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ABSTRACT The minimum k-dominating set (MKDS) problem, a generalization of the classical mini-
mum dominating set problem, is an important NP-hard combinatorial optimization problem with various
applications. First, to alleviate the cycling problem in the local search, a MKDS two-level configuration
checking (MKDSCC2) strategy is presented. Second, we use the vertex cost scheme to define the scoring
mechanism and to improve the solution effectively. Third, by combiningMKDSCC2 strategy and the scoring
mechanism, we propose a vertex selection strategy to decide which vertex should be added into or removed
from the candidate solution. Based on these strategies, an efficient local search algorithm (VSCC2), which
incorporates a two-level configuration checking strategy, scoring mechanism, and vertex selection strategy,
is proposed. We compare the performance of VSCC2 with the classic GRASP algorithm and the famous
commercial solver CPLEX on the classical instances. The comprehensive results show that the VSCC2

algorithm is very competitive in terms of solution quality and computing time.

INDEX TERMS Heuristic, local search, minimum k-dominating set problem.

I. INTRODUCTION
Given an undirected graphG = (V ,E), where V is the vertex
set and E is the edge set, a dominating set (DS) of G is a
subset D ⊆ V such that every vertex in V\D is adjacent
to at least one vertex in D. The minimum dominating set
(MDS) problem aims to find the dominating set with the
minimum size. A k-dominating set (KDS) of G is a subset
Dk ⊆ V such that every vertex in V\Dk is adjacent to at least
k vertices inDk [1]. The minimum k-dominating set problem
aims to find the k-dominating set with the minimum size. The
MKDS problem can be viewed as a generalized version of
the MDS problem. Specifically, the minimum 1-dominating
set problem is equivalent to the minimum dominating set
problem.

The minimum dominating set problem has various appli-
cations in real-word domains such as routing in wireless
networks [2]–[4], document processing [5], [6], and social
networks [7]. Whereas sometimes the dominating set prob-
lem cannot better model the actual application problems. For
example, in a wireless ad-hoc network, the level of service
required by a dominatee cannot be accomplished by only
one dominator, and they call for collect services from sev-
eral dominators to meet the dominatee’ needs. Even if any

k -1 dominator fails, each dominatee is guaranteed to con-
nect to at least one dominator [8], [9]. The problem can be
modelled as minimum k-dominating set problem. Therefore,
MKDS problem has a stronger modeling capability and has
wider applications in several diverse areas [10]–[12].

In the past two decades, various algorithms have been
proposed to solve the MDS problem, and they can be
mainly classified into exact and heuristic algorithms. Exact
algorithms [13]–[16] are mostly based on branch-bound
method or branch-cut algorithm. Exact algorithms have the
advantage of ensuring the optimal solutions, but they require
a computing time, in general, exponential growth with the
size of the problem. So various heuristic algorithms have
been devised to handle the minimum dominating set prob-
lem. Hedar and Ismail [17] proposed an algorithm HGA-
MDS, which is based on genetic algorithm (GA) to handle
the MDS problem. After that Giap and Ha [18] designed a
good parallel genetic algorithm (PGAs)model forMDS prob-
lem. Chalupa [19] presented an order-based randomized local
search (RLSo) algorithm to computeMDS problem indirectly
by employing a representation based on permutations of
vertices, which are transformed into dominating sets using
a greedy algorithm. Hedar and Ismail [20] again proposed a
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method SAMDS based on simulated annealing (SA) to solve
the minimum dominating set problem. Compared with the
minimum dominating set problem, there are relatively few
algorithms to solve the minimum k-dominating set problem.
In this paper, a new local search framework is proposed

for the minimum k-dominating set problem based on some
new ideas. Firstly, during the local search process, most
local search algorithms are subject to the cycling problem.
To tackle this problem, two-level configuration checking
strategy (CC2) is recently proposed in [21]. The CC2 strategy
has been successfully used in the minimum weight dominat-
ing set problem. In this strategy, the configuration of a vertex
v is the state of the neighborhood N (v) and the neighborhood
of each vertex in N (v). For a vertex, if its configuration
has not been changed after the last time it was removed
from the candidate solution, it will be banned from being
added into the candidate solution. On this basis, we adapt the
two-level configuration checking strategy into the minimum
k-dominating set problem during the local search process.

