

Received September 20, 2018, accepted September 30, 2018, date of publication October 15, 2018, date of current version November 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2875499

An Efficient Local Search Algorithm for the Minimum *k*-Dominating Set Problem

RUIZHI LI¹⁰¹, HUAN LIU², XIAOLI WU², JUN WU², AND MINGHAO YIN^{1,2,3}

¹Jilin University of Finance and Economics, Changchun 130117, China ²Northeast Normal University, Changchun 130117, China

³Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130024, China

Corresponding author: Minghao Yin (ymh@nenu.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61763003, Grant 61502111, Grant 61806082, and Grant 61503074.

ABSTRACT The minimum *k*-dominating set (MKDS) problem, a generalization of the classical minimum dominating set problem, is an important NP-hard combinatorial optimization problem with various applications. First, to alleviate the cycling problem in the local search, a MKDS two-level configuration checking (MKDSCC²) strategy is presented. Second, we use the vertex cost scheme to define the scoring mechanism and to improve the solution effectively. Third, by combining MKDSCC² strategy and the scoring mechanism, we propose a vertex selection strategy to decide which vertex should be added into or removed from the candidate solution. Based on these strategies, an efficient local search algorithm (VSCC²), which incorporates a two-level configuration checking strategy, scoring mechanism, and vertex selection strategy, is proposed. We compare the performance of VSCC² with the classic GRASP algorithm and the famous commercial solver CPLEX on the classical instances. The comprehensive results show that the VSCC² algorithm is very competitive in terms of solution quality and computing time.

INDEX TERMS Heuristic, local search, minimum *k*-dominating set problem.

I. INTRODUCTION

Given an undirected graph G = (V, E), where V is the vertex set and E is the edge set, a dominating set (DS) of G is a subset $D \subseteq V$ such that every vertex in $V \setminus D$ is adjacent to at least one vertex in D. The minimum dominating set (MDS) problem aims to find the dominating set with the minimum size. A k-dominating set (KDS) of G is a subset $D_k \subseteq V$ such that every vertex in $V \setminus D_k$ is adjacent to at least k vertices in D_k [1]. The minimum k-dominating set problem aims to find the k-dominating set with the minimum size. The MKDS problem can be viewed as a generalized version of the MDS problem. Specifically, the minimum 1-dominating set problem is equivalent to the minimum dominating set

The minimum dominating set problem has various applications in real-word domains such as routing in wireless networks [2]–[4], document processing [5], [6], and social networks [7]. Whereas sometimes the dominating set problem cannot better model the actual application problems. For example, in a wireless ad-hoc network, the level of service required by a dominatee cannot be accomplished by only one dominator, and they call for collect services from several dominators to meet the dominatee' needs. Even if any k -1 dominator fails, each dominatee is guaranteed to connect to at least one dominator [8], [9]. The problem can be modelled as minimum k-dominating set problem. Therefore, MKDS problem has a stronger modeling capability and has wider applications in several diverse areas [10]–[12].

In the past two decades, various algorithms have been proposed to solve the MDS problem, and they can be mainly classified into exact and heuristic algorithms. Exact algorithms [13]-[16] are mostly based on branch-bound method or branch-cut algorithm. Exact algorithms have the advantage of ensuring the optimal solutions, but they require a computing time, in general, exponential growth with the size of the problem. So various heuristic algorithms have been devised to handle the minimum dominating set problem. Hedar and Ismail [17] proposed an algorithm HGA-MDS, which is based on genetic algorithm (GA) to handle the MDS problem. After that Giap and Ha [18] designed a good parallel genetic algorithm (PGAs) model for MDS problem. Chalupa [19] presented an order-based randomized local search (RLSo) algorithm to compute MDS problem indirectly by employing a representation based on permutations of vertices, which are transformed into dominating sets using a greedy algorithm. Hedar and Ismail [20] again proposed a

method SAMDS based on simulated annealing (SA) to solve the minimum dominating set problem. Compared with the minimum dominating set problem, there are relatively few algorithms to solve the minimum k-dominating set problem.

In this paper, a new local search framework is proposed for the minimum k-dominating set problem based on some new ideas. Firstly, during the local search process, most local search algorithms are subject to the cycling problem. To tackle this problem, two-level configuration checking strategy (CC^2) is recently proposed in [21]. The CC^2 strategy has been successfully used in the minimum weight dominating set problem. In this strategy, the configuration of a vertex v is the state of the neighborhood N(v) and the neighborhood of each vertex in N(v). For a vertex, if its configuration has not been changed after the last time it was removed from the candidate solution, it will be banned from being added into the candidate solution. On this basis, we adapt the two-level configuration checking strategy into the minimum k-dominating set problem during the local search process.

Secondly, the scoring strategy has a significant role during the local search [22]–[28]. In our work, we propose a new scoring strategy based the vertex cost to obtain more promising solutions and increase the diversity of solutions. For the scoring strategy, the score value of each vertex can be modified dynamically.

Furthermore, by integrating the scoring strategy with twolevel configuration checking strategy, we design a vertex selection strategy to decide which vertex should be added into or removed from the candidate solution.

Finally, by merging all the above strategies, we develop a local search algorithm named VSCC² to solve the MKDS problem. To measure the efficiency of VSCC², the experimental results of our algorithm are compared with those of commercial solver CPLEX and the classic GRASP algorithm, and our algorithm obtains better solutions than or same solutions as CPLEX and GRASP on almost all instances.

The remainder of this paper is constructed as follows. In Section 2, some useful notations are introduced. The two-level configuration checking strategy for the minimum k-dominating set problem is proposed in Section 3. Furthermore, the scoring strategy is introduced in Section 4. And then a new vertex selection strategy is proposed in Section 5. Then, a detailed description of VSCC² is described in Section 6. In Section 7, the experimental results will be listed. Finally, conclusions and future directions are shown in the last section.

II. PRELIMINARY

At first, we shall introduce some background information for MKDS problem. An undirected graph G = (V, E) consists of a vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and an edge set $E = \{e_1, e_2, \ldots, e_m\}$, where each edge e = (v, u) connects two vertices u and v, and we say that vertices u and v are the endpoints of edge e. We shall use *dist* (u, v), which is the number of edges in a shortest path from u to v, to denote the distance between two vertices u and v. Given a candidate

TABLE 1. Different values of k.

k	Value
k _{min}	2
k_{max}	$[max\{degree(v), for v \in V\}/2]$
k _{med}	$[(k_{min} + k_{max})/2]$

TABLE 2. Different values of p.

Instance	k	р
General graphs	k_{min}	0.15
General graphs	k_{med}	0.15
General graphs	k_{max}	0.85
UDG	k_{min}	0.15
UDG	k_{med}	0.15
UDG	k_{max}	0.85
DIMACS	k_{min}	0.15
DIMACS	k_{med}	0.75
DIMACS	k_{max}	0.95

solution D_k , $s_i \in \{1, 0\}$ denotes the state of vertex v_i , where $s_i = 1$ means $v_i \in D_k$, and $s_i = 0$ means $v_i \notin D_k$. We shall use $m(D_k)$ to denote the number of vertices in D_k . For a vertex v, we shall use $N_i(v) = \{u | dist(u, v) = i\}$ to denote the *i*th level neighborhood of the vertex v, and we denote $N^k(v) = \bigcup_{i=1}^k N_i(v)$. And the first-level neighborhood $N_1(v)$ is the same as N(v), and we shall use $N[v] = N(v) \cup \{v\}$ to denote the closed neighbor set of v.

