
Received August 24, 2018, accepted September 28, 2018, date of publication October 15, 2018,
date of current version November 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2876197

A OneM2M-Compliant Stacked Middleware
Promoting IoT Research and Development
RONGZHEN ZHAO 1, LITIAN WANG1, XINGZHE ZHANG1, YU ZHANG1,
LIZHI WANG2, AND HONGZHAO PENG1
1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
2College of Computer and Control Engineering, Nankai University, Tianjin 300350, China

Corresponding author: Litian Wang (wanglitianrf@sina.com)

This work was supported by Nankai University.

ABSTRACT Internet of Things’ (IoT) applications keep emerging in all living and production scenar-
ios. However, development tasks of support, communication, and computing are usually troublesome.
An IoT middleware that completes such common basic tasks and assists advanced development is desired.
Numerous general-purpose IoT instances have been tried in both academia and industry, while each has
its own advantages and disadvantages. We abstract their characteristics into an ideal concept then build a
reliable, modular, and oneM2M-compliant middleware accordingly. Our contributions include: proposing a
stack of support-communication-computing to integrate excellent open-source projects; devising techniques
variable and McSugar to enable flexible uniform human-thing interactions; and building implementation
foundations for cutting-edge technologies such as fog computing and semantic reasoning. This middle-
ware has been verified and applied: the case of field-cloud computing shows its efficacy in facilitating
IoT research; the case of smart floriculture proves its capability in boosting IoT development. In short,
with this middleware, developers and researchers can focus on top-level requirements of IoT develop-
ment or experiment, instead of being trapped in the underlying technologies.

INDEX TERMS Development & research, human-thing interaction, Internet of Things (IoT), middleware,
oneM2M.

I. INTRODUCTION
The Internet of Things (IoT) has been changing the way in
which humans interact with the surrounding world greatly,
using technologies like intelligent perception, identification,
pervasive computing and so on. The IoT is therefore rec-
ognized as the third revolution in the information industry,
after invention of the computer and Internet. Large quantities
of IoT applications are running, such as smart homes, smart
transportation, precision agriculture, remote healthcare and
industrial automation, allowing people to enjoy the fruits of
human intelligence [1]–[5].

The oneM2M is a globally adopted IoT standard. It divides
IoT environments into two domains, namely, the infrastruc-
ture and field domain; and defines nodes into five types,
namely, the infrastructure node (IN), middle node (MN),
application service node (ASN), application dedicated node
(ADN) and non-oneM2M device node (NoDN), which are
shown in Figure 1 [6], [7]. Mapped to a common IoT appli-
cation system in Figure 2, NoDNs correspond to sensors

and actuators in a WSAN (Wireless Sensors and Actuators
Network), where protocol conversion via gateway is required
for them to join an IoT network; ADNs can be smart objects,
which have constrained resources but support IoT protocols;
ASNs correspond to smart objects or client devices, which
have sufficient resources and support IoT protocols; MNs can
be gateways in the field domain, which also have sufficient
resources and support both field protocols and IoT proto-
cols; INs correspond to cloud platforms or servers. With an
IoT application system, users can monitor and control field
conditions via the link of client device - cloud platform - field
devices. As the number of unconstrained nodes (ASNs,MNs)
grows, we can infer that the enriching computing resources in
field domain will enable fog/cloud computing or their fusion,
where tasks are computed near data sources to improve
instantaneity [8], [9].

Besides, oneM2M abstracts nodes into three layers,
namely, the application layer, common service layer and
network service layer; but not every node has all layers,

63546
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3625-9973


R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

FIGURE 1. A possible configuration of oneM2M architecture.

FIGURE 2. Composition of a common IoT application instance.

as shown in Figure 1. Each layer has its own entities: appli-
cation entities (AEs) stand for the applications in devices,
gateways or servers; common service entity (CSE) is a set of
common service functions for IoT services; network service
entities (NSEs) (omitted in Figure 1) are the underlying net-
work services that are available for CSE. The oneM2Madopts
the ROA (Resource Oriented Architecture) model, where all
devices can be handled as resources using a hierarchical
structure. So, based on the URI (uniform resource identifier)
technique, which also has a hierarchical structure, and the
CRUD (create, retrieve, update, delete) methods, which are
highly uniform, comprehensive human-thing interactions can
be implemented using simple interfaces like Web APIs; but
how to describe those heterogeneous devices into uniform
resources is a challenge. oneM2M supports various IoT pro-
tocols like MQTT (Message Queuing Telemetry Transport)
and CoAP (Constrained Application Protocol), and thus can
connect human and things sufficiently; yet the messaging
mechanisms of those protocols are too different to develop
uniform APIs over them. In addition, semantic reasoning
is introduced by oneM2M, which is a potential capability
that oneM2M-compliant IoT instances have [10], [11]. In a
word, conforming oneM2M when building IoT systems is
worthwhile.