Secondly, the scoring strategy has a significant role dur-
ing the local search [22]–[28]. In our work, we propose a
new scoring strategy based the vertex cost to obtain more
promising solutions and increase the diversity of solutions.
For the scoring strategy, the score value of each vertex can be
modified dynamically.

Furthermore, by integrating the scoring strategy with two-
level configuration checking strategy, we design a vertex
selection strategy to decide which vertex should be added
into or removed from the candidate solution.

Finally, by merging all the above strategies, we develop
a local search algorithm named VSCC2 to solve the MKDS
problem. To measure the efficiency of VSCC2, the experi-
mental results of our algorithm are compared with those of
commercial solver CPLEX and the classic GRASP algorithm,
and our algorithm obtains better solutions than or same solu-
tions as CPLEX and GRASP on almost all instances.

The remainder of this paper is constructed as follows.
In Section 2, some useful notations are introduced. The
two-level configuration checking strategy for the minimum
k-dominating set problem is proposed in Section 3. Fur-
thermore, the scoring strategy is introduced in Section 4.
And then a new vertex selection strategy is proposed in
Section 5. Then, a detailed description of VSCC2 is described
in Section 6. In Section 7, the experimental results will be
listed. Finally, conclusions and future directions are shown in
the last section.

II. PRELIMINARY
At first, we shall introduce some background information for
MKDS problem. An undirected graph G = (V , E) consists
of a vertex set V = {v1, v2, . . . , vn} and an edge set E =
{e1, e2, . . . , em}, where each edge e = (v, u) connects two
vertices u and v, and we say that vertices u and v are the
endpoints of edge e. We shall use dist (u, v), which is the
number of edges in a shortest path from u to v, to denote
the distance between two vertices u and v. Given a candidate

TABLE 1. Different values of k .

TABLE 2. Different values of p.

solution Dk , si ∈ {1, 0} denotes the state of vertex vi, where
si = 1 means vi ∈ Dk , and si = 0 means vi /∈ Dk . We shall
use m(Dk ) to denote the number of vertices in Dk . For a
vertex v, we shall use Ni(v) = {u|dist(u, v) = i} to denote
the ith level neighborhood of the vertex v, and we denote
N k (v) = ∪ki=1Ni (v) . And the first-level neighborhood N1(v)
is the same as N (v), and we shall use N [v] = N (v) ∪ {v} to
denote the closed neighbor set of v.
Definition 1 (Dominating Set, DS): Given an undirected

graphG (V, E), the dominating set ofG is a vertex subsetD ⊆
V such that every vertex in V\D has at least one neighbor
in D.
Definition 2 (Minimum Dominating Set, MDS): Given an

undirected graph G(V , E), the minimum dominating set
problem calls for finding a dominating set D with minimum
cardinality.
Definition 3 (k-Dominating Set, KDS): Given an undi-

rected graph G (V, E), the k-dominating set of G is a vertex
subset Dk ⊆ V such that every vertex in V\Dk is adjacent to
at least k vertices in Dk .
Definition 4 (Minimum k-Dominating Set, MKDS): Given

an undirected graph G(V , E), the minimum k-dominating
set problem calls for finding a k-dominating set Dk with
minimum cardinality.

The definitions show that dominating set problem can be
viewed as a special problem of the k-dominating set when
k equals 1. During the local search process, our algorithm
maintains a candidate solution Dk ⊆ V . For a candidate
solution Dk , vertices that belong to Dk are called dominating
vertices. If a vertex vwhich is adjacent to at least k vertices in
Dk , is called k-dominated vertex, otherwise it’s called non-k-
dominated vertex. For a vertex, its age denotes the number of
steps when it is selected.