Definition 1 (Dominating Set, DS): Given an undirected graph G(V, E), the dominating set of G is a vertex subset $D \subseteq V$ such that every vertex in $V \setminus D$ has at least one neighbor in D.

Definition 2 (Minimum Dominating Set, MDS): Given an undirected graph G(V, E), the minimum dominating set problem calls for finding a dominating set D with minimum cardinality.

Definition 3 (k-Dominating Set, KDS): Given an undirected graph G (V, E), the k-dominating set of G is a vertex subset $D_k \subseteq V$ such that every vertex in $V \setminus D_k$ is adjacent to at least k vertices in D_k .

Definition 4 (Minimum k-Dominating Set, MKDS): Given an undirected graph G(V, E), the minimum k-dominating set problem calls for finding a k-dominating set D_k with minimum cardinality.

The definitions show that dominating set problem can be viewed as a special problem of the k-dominating set when k equals 1. During the local search process, our algorithm maintains a candidate solution $D_k \subseteq V$. For a candidate solution D_k , vertices that belong to D_k are called dominating vertices. If a vertex v which is adjacent to at least k vertices in D_k , is called k-dominated vertex, otherwise it's called non-k-dominated vertex. For a vertex, its age denotes the number of steps when it is selected.

III. TWO-LEVEL CONFIGURATION CHECKING STRATEGY

Local search algorithms often visit a candidate solution repeatedly during the search process. This phenomenon is

				GRASP			$VSCC^2$	
Instance	k_{min}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
50_50	2	26	26	26	8.54	26	26	0.01
50_100	2	21	21	21	51.2	21	21	0
50_250	2	10	10	10	0.11	10	10	0
50_500	2	6	6	6	0.83	6	6	0
50_750	2	4	4	4	0.08	4	4	0
50_1000	2	3	3	3	0.01	3	3	0
100_100	2	51	52	52	56.17	51	51	0.01
100_250	2	34	36	36.2	220.71	34	34	0.03
100_500	2	20	21	21	1.64	20	20	0.01
100_750	2	15	15	15	2.53	15	15	0
00_1000	2	12	12	12	32.53	12	12	0
00_2000	2	7	7	7	2.93	7	7	0
150_150	2	76	87	87.8	466	76	76	0.02
150_250	2	65	70	70.9	304.54	65	65	0.13
150_500	2	42	45	46.1	194.9	42	42	0.04
150_750	2	31	34	34.8	244.91	31	31	0.68
50_1000	2	25	27	27.9	243.08	25	25	0.37
50_2000	2	15	16	16.4	200.6	15	15	0.01
50_3000	2	10	11	11.3	211.89	10	10	0.08
200_250	2	96	105	107.3	334.98	96	96	0.07
200_500	2	67	78	79	518.71	67	67	18.39
200_750	2	52	60	61.9	339.36	52	52	0.05
00_1000	2	<=42	47	47.8	163.34	42	42	0.03
00_2000	2	<=25	28	28	145.69	24	24	0.04
00_3000	2	<=18	20	20.5	251.95	17	17	0.91
250_250	2	126	151	151.2	481.1	126	126	0.03
250_500	2	97	112	113.5	291.48	97	97	5.65
250_750	2	75	89	89.8	411.82	75	75.3	62.09
50_1000	2	<=63	72	73.5	352.32	61	61	9.63
50_2000	2	<=37	43	43.3	317.09	36	36	4.94
50_3000	2	<=28	30	30.9	461.79	26	26	0.8
50_5000	2	<=18	20	21	249.41	18	18	0.03
300_300	2	151	182	183	347.69	151	151	0.04
300 500	2	127	148	148.7	403.09	127	127.7	188.75
300_750	2	101	121	121.4	175.64	101	101.7	5.3
00 1000	2	<=83	98	98.6	480.04	83	83	5.25
00_2000	2	<=51	57	57.4	554.22	49	49	0.36
-00_3000	2	<=38	43	43.9	323.19	36	36	29.11
	2	<=25	28	29.8	225.58	24	24	20.92
_ 500_500	2	251	310	311.4	568.01	251	251	0.14
500 1000	2	<=195	230	231.8	471.26	196	196.1	150.09
500 2000	2	<=123	147	149.1	344 71	121	121.1	58.67

TABLE 3. The comparative results of CPLEX, GRASP, and VSCC² with k_{min} on the general graphs benchmarks.

500_5000	2	<=63	75	76.3	465.81	61	61	2.18
500_10000	2	<=37	44	44.8	665.66	36	36	1.55
800_800	2	401	505	506.6	392.48	401	401	0.43
800_1000	2	384	451	452.4	406.2	386	386.1	39.36
800_2000	2	<=271	326	329.5	433.18	272	273	280.92
800_5000	2	<=147	173	173.9	275.61	141	141.2	154.53
800_10000	2	<=87	104	105.4	433.14	82	82.8	31.34
1000_1000	2	501	631	635.3	400.33	501	501	0.85
1000_5000	2	<=216	252	254.8	344.21	209	210	147.28
1000_10000	2	<=132	155	156.7	453.83	124	124.8	151.94
1000_15000	2	<=96	114	115.4	358	90	90.1	151.81
1000_20000	2	<=79	92	92.9	356.79	72	72.7	89.41

TABLE 3. (Continued.) The comparative results of CPLEX, GRASP, and VSCC² with k_{min} on the general graphs benchmark.

called the cycling problem, which not only wastes time, but also makes the algorithm often fall into the local optimum and reduces the performance of the algorithm. To alleviate the cycling problem, the two-level configuration checking (CC^2) strategy was proposed to handle this problem in local search. The CC^2 strategy has been successfully used to solve the minimum weight dominating set problem. Therefore, we adapt this strategy to the minimum *k*-dominating set problem during the local search process.

Furthermore, we shall introduce the definition of twolevel configuration checking in minimum *k*-dominating set problem, and we call it minimum *k*-dominating set two-level configuration checking (MKDSCC²). For the MKDSCC² strategy, the configuration of a vertex is represented as a vector consisting of the states of all vertices in $N^2(v)$. For a vertex $v \notin D_k$, if at least one vertex in $N^2(v)$ has changed its state since the last selection, then the configuration of *v* is changed.

To implement MKDSCC² strategy, we introduce a Boolean array MKDSCC² whose size equals the number of vertices in the graph. For a vertex v, the value of MKDSCC² means whether its configuration has changed since the recent state change of v. If MKDSCC²[v] = 1, it means that v is a configuration changed vertex and could be picked in the next adding procedure, otherwise MKDSCC²[v] = 0. Based on this, the MKDSCC²[v] array is maintained as follows.

MKDSCC²-RULE1. In the initial process, for each vertex v, MKDSCC²[v] is initialized as 1.

MKDSCC²-RULE2. When a vertex v is removed from D_k , MKDSCC²[v] is reset to 0 immediately. Then for each vertex $u \in N^2(v)$, MKDSCC²[u] is set to 1.

MKDSCC²-RULE3. When a vertex v is added to D_k , for each vertex $u \in N^2[v]$, MKDSCC²[u] is set to 1.