According to the latest highly-cited IoT surveys [12]–[15],
tasks of building an IoT application system can be
divided into common basic and advanced parts, as shown
in Figure 3. The common basic tasks of three aspects

FIGURE 3. Tasks in IoT development.

must be addressed firstly: (1) Support, including real-time
operating system, hardware abstraction, app engine/runtime
and so on.; (2) Communication, including field protocols
(Z-Wave, CAN Bus, Bluetooth, etc.), IoT protocols
(MQTT, CoAP, etc.), various types of networks (Ethernet,
Cellular, Wi-Fi, etc.) and so on; (3) Computing, including
read/write of end devices, management of heterogeneous
devices/data, service logic decomposition/mapping/execution,
security and so on. Then comes the advanced tasks: building
service logics over APIs and tools to fulfill specific require-
ments, which can also be seen as computing. Fulfilling these
tasks is no doubt a great challenge for developers. Clearly,
a middleware where those common basic tasks are fulfilled
and framework or toolkit is provided for the advanced tasks
is desired.

Although many IoT instances for general purposes have
been tried out in both academia and industry, each has
its own strengths and weaknesses. Commercial instances,
IoT service platforms in particular, tend to be overly gener-
alized, with no sufficient support for specific requirements;
the academic ones are either too ahead of the time to be
put into practice, or too limited to certain scenarios to leave
room for cutting-edge technologies. Many of them didn’t
take oneM2M into consideration.Meanwhile, excellent open-
source projects for IoT are just being used in isolation, and no
IoT instance has ever tried to utilize them as a whole so far.

Based on the discussions above, we build a oneM2M-
compliant stacked IoT middleware, where mature IoT open-
source projects are integrated and the great obstacle that
developers fall into common basic tasks instead of focusing
on advanced development is overcome. Functioning through-
out the middleware, techniques Variable and McSugar are
devised to utilize heterogeneous device resources and real-
ize uniform human-thing interactions. These techniques also
provide the foundation for cutting-edge IoT researches like
semantic reasoning and fog computing. With this middle-
ware, developers can build IoT applications for specific
requirements in many scenarios quickly, and researchers can
setup testbed easily to conduct their experiments.

The remainder of this paper is organized as follows.
The second section analyzes the advantages and disad-
vantages of both commercial and academic IoT instances
which are intended to promote IoT prototyping or instan-
tiating. In section three, the overall goals for an excellent
IoT middleware are summarized according to these cases.

VOLUME 6, 2018 63547



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

The fourth section elaborates such goals into technical char-
acteristics to guide the implementation, and introduces two
enabling techniques for the building of this middleware.
In section five, steps to take this middleware into effect are
presented, and two case studies are described to demonstrate
the powerful role that this middleware plays in IoT research
and development. Section six provides the conclusions.

II. RELATED WORK
There are now a large number of commercial platforms pro-
viding common services to simplify IoT development in the
fast-growing IoT market. EvryThing is a cloud platform for
smart objects [16], where sensing data are utilized in encap-
sulated virtual bodies according to users’ rules to realize
personalized applications.WebUI (User Interface) is adopted
for development and management, and it can interwork with
other platforms. IFTTT (If This Then That) provides Web
interoperation services among different platforms using a set
of normalized triggering conditions [17]. It provides rule-tree
based APIs for programming, but with no ability to handle
execution conflicts caused by complex rules. SensorCloud
allows users to access sensing data via RESTful APIs [18].
Advanced mathematical processing tools are provided for
data analysis and visualization, and it also supports services
based on triggering conditions. Device resource aggregation
requires users to appoint the URIs. ThingSpeak allows sen-
sors to be linked using HTTP, and users can access their
multidimensional sensing data via RESTful API [19]. Com-
plex data processing can be achieved based on MATLAB
programming; data management, analysis, visualization and
event triggering are also provided. ThingWorx provides vir-
tual entity services based on Axeda cloud platform [20]. It is
a typical cloud-based IoT system, just like other commercial
platforms. It is also equipped with GUI (Graphics User Inter-
face) for application editing, device/data management and
service logic execution.

Such platforms are mostly Web-based, so their adoption
of HTTP (HyperText Transfer Protocol) makes themselves
unsuitable for the human-thing interactions in IoT scenarios.
Their high-level abstraction does contribute to applicability
but also raises the issue that developers still need to do a
lot to fulfill specific requirements. The cloud-based archi-
tecture requires to upload all data and thus isn’t suitable for
the applications whose data are confidential and require fre-
quent and real-time exchange. Their profitable nature drives
them to develop differentiated services to compete with their
opponents, which in turn limits the interoperability among
different platforms.