III. TWO-LEVEL CONFIGURATION CHECKING STRATEGY
Local search algorithms often visit a candidate solution
repeatedly during the search process. This phenomenon is
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TABLE 3. The comparative results of CPLEX, GRASP, and VSCC2 with kmin on the general graphs benchmarks.
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TABLE 3. (Continued.) The comparative results of CPLEX, GRASP, and VSCC2 with kmin on the general graphs benchmark.

called the cycling problem, which not only wastes time, but
also makes the algorithm often fall into the local optimum
and reduces the performance of the algorithm. To alleviate
the cycling problem, the two-level configuration checking
(CC2) strategy was proposed to handle this problem in local
search. The CC2 strategy has been successfully used to solve
the minimum weight dominating set problem. Therefore,
we adapt this strategy to the minimum k-dominating set
problem during the local search process.

Furthermore, we shall introduce the definition of two-
level configuration checking in minimum k-dominating set
problem, and we call it minimum k-dominating set two-level
configuration checking (MKDSCC2). For the MKDSCC2

strategy, the configuration of a vertex is represented as a
vector consisting of the states of all vertices in N 2(v). For
a vertex v /∈ Dk , if at least one vertex in N 2(v) has changed
its state since the last selection, then the configuration of v is
changed.

To implementMKDSCC2 strategy, we introduce a Boolean
array MKDSCC2 whose size equals the number of vertices
in the graph. For a vertex v, the value of MKDSCC2 means
whether its configuration has changed since the recent state
change of v. If MKDSCC2[v] = 1, it means that v is a
configuration changed vertex and could be picked in the next
adding procedure, otherwise MKDSCC2[v] = 0. Based on
this, the MKDSCC2[v] array is maintained as follows.
MKDSCC2-RULE1. In the initial process, for each vertex

v, MKDSCC2[v] is initialized as 1.
MKDSCC2-RULE2. When a vertex v is removed from

Dk , MKDSCC2[v] is reset to 0 immediately. Then for each
vertex u ∈ N 2(v), MKDSCC2[u] is set to 1.
MKDSCC2-RULE3. When a vertex v is added to Dk , for

each vertex u ∈ N 2[v], MKDSCC2[u] is set to 1.

IV. SCORING STRATEGY
In the local search process, deciding which vertex should be
added into or removed from the candidate solution Dk plays

an important role during the process of local search. Fortu-
nately, the MKDSCC2 strategy can contribute to alleviate the
cycling problem. We shall introduce a scoring mechanism
for the MKDS problem. And we use this strategy together
with MKDSCC2 strategy, random walk [29], [30] and tabu
strategy [31], [32] to decide which vertex should be picked
as a solution component.
In a graph, each vertex v is associated with a vertex cost

property, denoted by cost(v). In the initialization process,
the cost of each vertex is set to be 1. After each iteration
of local search, each vertex v will be checked whether v
is k-dominated by the candidate solution Dk . If v is non-k-
dominated, cost(v) is increased by one. Based on this, we pro-
pose a new score function for the minimum k-dominating set
problem. It is defined as below.
Definition 5 Given an undirected graph G(V, E), and a can-

didate solution Dk , the cost based scoring function denoted
by score, is denoted in formula (1) and formula (2).

for u /∈ Dk :

score(u) =
∑

v∈M1∧Zv<k

cost (v) (1)

for u ∈ Dk :

score (u) =


−

∑
v∈M2∧Zv=k

cost (v) , if Zu > k

−

∑
v∈M2∧Zv=k

cost (v)− cost (u) ,

otherwise

(2)

Where M1 = N [u] \Dk , M2 = N (u)\Dk , Zv represents the
number of neighbors of the vertex v in the candidate solution,
and Zu represents the number of neighbors of the vertex u in
the candidate solution. When a vertex u /∈ Dk , the score of u
is the sum of the costs of vertices which are not inDk and non-
k-dominated in the closed neighbor set of u. When a vertex
u ∈ Dk , we shall consider two situations. If Zu > k , the score
of u is the opposite number of the sum of the costs of vertices
(not in the Dk ) whose Zv are equal to k in the neighbor set
of u. Otherwise the score of u is the opposite number of the

VOLUME 6, 2018 62065



R. Li et al.: Efficient Local Search Algorithm for the MKDS Problem

TABLE 4. The comparative results of CPLEX, GRASP, and VSCC2 with kmed on the general graphs benchmarks.
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TABLE 4. (Continued.) The comparative results of CPLEX, GRASP, and VSCC2 with kmed on the general graphs benchmarks.

sum of the costs of vertices (not in theDk ) whose Zv are equal
to k in the neighbor set of u and cost(u).