IV. SCORING STRATEGY

In the local search process, deciding which vertex should be added into or removed from the candidate solution D_k plays

an important role during the process of local search. Fortunately, the MKDSCC² strategy can contribute to alleviate the cycling problem. We shall introduce a scoring mechanism for the MKDS problem. And we use this strategy together with MKDSCC² strategy, random walk [29], [30] and tabu strategy [31], [32] to decide which vertex should be picked as a solution component.

In a graph, each vertex v is associated with a vertex *cost* property, denoted by cost(v). In the initialization process, the *cost* of each vertex is set to be 1. After each iteration of local search, each vertex v will be checked whether v is *k*-dominated by the candidate solution D_k . If v is non-*k*-dominated, cost(v) is increased by one. Based on this, we propose a new score function for the minimum *k*-dominating set problem. It is defined as below.

Definition 5 Given an undirected graph G(V, E), and a candidate solution D_k , the cost based scoring function denoted by *score*, is denoted in formula (1) and formula (2).

for $u \notin D_k$:

$$score(u) = \sum_{v \in M_1 \land Z_v < k} cost(v)$$
(1)

for $u \in D_k$:

$$score(u) = \begin{cases} -\sum_{v \in M_2 \land Z_v = k} cost(v), & \text{if } Z_u > k \\ -\sum_{v \in M_2 \land Z_v = k} cost(v) - cost(u), & (2) \\ & \text{otherwise} \end{cases}$$

Where $M_1 = N[u] \setminus D_k$, $M_2 = N(u) \setminus D_k$, Z_v represents the number of neighbors of the vertex v in the candidate solution, and Z_u represents the number of neighbors of the vertex u in the candidate solution. When a vertex $u \notin D_k$, the score of u is the sum of the costs of vertices which are not in D_k and nonk-dominated in the closed neighbor set of u. When a vertex $u \in D_k$, we shall consider two situations. If $Z_u > k$, the score of u is the opposite number of the sum of the costs of vertices (not in the D_k) whose Z_v are equal to k in the neighbor set of the number of the score of u is the opposite number of u is the opposite number of the set of u.

				GRASP			$VSCC^2$	
Instance	k_{med}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
50_50	2	26	26	26	6.27	26	26	0
50_100	3	28	28	28	105.16	28	28	0
50_250	6	25	26	26.9	29.35	25	25	0.01
50_500	8	19	19	19.7	181.5	19	19	0
50_750	10	16	17	17	0.17	16	16	0.01
50_1000	12	15	15	15	0.1	15	15	0
100_100	2	51	52	52	75.19	51	51	0.01
100_250	4	59	62	62.2	348.77	59	59	0.03
100_500	5	44	46	46	237.22	44	44	0.02
100_750	7	43	46	46.2	280.07	43	43.4	297.16
100_1000	9	<=43	45	45.4	204.6	42	42	0.04
100_2000	14	<=35	37	37.6	195.23	35	35	0.02
150_150	2	76	87	87.8	479.35	76	76	0.01
150_250	3	90	92	92.8	312.79	90	90	0.02
150_500	4	<=74	80	80.6	193.32	73	73	5.87
150_750	5	<=65	72	72.6	197.51	65	65	0.3
150_1000	7	<=70	78	78.9	168.44	70	70	91.4
150_2000	11	<=61	69	70	462.03	60	60.1	357.59
150_3000	15	<=57	62	62.9	233.5	55	55.3	313.03
200_250	2	96	105	107.1	422.13	96	96	0.12
200_500	4	116	126	127.2	321.21	116	116	0.12
200_750	5	<=109	122	122.7	525.27	109	109	0.79
200_1000	6	<=105	118	119.5	317.59	103	103.8	417.36
200_2000	9	<=87	96	96.9	586.67	85	85.1	247.07
200_3000	12	<=80	88	88.8	287.33	77	77	302.77
250_250	2	126	151	151.2	394.16	126	126	0.04
250_500	3	134	149	149.7	517.59	134	134.1	2.59
250_750	4	<=132	148	149.5	443.33	131	131	172.98
250_1000	5	<=132	150	150.9	485.77	131	131.2	76.64
250_2000	8	<=117	136	136.9	232.34	116	116.7	161.53
250_3000	10	<=103	114	115.3	368.78	100	100.7	174.33
250_5000	16	<=103	113	113.8	385.04	98	98	158.12
300_300	2	151	182	183	293.66	151	151	0.05
300_500	3	182	193	193.9	422.12	182	182	0.18
300_750	4	<=178	196	197.3	337.37	178	178	4.06
300_1000	4	<=148	168	169.7	339.74	146	146.1	75.63
300_2000	8	<=161	187	187.4	371.82	161	162.1	283.01
300_3000	10	<=146	163	165.3	415.78	139	139.9	242.19
300_5000	14	<=129	140	140.6	307.84	123	123	58.79
500_500	2	251	310	311.8	466.39	251	251	0.14
500 1000	3	<=270	308	309.9	188.28	269	269.3	71.17

TABLE 4. The comparative results of CPLEX, GRASP, and VSCC² with k_{med} on the general graphs benchmarks.

215.88	260.2	259	481.44	307.8	304	<=264	5	500_2000
177.8	214.3	214	515.71	258.2	256	<=221	9	500_5000
193.96	188.3	188	458.48	220.9	218	<=200	15	500_10000
0.4	401	401	397.95	506.6	505	401	2	800_800
40.66	386.1	386	402.45	452.4	451	384	2	800_1000
185.76	478.5	478	366.94	533.2	531	<=480	4	800_2000
117.54	452.5	450	428.24	531.7	527	<=451	8	800_5000
309.17	341	340	399.02	409.3	405	<=363	11	800_10000
0.84	501	501	441.81	635.3	631	501	2	1000_1000
399.23	519.6	519	492.49	612.8	610	<=528	6	1000_5000
248.69	433.4	433	291.92	521.6	520	<=450	9	1000_10000
420.94	428.8	426	363.71	507.9	506	<=463	13	1000_15000
149.57	402.1	402	276.97	473.3	469	<=440	16	1000_20000

TABLE 4. (Continued.) The comparative results of CPLEX, GRASP, and VSCC² with k_{med} on the general graphs benchmarks.

sum of the costs of vertices (not in the D_k) whose Z_v are equal to k in the neighbor set of u and cost(u).

V. VERTEX SELECTION STRATEGY

To improve the efficiency of the local search and forbid the cycling problem, we propose a vertex selection strategy by combining the scoring strategy, MKDSCC² strategy, random walk and tabu strategy. To implement tabu strategy, we employ a list named tabu_list to prevent removing the vertices which are just added in the last step. Specifically, the vertex selection strategy is based on the following four rules:

REMOVE-RULE1. For each vertex in D_k , select one vertex v with the greatest *score*(v) value. If more than one exists, the vertex with the greatest value of age[v] will be selected, and then update the MKDSCC² values of this vertex and its neighbors.

REMOVE-RULE2. For each vertex in D_k , select one vertex v which is not in tabu_list with the greatest *score*(v) value. If more than one exists, the vertex with the greatest value of age[v] will be selected, and then update the MKDSCC² values of this vertex and its neighbors.

ADD-RULE1. For each vertex not in D_k , select one vertex v randomly. And then update the MKDSCC² values of this vertex and its neighbors.

ADD-RULE2. For each vertex not in D_k with MKDSCC²[v] = 1, select one vertex v with the greatest *score*(v) value. If more than one exists, the vertex with the greatest value of age[v] will be selected, and then update the MKDSCC² values of this vertex and its neighbors.

