 119 11.32
brock200_4 44 <=124 133 1339 373.31 124 124 217.64
brock400_2 63 <=250 262 264 447.52 246 246 3.48
brock400_4 62 <=244 261 262.1 637.25 242 2429 3.98
brock800_2 164 <=487 492 493.9 937.48 472 472.5 191.99
brock800_4 159 <=472 477 478.9 364.06 456 456.9 53.47
C125.9 11 88 93 93.9 466.78 88 88 0.07
C250.9 23 <=194 201 202.5 893.62 192 192 1.09
C500.9 34 <=328 362 363.3 630.35 321 3223 0.66
C1000.9 66 <=665 720 720.9 940.59 645 650.6 1.46
C2000.5 540 <=1116 1124 1126.4 994.15 1090 1091.2 608.45
C2000.9 124 <=1291 1339 1339.8 1163.91 1234 1242.1 64.43
C4000.5 1052 n/a 2177 2178.3 1014.08 2125 2126.4 158.73
DSJC500.5 140 <=289 296 296.9 442.12 282 282 359.96
DSJ1000.5 276 <=571 579 579.2 548.49 557 557 315.13
gen200_p0.9_44 17 <=144 156 156.5 349.87 144 144 5.24
gen200_p0.9 55 18 <=149 158 158.9 565.82 148 148 53.84
gen400_p0.9_55 33 <=298 328 328.8 862.88 292 293.6 22.09
gen400 _p0.9 65 33 <=294 322 3233 531.88 287 287 46.79
gen400_p0.9_75 32 <=283 322 323.1 820.89 279 280.8 0.43
hamming8-4 46 <=128 128 134.1 825.98 125 125.2 656.58
hamming10-4 88 <=512 542 546.8 785.54 510 510.9 740.17
keller4 34 <=94 102 102.7 354.45 93 93.3 17.86
keller5 108 <=433 447 449 989.28 424 425.2 268.26
keller6 335 n/a 1918 1920.7 713.31 1810 1818.3 6.26
MANN_a27 7 351 351 351 671.29 351 351 17.83
MANN_a45 11 990 990 990 365.83 990 990 3.73
MANN_ag81 20 3240 3240 3240 291.08 3240 3240 0.03
p_hat300-1 138 <=186 208 208.1 682.12 193 194.2 52.14
p_hat300-2 120 214 268 269.7 519.19 216 217.7 0.34
p_hat300-3 66 <=225 264 264.3 584.84 226 226.4 0.21
p_hat700-1 312 <=432 483 483.6 598.38 445 448.5 0.76
p_hat700-2 271 <=500 656 658.9 805.89 501 510.3 2.46
p_hat700-3 146 <=517 642 643.5 790.3 518 521 0.67
p_hat1500-1 671 n/a 1042 1043.7 807.83 970 987 12.88
p_hat1500-2 582 <=1500 1444 1444.9 999.58 1100 1119.7 13.29
p_hat1500-3 294 <=1092 1424 1425.9 1069.59 1086 1093.8 7.58

B. RESULTS ON UDG BENCHMARKS

The experimental results of algorithms with ki, Kimeds kmax
on the UDG graphs are presented in Tables 6-8. There are
12 groups of instances for the UDG graphs, each of which
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contains 10 instances. From Table 6, we can observe that
the quality of solutions found by VSCC? is much better than
those found by GRASP. For two instances, i.e. 800_150 and
1000_150, CPLEX is much better than VSCC? in terms of
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Algorithm 1 VSCC? ()
1. preprocess the instance;
2. initialize tabu_list, MKDSCC?, and the cost and
score of vertices;
initialize the candidate solution Dy greedily;
D := Dy;
while stop criterion is not satisfied do
while Dy is a k-dominating set then
if m(Dy) < m(Dy) then D} := Dy;
v := pick x according to REMOVE-RULEL;
Dy := Dy \{v} and update MKDSCC?
according to MKDSCC2-RULE2;
10. end while
11. v : = pick x according to REMOVE-RULE2;
12. Dy : = D\{v} and update MKDSCC?
according to MKDSCC2-RULE2;
13. tabu_list := @,

O 0NN R W

14. while there are non-k-dominated vertices do

15. if rand(0,1) < p

16. v : = pick x according to ADD-RULEL;

17. else

18. v : = pick x according to ADD-RULE2;

19. Dy : = DU {v} and update MKDSCC?
according to MKDSCCZ-RULES;

20. tabu_list : = tabu_list U {v};

21. cost(u) : = cost(u) + 1, for each non-k- domi-

nated vertex;
22. end while
23. end while
24. return D7,

the quality of solutions. As is clear from Table 7, VSCC? with
kmea shows significant superiority on all instances. In Table §,
we can observe that VSCC? with k;qx outperforms GRASP
and CPLEX in all instances.

C. RESULTS ON DIMACS BENCHMARKS

Tables 9-11 summarize the computational results of the
algorithms with kyin, kmeds kmax on DIMACS benchmarks.
For C4000.5 and Keller6, CPLEX is not capable to find a
k-dominating set with kpin, Kmed, kmax. For p_hat1500-1,
CPLEX is not capable to find a k-dominating set with k¢4,
kimax. For these three instances, GRASP and VSCC? can
find feasible solutions and VSCC? performs much better
than GRASP. And VSCC? outperforms GRASP algorithm on
almost all instances. In Table 9, both CPLEX and VSCC?
can find the 10 optimal solutions for all 37 instances. For
25 instances, the results of VSCC? can reach or improve the
upper bound of CPLEX. From Tables 10, 11, we find that
the results of our algorithm VSCC? are equal to the optimal
solutions of CPLEX for 3,4 out of 37 instances respectively.
And VSCC? can reach or improve the upper bound of CPLEX
for 27 out of 37 instances in both Table 10 and Table 11.
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As can be seen in three tables, VSCC? is faster than GRASP
on the all instances of DIMACS.

VIIl. CONCLUSION

In this paper, we develop a new local search algorithm VSCC?
for the MKDS problem. The minimum k-dominating set two-
level configuration checking (MKDSCC?) strategy is used to
alleviate the cycling problem in the local search. Combing
MKDSCC?, random walk, with the scoring strategy, a ver-
tex selection strategy is proposed to decide which vertex
should be added into or removed from the candidate solu-
tion. We assess the performance of the VSCC? algorithm on
the 211 classical instances with different values of k. The
results show that the VSCC? algorithm outperforms CPLEX
and GRASP on almost all instances. Finally, these ideas
can be beneficially applied to other combinatorial problems
because those are mentioned in the introduction of these
work [35]-[38].
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