V. VERTEX SELECTION STRATEGY
To improve the efficiency of the local search and forbid
the cycling problem, we propose a vertex selection strat-
egy by combining the scoring strategy, MKDSCC2 strategy,
random walk and tabu strategy. To implement tabu strategy,
we employ a list named tabu_list to prevent removing the
vertices which are just added in the last step. Specifically, the
vertex selection strategy is based on the following four rules:

REMOVE-RULE1. For each vertex in Dk , select one
vertex v with the greatest score(v) value. If more than one
exists, the vertex with the greatest value of age[v] will be
selected, and then update theMKDSCC2 values of this vertex
and its neighbors.

REMOVE-RULE2. For each vertex in Dk , select one ver-
tex vwhich is not in tabu_list with the greatest score(v) value.
If more than one exists, the vertex with the greatest value
of age[v] will be selected, and then update the MKDSCC2

values of this vertex and its neighbors.
ADD-RULE1. For each vertex not inDk , select one vertex

v randomly. And then update the MKDSCC2 values of this
vertex and its neighbors.

ADD-RULE2. For each vertex not in Dk with
MKDSCC2[v] = 1, select one vertex v with the greatest
score(v) value. If more than one exists, the vertex with the
greatest value of age[v] will be selected, and then update the
MKDSCC2 values of this vertex and its neighbors.

In detail, when VSCC2 finds a solution, it removes a
vertex from the solution and continues to search for a bet-
ter k-dominating set. In this phase of removing vertices,
we use REMOVE-RULE1 to remove a vertex from Dk .
During the search for a solution, VSCC2 swaps some vertices,
i.e., removing one vertex from Dk according to REMOVE-
RULE2 and then iteratively adding vertices into Dk . In the

process of adding vertices, to increase the diversity of
search, our algorithm selects one vertex according to ADD-
RULE1 with probability p, or selects one vertex according to
ADD-RULE2 with probability 1- p.

VI. VSCC2 ALGORITHM
In this section, our algorithm framework VSCC2 is proposed
by integrating these strategies discussed above. The pseudo
code of VSCC2 is displayed as Algorithm 1.
At first, preprocessing is very necessary for the minimum

k-dominating set. There are some vertices whose degrees are
less than k in the graph, then these vertices must be added into
in the candidate solution Dk . And in this case, we mark such
vertices so that they will not be removed from the candidate
solution Dk during the local search.

In the initialization process, VSCC2 initializes tabu_list,
MKDSCC2, and the cost and score of vertices. Then the
candidate solution Dk is constructed greedily by iteratively
picking one vertex with the greatest score. The best solution
D∗k is initialized as current solution Dk .
After initialization, themain outer loop from lines 5 to 23 is

executed until stop criterion is satisfied. When a better solu-
tion is obtained, the algorithm updates theD∗k . After then, our
algorithm chooses one vertex in Dk and removes it according
to REMOVE-RULE1 until Dk is not a k-dominating set.
At the same time, the MKDSCC2 array should be updated
according to MKDSCC2-RULE2.

Then our algorithm selects one vertex and removes it
from Dk according to REMOVE-RULE2. After removing
a vertex, VSCC2 updates MKDSCC2 array according to
MKDSCC2-RULE2. The inner loop is from lines 14 to
22 until a k-dominating set is constructed. To increase the
diversity of the search, our algorithm proposes a valid random
walk strategy. In detail, VSCC2 selects one vertex according
to ADD-RULE1 with probability p, or selects one vertex
according to ADD-RULE2 with probability 1- p. When the
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TABLE 5. The comparative results of CPLEX, GRASP, and VSCC2 with kmax on the general graphs benchmarks.
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TABLE 5. (Continued.) The comparative results of CPLEX, GRASP, and VSCC2 with kmax on the general graphs benchmarks.