In detail, when VSCC² finds a solution, it removes a vertex from the solution and continues to search for a better *k*-dominating set. In this phase of removing vertices, we use REMOVE-RULE1 to remove a vertex from D_k . During the search for a solution, VSCC² swaps some vertices, i.e., removing one vertex from D_k according to REMOVE-RULE2 and then iteratively adding vertices into D_k . In the

VOLUME 6, 2018

process of adding vertices, to increase the diversity of search, our algorithm selects one vertex according to ADD-RULE1 with probability p, or selects one vertex according to ADD-RULE2 with probability 1- p.

VI. VSCC² ALGORITHM

In this section, our algorithm framework $VSCC^2$ is proposed by integrating these strategies discussed above. The pseudo code of $VSCC^2$ is displayed as Algorithm 1.

At first, preprocessing is very necessary for the minimum k-dominating set. There are some vertices whose degrees are less than k in the graph, then these vertices must be added into in the candidate solution D_k . And in this case, we mark such vertices so that they will not be removed from the candidate solution D_k during the local search.

In the initialization process, VSCC² initializes *tabu_list*, $MKDSCC^2$, and the *cost* and *score* of vertices. Then the candidate solution D_k is constructed greedily by iteratively picking one vertex with the greatest *score*. The best solution D_k^* is initialized as current solution D_k .

After initialization, the main outer loop from lines 5 to 23 is executed until stop criterion is satisfied. When a better solution is obtained, the algorithm updates the D_k^* . After then, our algorithm chooses one vertex in D_k and removes it according to REMOVE-RULE1 until D_k is not a k-dominating set. At the same time, the MKDSCC² array should be updated according to MKDSCC²-RULE2.

Then our algorithm selects one vertex and removes it from D_k according to REMOVE-RULE2. After removing a vertex, VSCC² updates MKDSCC² array according to MKDSCC²-RULE2. The inner loop is from lines 14 to 22 until a *k*-dominating set is constructed. To increase the diversity of the search, our algorithm proposes a valid random walk strategy. In detail, VSCC² selects one vertex according to ADD-RULE1 with probability *p*, or selects one vertex according to ADD-RULE2 with probability 1- *p*. When the

-				GRASP			VSCC ²	
Instance	k_{max}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
50_50	2	26	26	26	7.26	26	26	0
50_100	4	37	37	37	5.5	37	37	0
50_250	9	36	37	37	116.2	36	36	0
50_500	13	29	31	31.7	167.32	29	29.3	193.13
50_750	18	27	28	28.6	184.46	28	28	0.01
50_1000	22	26	26	26.9	3.34	26	26	0.01
100_100	2	51	52	52	57.05	51	51	0.01
100_250	6	83	83	83	0.28	83	83	0
100_500	9	70	73	73.9	109.8	70	70	0.07
100_750	13	72	74	74.5	291.4	72	72	0.05
100_1000	16	68	72	72.8	210.83	68	68	0.9
100_2000	25	<=58	63	63.8	178.73	58	58.8	123.17
150_150	2	76	87	87.7	476.99	76	76	0.02
150_250	4	119	119	119	0.71	119	119	0
150_500	6	102	104	104.5	286.97	102	102	0.03
150_750	9	106	111	111.4	263.79	106	106	0.03
150_1000	12	108	114	114.5	218.05	108	108	24.99
150_2000	21	<=104	114	115.5	308.79	104	104	122.89
150_3000	29	<=100	110	110.5	253.46	100	100	97.76
200_250	3	156	156	156	43.88	156	156	0.01
200_500	5	141	145	145.4	509.62	141	141	0.03
200_750	7	142	150	151.2	235.91	142	142	0.13
200_1000	11	163	166	166.6	365.07	163	163	0.02
200_2000	17	<=145	154	155.1	559.64	143	143	19.63
200_3000	23	<=137	154	154.1	399.96	136	136.9	4.97
250_250	2	126	151	151.2	389.31	126	126	0.13
250_500	4	174	180	180.7	359.73	174	174	0.05
250_750	6	183	189	190.5	298.81	183	183	0.09
250_1000	8	186	195	195.9	418.5	186	186	1.03
250_2000	14	<=184	195	196.6	413.7	180	180	3.15
250_3000	19	<=176	194	195.1	300.82	173	173.1	202.74
250_5000	30	<=174	191	191.9	366.04	173	173.4	207.34
300_300	2	151	182	183	281	151	151	0.14
300_500	4	239	242	242.4	434.5	239	239	0.01
300_750	5	215	224	224.5	167.84	215	215	0.08
300_1000	7	229	238	238.7	224.89	229	229	0.05
300_2000	14	244	252	252.7	303.94	244	244	0.29
300_3000	17	<=217	238	238.3	262.75	214	214.8	1.78
300_5000	25	<=207	230	231.4	583.34	202	205.1	55.95
500_500	2	251	311	312	397.42	251	251	0.55
500_1000	5	412	418	418.7	472.08	412	412	0.15

TABLE 5. The comparative results of CPLEX, GRASP, and VSCC² with k_{max} on the general graphs benchmarks.

500_2000	8	<=3/6	393	394.1	543.19	374	374	1.73
500_5000	17	<=365	396	397.6	525.1	356	357.5	45.04
500_10000	29	<=341	386	386.6	452.2	337	338.7	177.63
800_800	1	267	328	329.2	377.12	267	267	8.07
800_1000	3	636	645	646.5	297.06	636	636	0.12
800_2000	6	646	661	662.9	284.86	646	646	0.15
800_5000	13	<=640	672	673.5	351.32	637	637	11.76
800_10000	20	<=570	643	643.8	317.27	556	558.7	0.98
1000_1000	2	501	631	635.3	437.28	501	501	2.82
1000_5000	10	<=770	815	815.8	373.37	764	764.8	189.46
1000_10000	17	<=738	808	813.8	352.1	715	719.3	148.01
1000_15000	23	<=701	802	803.4	517.85	685	690.3	0.86
1000_20000	30	<=717	804	809.8	760.4	689	694.6	0.76

TABLE 5. (Continued.) The comparative results of CPLEX, GRASP, and VSCC² with kmax on the general graphs benchmarks.

TABLE 6. The comparative results of CPLEX, GRASP, and VSCC² with k_{min} on UDG benchmarks.

				GRASP			VSCC ²	
Instance	k_{min}	CPLEX	Min	Avg	AvgTime	Min	Avg	AvgTime
50_150	2	23.1	23.5	23.52	49.94	23.1	23.1	0
50_200	2	17.5	17.7	17.7	19.04	17.5	17.5	0
100_150	2	31.5	32.6	32.86	114.01	31.5	31.5	0.06
100_200	2	19.9	20.4	20.85	102.64	19.9	19.9	0.01
250_150	2	34.3	38	38.75	259.6	34.3	34.3	3.26
250_200	2	21.3	23.5	23.99	226.12	21.3	21.3	0.55
500_150	2	<=35.9	42.6	43.23	314.08	35.9	35.96	34.08
500_200	2	<=22	26.2	26.8	198.86	22	22	2.35
800_150	2	36.8	45.9	46.43	341.92	36.9	36.95	110.04
800_200	2	22.3	27.6	28.16	243.17	22.3	22.3	31.46
1000_150	2	37	47	47.64	304.69	37.2	37.42	114.07
1000_200	2	22.8	28.2	28.65	283.77	22.8	22.8	7.82

selected vertex is added into the D_k , we need to update the MKDSCC² array according to MKDSCC²-RULE3 and this vertex is added into *tabu_list*. After adding a vertex each time, the cost of each non-*k*-dominated vertex is increased by one. When reaching the stop criterion, the best solution of minimum *k*-dominating set problem will be returned.