Academia goes even further to lower the threshold of
IoT development. Reference [21] proposes a modular archi-
tecture for IoT development, and its application instances in
healthcare, structural health detection, agriculture and indoor
tour guide are presented. But it is just a technology selec-
tion guidance, and much work still remains if developers
want to build their IoT applications. Reference [22] proposes
a middleware, MinT, which features interoperability and

sharing in distributed IoT. It realizes active interworking
between local and external devices based on the abstract-
system-interaction architecture and APIs. MinT focuses on
the field part, but common basic tasks in the cloud and user
parts aren’t addressed sufficiently. Reference [23] proposes
an IoT development platform for precision agriculture to pro-
mote quick prototyping. Its architecture is derived using con-
current views, where requirements of the developer, user and
researcher are considered together. It can be implemented on
various cloud platforms. It doesn’t address issues like device
resource acquisition and management. Reference [24] pro-
poses a message orientated middleware, MoM, to integrate
resources in smart building management systems (SBMS).
It can adapt to various SBMSs thanks to its distributed archi-
tecture and improved interoperability, which is achieved by
abstracting the devices and management software. But this
proposal needs further generality. Reference [25] proposes a
middleware named SITE for smart home scenarios, enabling
developers and even users to drive smart objects. This is real-
ized by providing uniform operation rules and correlated UI
for data visualization. Yet this middleware shows no effective
solution to issues like remote access, device management and
mash-up.

These cases are distinctively innovative but not sufficiently
practical. Some conduct frontier investigations with assump-
tions ahead of the time. Some have prominent features, but
lack reliability, standard compatibility, and upgrade potentials
to new technologies. Some are too scenario-specific to be
applied widely. Most of them employ components developed
by themselves even though there are many excellent open-
source projects addressing IoT issues of all levels, which
means they can be utilized in an organic integrity. A similar
example is LAMP (Linux, Apache, MySQL and PHP/Perl),
which gains great popularity and success inWeb development
by stacking several open-source technologies together [26].
The stacked design is also well worth learning in
IoT development.

III. OVERALL GOALS
According to the existing middleware or platforms for
IoT development, a qualified IoTmiddleware shouldmeet the
following requirements:

(1) Complete common basic tasks of IoT development for
developers, namely, tasks of support, communication, and
computing.

(2) Mask underlying technical details, and provide auxil-
iary toolkits for developers, such as simple-text or GUI APIs.

(3) Comply with the global IoT standard oneM2M, and
provide a foundation for data sharing and integration among
different systems, as well as for the implementation of
cutting-edge technologies.

(4) Be sufficiently reliable, not only for the security of user
information but also for the maintainability of the system.

(5) Be compatible with multiple software and hardware
platforms, including different PaaS (Platform-as-a-Service)
for cloud platforms, embedded hardware and legacyWSANs.

63548 VOLUME 6, 2018



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

TABLE 1. Support-communication-computing stack for this middleware.

FIGURE 4. Implementation of the middleware stack.

(6) Be modularized and loosely coupled among its com-
ponents so that IoT systems can be built concurrently and
maintained or upgraded convenient.

(7) Ensure high efficiency, low latency and flexibility in
human-thing interactions. Flexibility means complex interac-
tions can be realized by composing simple ones simply and
briefly.

This middleware, briefly speaking, will enable quick pro-
totyping for IoT application so that developers can focus on
advanced development. It will also work as a reliable test bed
for novel IoT techniques so that researchers don’t need to
worry about interfering factors.

IV. MIDDLEWARE DETAILS
Guided by some leading surveys [27]–[30] on IoT mid-
dleware, we designed a support-communication- computing

stack for the ideal IoT middleware to meet the overall goals,
as shown in Table 1. It has four components for the device,
gateway, server and client. Open-source projects and hard-
ware platforms are innovatively incorporated together to con-
struct the middleware according to this stack. In addition,
enabling techniques Variable and McSugar are proposed to
intersect all parts of the middleware to enable flexible and
uniform human-thing interactions.

A. IMPLEMENTATION
IoT communities have created a lot of excellent open-
source projects that can solve problems of all levels in
IoT applications. Many are not originally designed to work
together or even for IoT, yet they can be integrated in a com-
prehensive manner according to our support-communication-
computing stack, as shown in Figure 4.

VOLUME 6, 2018 63549



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

1) FIELD PART
The middleware’s component for non-IoT devices (bottom
right of Figure 4, Mw-Dev in short) can easily drive various
kinds of MCUs (Micro-Controller Units) with the help of
Arduino, which is widely used due to its extensive sup-
port to hardware platforms [31]. We have extended those
widely used field protocols including ZigBee, BLE, CANBus
and ZWave into the Arduino library. In the Arduino IDE
(Integrated Development Environment), developers can use
simple text to program to read and write those devices.