TABLE 6. The comparative results of CPLEX, GRASP, and VSCC2 with kmin on UDG benchmarks.

selected vertex is added into the Dk , we need to update the
MKDSCC2 array according to MKDSCC2-RULE3 and this
vertex is added into tabu_list. After adding a vertex each
time, the cost of each non-k-dominated vertex is increased
by one. When reaching the stop criterion, the best solution of
minimum k-dominating set problem will be returned.

VII. EXPERIMENTAL EVALUATION
In this section, we carry out extensive experiments to evaluate
VSCC2 on standard benchmarks. At present, there are few
heuristic algorithms for MKDSP in the literatures as we
know, thus the experimental results of VSCC2 are compared
with those of CPLEX, which is a high-performance solver
for linear and mixed integer linear programs. To further test

the effectiveness of VSCC2, we also implement a classic
GRASP algorithm, which is widely used in solving combi-
natorial optimization problems. And the experimental results
of VSCC2 are also compared with those of GRASP.

In our experiments, there are three classic benchmark
instances, general graphs which are got from Type1 instance
in [33], unit disk graphs (UDG) which are created by
using the topology generator in [34] and DIMACS which is
downloaded from http://iridia.ulb.ac.be/∼fmascia/ maximum
_clique/. For general graphs and UDG, the number of ver-
tices varies from 50 to 1000. In the case of general graphs,
the number of edges varies from 50 to 20000. And in the
case of UDG, there are two transmission ranges of 150 and
200 units. The size of DIMACS ranges from 150 vertices and
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TABLE 7. The comparative results of CPLEX, GRASP, and VSCC2 with kmed on UDG benchmarks.

TABLE 8. The comparative results of CPLEX, GRASP, and VSCC2 with kmax on UDG benchmarks.

300 edges to over 4000 vertices and 7900000 edges. For the
minimum k-dominating set problem, the different values of k
for each instance are presented in Table 1.

Our algorithm VSCC2 and GRASP are programmed in
C++ and compiled by g++with the -O2 option on the Linux
Ubuntu with 2.3GHZ and 8 GB. For each instance, VSCC2

and GRASP perform ten independent runs with different
random seeds, which one run is stopped until arriving at a
time limit. In this paper, the time limit is set to 1000s for
general graphs and UDG, otherwise the time limit is set to
1800s. And the termination condition of CPLEX is 3600s.
The parameter p value is determined by performing a prelim-
inary experiment, the different p values for each instance are
presented in Table 2.

In the results of our experiment, we denote the best solution
values (Min), average solution values (Avg), and the average
run time to reach the best solution (AvgTime, in seconds). It is
worthy to note that the bold value presents the best solution
value or the shortest run time among the different algorithms
compared. For some instances, CPLEX is not capable to find
a k-dominating set, then it is marked as ‘‘n/a’’ for these cases.
And ‘‘<=’’ denotes that CPLEX finds the upper bound of
instances.

A. RESULTS ON GENERAL GRAPH BENCHMARKS
The performance results of algorithms with kmin, kmed , kmax
on the general graphs are displayed in Tables 3-5. From
three tables, we observe that VSCC2 is faster than GRASP
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TABLE 9. The comparative results of CPLEX, GRASP, and VSCC2 with kmin on DIMACS benchmarks.

on all instances. In Table 3, we can observe that our algo-
rithm VSCC2 can obtain better solution values than GRASP
for 45 instances, and the same solution values for the rest

9 instances. Furthermore, we find that the results of our algo-
rithm VSCC2 are equal to the optimal solutions of CPLEX
for 31 out of 54 instances, and our algorithm VSCC2 can

VOLUME 6, 2018 62071



R. Li et al.: Efficient Local Search Algorithm for the MKDS Problem

TABLE 10. The comparative results of CPLEX, GRASP, and VSCC2 with kmed on DIMACS benchmarks.

reach or improve the upper bound of CPLEX for 20 out
of 54 instances. In Table 4, we can observe that VSCC2 also
performs better than GRASP. It is encouraging to see that
VSCC2 outperforms CPLEX on all the 54 instances except

for 800_1000. In Table 5, we can observe that VSCC2 per-
forms better thanGRASP in 48 out of 54 instances. Compared
to CPLEX, VSCC2 obtains better results for all the instances
with one exception, i.e. 50_750.
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TABLE 11. The comparative results of CPLEX, GRASP, and VSCC2 with kmax on DIMACS benchmarks.