VII. EXPERIMENTAL EVALUATION

In this section, we carry out extensive experiments to evaluate VSCC² on standard benchmarks. At present, there are few heuristic algorithms for MKDSP in the literatures as we know, thus the experimental results of VSCC² are compared with those of CPLEX, which is a high-performance solver for linear and mixed integer linear programs. To further test

the effectiveness of $VSCC^2$, we also implement a classic GRASP algorithm, which is widely used in solving combinatorial optimization problems. And the experimental results of $VSCC^2$ are also compared with those of GRASP.

In our experiments, there are three classic benchmark instances, general graphs which are got from Type1 instance in [33], unit disk graphs (UDG) which are created by using the topology generator in [34] and DIMACS which is downloaded from http://iridia.ulb.ac.be/~fmascia/ maximum _clique/. For general graphs and UDG, the number of vertices varies from 50 to 1000. In the case of general graphs, the number of edges varies from 50 to 20000. And in the case of UDG, there are two transmission ranges of 150 and 200 units. The size of DIMACS ranges from 150 vertices and

			GRASP				VSCC ²	
Instance	k_{med}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
50_150	2.9	31.6	32	32	0.12	31.6	31.6	0
50_200	3.5	27.7	28	28.16	89.44	27.7	27.7	0
100_150	4.2	59.4	61.2	61.67	190.87	59.4	59.4	0.01
100_200	5.8	51.3	54.5	55.02	233.19	51.3	51.3	0.04
250_150	7.8	<=123.5	136	136.9	269.93	113.1	113.58	51.51
250_200	11.6	<=115.1	128.1	129.34	361.61	112.6	113.01	137.87
500_150	13.6	<=235.4	260.8	261.99	349.3	224.2	225	215.84
500_200	21.1	<=223.2	254.9	257.47	442.75	215.4	216.07	241.23
800_150	20	<=353.2	403.9	406.45	451.82	339.6	340.23	244.45
800_200	32.4	<=347	411.5	413.86	437.71	328	339	352.05
1000_150	24	<=431.1	493.4	495.69	464.86	411.7	412.89	275.06
1000_200	38.7	<=421.1	500.5	504.5	446.56	408.5	409.87	416.49

TABLE 7. The comparative results of CPLEX, GRASP, and VSCC² with k_{med} on UDG benchmarks.

TABLE 8. The comparative results of CPLEX, GRASP, and VSCC² with k_{max} on UDG benchmarks.

				GRASP			VSCC ²	
Instance	k_{max}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
50_150	3.6	36.5	36.8	36.8	3.22	36.5	36.6	0
50_200	5.2	37.4	37.9	37.99	17.42	37.4	37.4	0
100_150	6.6	79.8	81	81.12	55.72	79.8	79.8	0.01
100_200	9.6	74.7	76.9	77.35	142.21	74.7	74.7	0.01
250_150	13.5	<=188.1	199.6	200.54	285.06	187.1	187.16	62.77
250_200	21.4	<=184.6	198.1	198.94	370.27	182.1	182.34	27.56
500_150	25.4	<=376.1	403.2	405	412.3	368.4	368.53	215.79
500_200	40.2	<=363.3	399.6	401.34	422.52	357.1	358.14	187.29
800_150	37.7	<=578.4	632.5	634.99	448.44	568.4	568.95	274.74
800_200	62.7	<=574.9	644.9	647.14	421.29	570	571.99	189.18
1000_150	46	<=714.8	785.9	788.13	497.36	701.2	702.76	211.25
1000_200	75.5	<=703.7	803.8	807.13	391.33	699.4	703.01	123.65

300 edges to over 4000 vertices and 7900000 edges. For the minimum k-dominating set problem, the different values of k for each instance are presented in Table 1.

Our algorithm VSCC² and GRASP are programmed in C++ and compiled by g++ with the -O2 option on the Linux Ubuntu with 2.3GHZ and 8 GB. For each instance, VSCC² and GRASP perform ten independent runs with different random seeds, which one run is stopped until arriving at a time limit. In this paper, the time limit is set to 1000s for general graphs and UDG, otherwise the time limit is set to 1800s. And the termination condition of CPLEX is 3600s. The parameter *p* value is determined by performing a preliminary experiment, the different *p* values for each instance are presented in Table 2.

In the results of our experiment, we denote the best solution values (Min), average solution values (Avg), and the average run time to reach the best solution (AvgTime, in seconds). It is worthy to note that the bold value presents the best solution value or the shortest run time among the different algorithms compared. For some instances, CPLEX is not capable to find a *k*-dominating set, then it is marked as "n/a" for these cases. And "<=" denotes that CPLEX finds the upper bound of instances.

A. RESULTS ON GENERAL GRAPH BENCHMARKS

The performance results of algorithms with k_{min} , k_{med} , k_{max} on the general graphs are displayed in Tables 3-5. From three tables, we observe that VSCC² is faster than GRASP

TABLE 9. The comparative results of CPLEX, GRASP, and VSCC² with k_{min} on DIMACS benchmarks.

				GRASP			VSCC ²	
Instance	k_{min}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
brock200_2	2	6	6	6	7.659	6	6	0.02
brock200_4	2	9	9	9	12.215	9	9	0.02
brock400_2	2	<=14	14	14	4.924	13	13	297.37
brock400_4	2	<=14	14	14	15.104	13	13	88.65
brock800_2	2	<=12	12	12	4.376	11	11	446.46
brock800_4	2	<=12	12	12	2.492	11	11	176.53
C125.9	2	22	23	23	6.132	22	22	0.04
C250.9	2	<=26	26	26	226.12	25	25	0.21
C500.9	2	<=31	31	31.7	336.65	30	30	3.66
C1000.9	2	<=37	36	36.9	122.31	35	35	216.11
C2000.5	2	<=10	9	9.9	97.07	9	9	443.42
C2000.9	2	<=43	43	43	297.03	41	41.9	104.23
C4000.5	2	n/a	11	11	18.04	10	10.8	212.14
DSJC500.5	2	<=8	7	7.9	83.88	7	7	5.7
DSJ1000.5	2	<=9	8	8	640.99	8	8	29.72
gen200_p0.9_44	2	<=25	26	26	44.94	25	25	0.05
gen200_p0.9_55	2	<=25	25	25	214.63	25	25	0.02
gen400_p0.9_55	2	<=29	30	30	107.78	28	28	1.34
gen400_p0.9_65	2	<=30	29	29.5	384.97	28	28	40.17
gen400_p0.9_75	2	<=29	30	30	513.7	29	29	0.23
hamming8-4	2	8	8	8	0.02	8	8	0.01
hamming10-4	2	<=18	20	20.7	288.99	18	18	27.34
keller4	2	7	8	8	4.13	7	7	0.01
keller5	2	<=14	14	14.9	29.49	13	13	34.98
keller6	2	n/a	25	25	35.19	22	22.6	680.47
MANN_a27	2	142	143	143.6	231.98	142	142	63.71
MANN_a45	2	<=373	374	374	435.62	374	374	6.27
MANN_a81	2	<=1159	1161	1161	34.85	1161	1161	0.08
p_hat300-1	2	4	4	4	4.59	4	4	0.05
p_hat300-2	2	6	6	6	142.76	6	6	0.01
p_hat300-3	2	11	13	13	37.51	11	11	0.1
p_hat700-1	2	4	5	5	7.59	4	4	0.24
p_hat700-2	2	<=7	8	8	151.31	6	6	0.4
p_hat700-3	2	<=14	17	17	423.12	13	13	0.38
p_hat1500-1	2	<=5	5	5.7	292.45	5	5	0.48
p_hat1500-2	2	<=9	9	9.6	602.84	7	7	1.09
p_hat1500-3	2	<=16	20	20.6	676.9	15	15	2.3

on all instances. In Table 3, we can observe that our algorithm $VSCC^2$ can obtain better solution values than GRASP for 45 instances, and the same solution values for the rest