B. RESULTS ON UDG BENCHMARKS
The experimental results of algorithms with kmin, kmed , kmax
on the UDG graphs are presented in Tables 6-8. There are
12 groups of instances for the UDG graphs, each of which

contains 10 instances. From Table 6, we can observe that
the quality of solutions found by VSCC2 is much better than
those found by GRASP. For two instances, i.e. 800_150 and
1000_150, CPLEX is much better than VSCC2 in terms of
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Algorithm 1 VSCC2 ()
1. preprocess the instance;
2. initialize tabu_list, MKDSCC2, and the cost and

score of vertices;
3. initialize the candidate solution Dk greedily;
4. D∗k := Dk ;
5. while stop criterion is not satisfied do
6. while Dk is a k-dominating set then
7. if m(Dk ) < m(D∗k ) then D

∗
k := Dk ;

8. v := pick x according to REMOVE-RULE1;
9. Dk := Dk\{v} and update MKDSCC2

according to MKDSCC2-RULE2;
10. end while
11. v : = pick x according to REMOVE-RULE2;
12. Dk : = Dk\{v} and update MKDSCC2

according to MKDSCC2-RULE2;
13. tabu_list := ∅;
14. while there are non-k-dominated vertices do
15. if rand(0,1) < p
16. v : = pick x according to ADD-RULE1;
17. else
18. v : = pick x according to ADD-RULE2;
19. Dk : = Dk∪ {v} and update MKDSCC2

according to MKDSCC2-RULE3;
20. tabu_list : = tabu_list ∪ {v};
21. cost(u) : = cost(u)+ 1, for each non-k- domi-

nated vertex;
22. end while
23. end while
24. return D∗k ;

the quality of solutions. As is clear from Table 7, VSCC2 with
kmed shows significant superiority on all instances. In Table 8,
we can observe that VSCC2 with kmax outperforms GRASP
and CPLEX in all instances.

C. RESULTS ON DIMACS BENCHMARKS
Tables 9-11 summarize the computational results of the
algorithms with kmin, kmed , kmax on DIMACS benchmarks.
For C4000.5 and Keller6, CPLEX is not capable to find a
k-dominating set with kmin, kmed , kmax . For p_hat1500-1,
CPLEX is not capable to find a k-dominating set with kmed ,
kmax . For these three instances, GRASP and VSCC2 can
find feasible solutions and VSCC2 performs much better
than GRASP. And VSCC2 outperforms GRASP algorithm on
almost all instances. In Table 9, both CPLEX and VSCC2

can find the 10 optimal solutions for all 37 instances. For
25 instances, the results of VSCC2 can reach or improve the
upper bound of CPLEX. From Tables 10, 11, we find that
the results of our algorithm VSCC2 are equal to the optimal
solutions of CPLEX for 3,4 out of 37 instances respectively.
AndVSCC2 can reach or improve the upper bound of CPLEX
for 27 out of 37 instances in both Table 10 and Table 11.

As can be seen in three tables, VSCC2 is faster than GRASP
on the all instances of DIMACS.

VIII. CONCLUSION
In this paper, we develop a new local search algorithmVSCC2

for theMKDS problem. The minimum k-dominating set two-
level configuration checking (MKDSCC2) strategy is used to
alleviate the cycling problem in the local search. Combing
MKDSCC2, random walk, with the scoring strategy, a ver-
tex selection strategy is proposed to decide which vertex
should be added into or removed from the candidate solu-
tion. We assess the performance of the VSCC2 algorithm on
the 211 classical instances with different values of k . The
results show that the VSCC2 algorithm outperforms CPLEX
and GRASP on almost all instances. Finally, these ideas
can be beneficially applied to other combinatorial problems
because those are mentioned in the introduction of these
work [35]–[38].
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