9 instances. Furthermore, we find that the results of our algorithm $VSCC^2$ are equal to the optimal solutions of CPLEX for 31 out of 54 instances, and our algorithm $VSCC^2$ can

TABLE 10. The comparative results of CPLEX, GRASP, and VSCC² with k_{med} on DIMACS benchmarks.

			GRASP			VSCC ²		
Instance	k_{med}	CPLEX	Min	Avg	Avgtime	Min	Avg	Avgtime
brock200_2	31	<=65	65	65	374.01	62	62	8.91
brock200_4	23	<=70	74	74.2	620.63	67	67.9	143.64
brock400_2	32	<=139	138	138.7	485	129	129	429.32
brock400_4	32	<=137	139	139.5	421.47	129	129.7	356.4
brock800_2	83	<=261	258	258.3	512.74	244	244.6	310.27
brock800_4	81	<=253	251	251.9	402.42	238	238.5	208.43
C125.9	7	<=63	69	69.7	280.88	64	64	0.12
C250.9	13	<=125	139	140	731.26	123	123.5	388.67
C500.9	18	<=193	198	199	584.04	182	182.7	465.32
C1000.9	34	<=386	381	382.4	289.28	351	351.8	846.63
C2000.5	271	<=581	577	577.2	588.83	557	558	1047.59
C2000.9	63	<=744	697	697.4	433.9	654	654.2	1004.82
C4000.5	527	n/a	1107	1108.4	1081.71	1082	1083.7	28.95
DSJC500.5	71	<=153	152	153	393.36	145	145.8	160.53
DSJ1000.5	139	<=301	298	298	755.95	286	286	532.82
gen200_p0.9_44	10	<=98	111	112.6	568.43	95	95.8	132.5
gen200_p0.9_55	10	<=99	109	109.9	914.56	96	96	47.49
gen400_p0.9_55	17	<=176	204	204.2	438.92	179	180.1	248
gen400_p0.9_65	18	<=186	208	211.3	546.71	185	185.9	243.24
gen400_p0.9_75	17	<=175	204	205.2	857.49	178	178	153.63
hamming8-4	24	<=68	69	69	386.57	67	67.3	496.21
hamming10-4	45	<=304	285	286.1	918.95	271	271	161.29
keller4	18	<=53	56	56	689.79	51	51	141.69
keller5	55	<=245	248	248.5	379.29	229	229.7	597.23
keller6	169	n/a	1053	1056.4	1053.36	961	961.6	765.81
MANN_a27	4	351	351	351	645.87	351	351	20.18
MANN_a45	7	990	990	990	403.91	990	990	8.23
MANN_a81	11	3240	3240	3240	282.01	3240	3240	0.02
p_hat300-1	70	<=96	103	103.8	344.09	96	96	438.42
p_hat300-2	61	<=148	159	159.3	340.81	149	150.7	332.67
p_hat300-3	34	<=157	179	179.9	490.24	159	160.2	137.58
p_hat700-1	157	<=222	239	239.8	746.3	219	219	3.98
p_hat700-2	137	<=350	386	387.2	871.23	354	362.4	1.39
p_hat700-3	74	<=365	431	433.3	537.33	372	375.6	0.63
p_hat1500-1	337	n/a	506	511.2	934.13	472	472	236.13
p_hat1500-2	292	<=802	818	820.4	918.17	765	776.6	68.56
p_hat1500-3	148	<=797	854	856.6	726.98	780	783.6	3.48

reach or improve the upper bound of CPLEX for 20 out of 54 instances. In Table 4, we can observe that $VSCC^2$ also performs better than GRASP. It is encouraging to see that $VSCC^2$ outperforms CPLEX on all the 54 instances except

for 800_1000. In Table 5, we can observe that VSCC² performs better than GRASP in 48 out of 54 instances. Compared to CPLEX, VSCC² obtains better results for all the instances with one exception, i.e. $50_{-}750$.

TABLE 11. The comparative results of CPLEX, GRASP, and VSCC² with k_{max} on DIMACS benchmarks.

	k _{max}	CPLEX	GRASP			VSCC ²		
Instance			Min	Avg	Avgtime	Min	Avg	Avgtime
brock200_2	61	<=119	123	123.7	368.61	119	119	11.32
brock200_4	44	<=124	133	133.9	373.31	124	124	217.64
brock400_2	63	<=250	262	264	447.52	246	246	3.48
brock400_4	62	<=244	261	262.1	637.25	242	242.9	3.98
brock800_2	164	<=487	492	493.9	937.48	472	472.5	191.99
brock800_4	159	<=472	477	478.9	364.06	456	456.9	53.47
C125.9	11	88	93	93.9	466.78	88	88	0.07
C250.9	23	<=194	201	202.5	893.62	192	192	1.09
C500.9	34	<=328	362	363.3	630.35	321	322.3	0.66
C1000.9	66	<=665	720	720.9	940.59	645	650.6	1.46
C2000.5	540	<=1116	1124	1126.4	994.15	1090	1091.2	608.45
C2000.9	124	<=1291	1339	1339.8	1163.91	1234	1242.1	64.43
C4000.5	1052	n/a	2177	2178.3	1014.08	2125	2126.4	158.73
DSJC500.5	140	<=289	296	296.9	442.12	282	282	359.96
DSJ1000.5	276	<=571	579	579.2	548.49	557	557	315.13
gen200_p0.9_44	17	<=144	156	156.5	349.87	144	144	5.24
gen200_p0.9_55	18	<=149	158	158.9	565.82	148	148	53.84
gen400_p0.9_55	33	<=298	328	328.8	862.88	292	293.6	22.09
gen400_p0.9_65	33	<=294	322	323.3	531.88	287	287	46.79
gen400_p0.9_75	32	<=283	322	323.1	820.89	279	280.8	0.43
hamming8-4	46	<=128	128	134.1	825.98	125	125.2	656.58
hamming10-4	88	<=512	542	546.8	785.54	510	510.9	740.17
keller4	34	<=94	102	102.7	354.45	93	93.3	17.86
keller5	108	<=433	447	449	989.28	424	425.2	268.26
keller6	335	n/a	1918	1920.7	713.31	1810	1818.3	6.26
MANN_a27	7	351	351	351	671.29	351	351	17.83
MANN_a45	11	990	990	990	365.83	990	990	3.73
MANN_a81	20	3240	3240	3240	291.08	3240	3240	0.03
p_hat300-1	138	<=186	208	208.1	682.12	193	194.2	52.14
p_hat300-2	120	214	268	269.7	519.19	216	217.7	0.34
p_hat300-3	66	<=225	264	264.3	584.84	226	226.4	0.21
p_hat700-1	312	<=432	483	483.6	598.38	445	448.5	0.76
p_hat700-2	271	<=500	656	658.9	805.89	501	510.3	2.46
p_hat700-3	146	<=517	642	643.5	790.3	518	521	0.67
p_hat1500-1	671	n/a	1042	1043.7	807.83	970	987	12.88
p_hat1500-2	582	<=1500	1444	1444.9	999.58	1100	1119.7	13.29
p_hat1500-3	294	<=1092	1424	1425.9	1069.59	1086	1093.8	7.58

B. RESULTS ON UDG BENCHMARKS

The experimental results of algorithms with k_{min} , k_{med} , k_{max} on the UDG graphs are presented in Tables 6-8. There are 12 groups of instances for the UDG graphs, each of which

contains 10 instances. From Table 6, we can observe that the quality of solutions found by $VSCC^2$ is much better than those found by GRASP. For two instances, i.e. 800_150 and 1000_150 , CPLEX is much better than $VSCC^2$ in terms of

Algorithm 1 VSCC² ()

- 1. preprocess the instance;
- initialize *tabu_list*, *MKDSCC*², and the *cost* and *score* of vertices;
- 3. initialize the candidate solution D_k greedily;
- 4. $D_k^* := D_k;$
- 5. while stop criterion is not satisfied do
- 6. while D_k is a *k*-dominating set then
- 7. **if** $m(D_k) < m(D_k^*)$ **then** $D_k^* := D_k$;

8.
$$v := \text{pick } x \text{ according to } \text{REMOVE-RULE1};$$

- 9. $D_k := D_k \setminus \{v\}$ and update $MKDSCC^2$ according to **MKDSCC²-RULE2**;
- 10. end while
- 11. v := pick x according to REMOVE-RULE2;

```
12. D_k := D_k \setminus \{v\} and update MKDSCC^2
```

```
according to MKDSCC<sup>2</sup>-RULE2;
```

- 13. $tabu_list := \emptyset;$
- 14.while there are non-k-dominated vertices do15.if rand(0,1) < p16v := pick x according to ADD-RULE1:

16.
$$V := \operatorname{pick} x$$
 according to ADD-RULE

17. else

18. v := pick x according to ADD-RULE2;

- 19. $D_k := D_k \cup \{v\}$ and update $MKDSCC^2$
- according to MKDSCC²-RULE3; 20. $tabu \ list := tabu \ list \cup \{v\};$
- 21. cost(u) := cost(u) + 1, for each non-k- domi-
- nated vertex; 22. end while
- 23. end while
- 24. return D_k^* ;

the quality of solutions. As is clear from Table 7, VSCC² with k_{med} shows significant superiority on all instances. In Table 8, we can observe that VSCC² with k_{max} outperforms GRASP and CPLEX in all instances.

C. RESULTS ON DIMACS BENCHMARKS

Tables 9-11 summarize the computational results of the algorithms with k_{min} , k_{med} , k_{max} on DIMACS benchmarks. For C4000.5 and Keller6, CPLEX is not capable to find a k-dominating set with k_{min} , k_{med} , k_{max} . For p_hat1500-1, CPLEX is not capable to find a k-dominating set with k_{med} , k_{max} . For these three instances, GRASP and VSCC² can find feasible solutions and VSCC² performs much better than GRASP. And VSCC² outperforms GRASP algorithm on almost all instances. In Table 9, both CPLEX and VSCC² can find the 10 optimal solutions for all 37 instances. For 25 instances, the results of $VSCC^2$ can reach or improve the upper bound of CPLEX. From Tables 10, 11, we find that the results of our algorithm VSCC² are equal to the optimal solutions of CPLEX for 3.4 out of 37 instances respectively. And VSCC² can reach or improve the upper bound of CPLEX for 27 out of 37 instances in both Table 10 and Table 11. As can be seen in three tables, $VSCC^2$ is faster than GRASP on the all instances of DIMACS.

VIII. CONCLUSION

In this paper, we develop a new local search algorithm VSCC² for the MKDS problem. The minimum *k*-dominating set two-level configuration checking (MKDSCC²) strategy is used to alleviate the cycling problem in the local search. Combing MKDSCC², random walk, with the scoring strategy, a vertex selection strategy is proposed to decide which vertex should be added into or removed from the candidate solution. We assess the performance of the VSCC² algorithm on the 211 classical instances with different values of *k*. The results show that the VSCC² algorithm outperforms CPLEX and GRASP on almost all instances. Finally, these ideas can be beneficially applied to other combinatorial problems because those are mentioned in the introduction of these work [35]–[38].

ACKNOWLEDGMENTS

The authors are grateful to all anonymous reviewers whose insightful comments have helped us to improve the work.

REFERENCES

- Y. Alavi, G. Chartrand, L. Lesniak-Foster, D. R. Lick, and C. E. Wall, Graph Theory With Applications to Algorithms and Computer Science. New York, NY, USA: Wiley, 1985.
- [2] H. Samuel, W. Zhuang, and B. Preiss, "DTN based dominating set routing for MANET in heterogeneous wireless networking," *Mobile Netw. Appl.*, vol. 14, no. 2, pp. 154–164, 2009.
- [3] J. M. Gorce *et al.*, "Optimization in wireless networks," *Cancer Res.*, vol. 24, no. 2, p. 1473, 1964.
- [4] B. Pazand and A. Datta, "Minimum dominating sets for solving the coverage problem in wireless sensor networks," in *Proc. Int. Conf. Ubiquitous Comput. Syst.*, vol. 4239. New York, NY, USA: Springer-Verlag, 2006, pp. 454–466.
- [5] C. Shen and T. Li, "Multi-document summarization via the minimum dominating set," in *Proc. 23rd Int. Conf. Comput. Linguistics (COLING)*, 2010, pp. 984–992.
- [6] Y.-Z. Xu and H.-J. Zhou, "Generalized minimum dominating set and application in automatic text summarization," in *Proc. Int. Meeting High-Dimensional Data-Driven Sci.*, vol. 699, 2016, p. 012014.
- [7] T. N. Dinh, Y. Shen, D. T. Nguyen, and M. T. Thai, "On the approximability of positive influence dominating set in social networks," *J. Combinat. Optim.*, vol. 27, no. 3, pp. 487–503, 2014.
- [8] L. H. Yen and Z. L. Chen, "Self-stabilizing distributed formation of minimal k-dominating sets in mobile ad hoc networks," in *Proc. 10th Int. Conf. Intell. Inf. Hiding Multimedia Signal Process.*, vol. 28, no. 1, Aug. 2014, pp. 723–728.
- [9] C. Mathieu, M. Barbeau, P. Bose, and E. Kranakis, "Incremental construction of k-dominating sets in wireless sensor networks," in *Principles of Distributed Systems*. Berlin, Germany: Springer, 2006, pp. 202–214.
- [10] G. R. Argiroffo, M. E. Ugarte, and M. S. Escalante, "On the k-dominating set polytope of Web graphs," *Electron. Notes Discrete Math.*, vol. 36, no. 36, pp. 1161–1168, 2010.
- [11] A. Hansberg and R. Pepper, "On k-domination and j-independence in graphs," *Graphs Combinat.*, vol. 28, pp. 1–55, 2013.
- [12] N. Meddah and M. Blidia, "Vertices contained in all or in no minimum kdominating sets of a tree," AKCE Int. J. Graphs Combinat., vol. 11, no. 1, pp. 105–113, 2014.
- [13] H. A. Harutyunyan and A. L. Liestman, "Upper bounds on the broadcast function using minimum dominating sets," *Discrete Math.*, vol. 312, no. 20, pp. 2992–2996, 2012.
- [14] J. M. M. vam Rooij and H. L. Bodlaender, "Exact algorithms for dominating set," *Discrete Appl. Math.*, vol. 159, pp. 2147–2164, Oct. 2011.

IEEEAccess

- [15] F. V. Fomin, D. Kratsch, and G. J. Woeginger, "Exact (exponential) algorithms for the dominating set problem," in *Proc. Int. Workshop Graph-Theoretic Concepts Comput. Sci.* New York, NY, USA: Springer-Verlag, 2004, pp. 245–256.
- [16] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov, "Bounding the number of minimal dominating sets: A measure and conquer approach," in *Proc. Int. Conf. Algorithms Comput.* New York, NY, USA: Springer-Verlag, 2005, pp. 573–582.
- [17] A.-R. Hedar and R. Ismail, "Hybrid genetic algorithm for minimum dominating set problem," in *Proc. Int. Conf. Comput. Sci. Appl.*, Fukuoka, Japan, 2010, pp. 457–467.
- [18] C. N. Giap and D. T. Ha, "Parallel genetic algorithm for minimum dominating set problem," in *Proc. Int. Conf. Comput., Manage. Telecommun.*, Apr. 2014, pp. 165–169.
- [19] D. Chalupa, "An order-based algorithm for minimum dominating set with application in graph mining," *Inf. Sci.*, vol. 426, pp. 101–116, Feb. 2018.
- [20] A.-R. Hedar and R. Ismail, "Simulated annealing with stochastic local search for minimum dominating set problem," *Int. J. Mach. Learn. Cybern.*, vol. 3, no. 2, pp. 97–109, 2012.
- [21] Y. Wang, S. Cai, and M. Yin, "Local search for minimum weight dominating set with two-level configuration checking and frequency based scoring function," *J. Artif. Intell. Res.*, vol. 58, pp. 267–295, Feb. 2017.
- [22] R. Li, S. Hu, P. Zhao, Y. Zhou, and M. Yin, "A novel local search algorithm for the minimum capacitated dominating set," *J. Oper. Res. Soc.*, vol. 3, pp. 1–16, Jul. 2017.
- [23] S. Cai and K. Su, "Local search with configuration checking for SAT," in Proc. IEEE Int. Conf. Tools Artif. Intell., Nov. 2011, pp. 59–66.
- [24] S. Cai and K. Su, "Configuration checking with aspiration in local search for SAT," in *Proc. AAAI*, 2012, pp. 434–440.
- [25] C. Luo, S. Cai, W. Wu, Z. Jie, and K. Su, "CCLS: An efficient local search algorithm for weighted maximum satisfiability," *IEEE Trans. Comput.*, vol. 64, no. 7, pp. 1830–1843, Jul. 2015.
- [26] C. Luo, S. Cai, K. Su, and W. Wu, "Clause states based configuration checking in local search for satisfiability," *IEEE Trans. Cybern.*, vol. 45, no. 5, pp. 1028–1041, May 2015.
- [27] Y. Wang, D. Ouyang, L. Zhang, and M. Yin, "A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity," *Sci. China Inf. Sci.*, vol. 60, no. 6, p. 062103, 2017.
- [28] R. Li, X. Wu, H. Liu, J. Wu, and M. Yin, "An efficient local search for the maximum edge weighted clique problem," *IEEE Access*, vol. 6, pp. 10743–10753, 2018.
- [29] J. Ren, G. Zhang, and D. Li, "Multicast capacity for VANETs with directional antenna and delay constraint under random walk mobility model," *IEEE Access*, vol. 5, pp. 3958–3970, 2017.
- [30] M. Xu, X. Zhou, Q. Huo, and H. Liu, "Efficient stochastic approximation Monte Carlo sampling for heterogeneous redundancy allocation problem," *IEEE Access*, vol. 4, pp. 7383–7390, 2016.
- [31] S.-Y. Kuo and Y.-H. Chou, "Entanglement-enhanced quantum-inspired tabu search algorithm for function optimization," *IEEE Access*, vol. 5, pp. 13236–13252, 2017.
- [32] W. P. Mathias-Neto and J. R. S. Mantovani, "A node-depth encoding-based tabu search algorithm for power distribution system restoration," *J. Control Automat. Elect. Syst.*, vol. 27, no. 3, pp. 317–327, 2016.
- [33] R. Jovanovic, M. Tuba, and D. Simian, "Ant colony optimization applied to minimum weight dominating set problem," *Plant Physiol.*, vol. 146, no. 3, pp. 173–176, 2010.
- [34] M. Mastrogiovanni. (2007). The Clustering Simulation Framework: A Simple Manual. [Online]. Available: http://www.michele-mastrogiovanni.Net/ software/ download/README.pdf
- [35] J. Jiang, D. Hao, Y. Chen, M. Parmar, and K. Li, "GDPC: Gravitationbased density peaks clustering algorithm," *Phys. A, Stat. Mech. Appl.*, vol. 502, pp. 345–355, Jul. 2018.
- [36] R. Li, S. Cai, S. Hu, M. Yin, and J. Gao, "NuMWVC: A novel local search for minimum weighted vertex cover problem," in *Proc. AAAI*, 2018, pp. 8107–8108.
- [37] R. Li, S. Hu, Y. Wang, and M. Yin, "A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem," *Neural Comput. Appl.*, vol. 28, no. 7, pp. 1775–1785, 2017.
- [38] Y. Wang and X. Li, "A hybrid chaotic biogeography based optimization for the sequence dependent setup times flowshop scheduling problem with weighted tardiness objective," *IEEE Access*, vol. 5, pp. 26046–26062, 2017.

RUIZHI LI received the B.S. and Ph.D. degrees in computer science from Northeast Normal University, China, in 2008 and 2017, respectively. She has been with the Jilin University of Finance and Economics. Her research interests include combinatorial optimization problem, heuristic search, and local search.

HUAN LIU received the B.S. degree in computer science from Northeast Normal University, China, in 2017, where she is currently pursuing the M.S. degree in computer science. Her research interests include local search and heuristic search.

XIAOLI WU received the B.S. degree in computer science from Northeast Normal University, China, in 2017, where she is currently pursuing the M.S. degree in computer science. Her research interests include exact algorithm and combinatorial optimization problem.

JUN WU was born in Wuhu, Anhui, in 1991. He received the B.S. degree from the College of Computer Sciences and Technology, Jilin University, in 2014. He is currently pursuing the master's degree with the College of Computer Sciences and Information Technology, Northeast Normal University. His research interests include automated reasoning, multi-objective optimization, intelligent algorithm, combinatorial optimization problem, local search, and heuristic search.

MINGHAO YIN received the B.S. and M.S. degrees from Northeast Normal University, China, in 2001 and 2004, respectively, and the Ph.D. degree from Jilin University, China, in 2008, all in computer science. He has been the Dean of the Department since 2010. He has authored two books and over 100 articles. His research interests include swarm intelligence, automated reasoning, automated planning, and algorithms.