The middleware’s component for IoT devices (bottom
left of Figure 4, Mw-Dev in short) utilizes Contiki and
Paho [32], [33]. As a lightweight real-time operating system,
Contiki abstracts hardware details like ARM and their IO.
The CoAP of Contiki and the MQTT of Paho are integrated
into McSugar for developers to choose for specific scenarios.
With McSugar, firmware remote management and resource
monitoring are supported. Sub-functionalities of the middle-
ware component can be disabled or enabled according to
device performance. Non-IoT devices here are the aforemen-
tioned the NoDNs of oneM2M, which have simple function-
ality and are large in quantity; IoT devices are the ADNs
of oneM2M, which are generally complex in functionality.
To become a part of an IoT instance, the former needs the
driver of MCUs and the organization of WSANs via field
protocols; the latter uses IoT protocols directly or with slight
transformations.

The component for gateways of the middleware (the last
but one layer of Figure 4, Mw-Gtw in short) is built on Kura,
Californium and Camel [34]–[36]. Kura realizes compatibil-
ity with widely used hardware platforms such as Raspberry
Pi; provides OSGi (Open Service Gateway Initiative) runtime
for the M2M service logic and APIs for IO such as Serial,
RS-232 and BLE; supports multiple field protocols likeMod-
Bus, CANBus, ZigBee, BLE and ZWave; supports network-
ing based on different network facilities including Cellular,
WiFi and Ethernet. The CoAP of Californium and the MQTT
of Kura are integrated into McSugar so that gateways can
communicate transparently with the cloud platform, allowing
remote customization and maintenance. The Camel engine
simplifies the chaotic routing of messages.

2) CLOUD PART
The component for this middleware’s cloud part (the second
layer of Figure 4, Mw-Svr in short) is built on OM2M,
which conforms to oneM2M [37]. Based on Mosquitto and
Californium, MQTT and CoAP are bound and integrated into
McSugar [38]. Human-thing interaction is decoupled from
protocols using Hono [39]. Available device resources can be
discovered, abstracted and organized in the style of technique
Variable via Ditto [40]. HawkBit enables remotemaintenance
and service definition [41]. BIRT provides adaptive statistical
graphs for data analysis and visualization [42]. The OSGi
Equinox runtime enables modularity and extensibility. Based
on all above, RESTful APIs allowing simple text service

FIGURE 5. Base ontology of oneM2M (partial).

logic defining are provided. Through such APIs, service logic
working by being aggregated, decomposed and matched to
corresponding device resources.

3) USER PART
The component for the user part of the middleware (the top
layer of Figure 4, Mw-Clt in short) realizes a webapp client
with Material Design (a widely-used beautiful UI design lan-
guage by Google) styles, so it theoretically can run on all plat-
forms. The client focuses on human-thing interactions and
data visualization. McSugar, the integration of Californium
and Paho, together with the uniform APIs supported by the
cloud platform are the basis of human-thing interactions.
Graphical monitor/control interfaces and visualization tools
based on BIRT provide users with intuitive visualized analy-
sis and regulation of field conditions.

B. VARIABLES
Technique Variable refers to the Base Ontology of oneM2M,
which captures a shared understanding of IoT and provides a
formal and machine-manipulable model for IoT, thus inherits
its potentials in semantic reasoning [43]. It acts as loosely
coupled interfaces between components, making human-
thing interactions simplified. Its lightweight characteristic
also enables fog computing in the field, which is examined
in section case study.

According to oneM2M Base Ontology, as shown
in Figure 5, device description and the implementation of
Service and its Functionality all ultimately rely on Variable,
which is defined as {Head + Body}.
According to Figure 5, Device is the ‘‘Things’’ of the

‘‘Internet of Things’’. A Thing may have several Thing-
Properties, which can be abstracted into Variables as
{Id + Type + Rw + Remark}: Id is identifier, which
adopts the lightweight OID solution of oneM2M and is thus
of high-efficiency [49]; Rw indicates whether the Thing-
Property is readable/sensing or writable/executing by 0 and 1;
Remark keeps texts for auxiliary understanding. Type has the
following three cases: (1) enum, a device supports a limited
number of values; (2) multi, a device supports data within
a range and with a precision; (3) chars, a device support
character strings.

63550 VOLUME 6, 2018



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

TABLE 2. McSugar methods based on MQTT and CoAP for interactions.

FIGURE 6. Types of human-thing interactions. F: field part; C: cloud part;
U: user part; straight arrow: flow of data; arc arrow: advanced services.

Service is based on one or a set of organized devices in
the field and provides human-thing interactions under cer-
tain service logics. From the perspective of interaction, all
services can be categorized into the following four types,
as shown in Figure 6: (1)Monitor, physical world information
flows from the field via the cloud to the user part in the form
of sensing data; (2) Control, user’s intention of influencing
the physical world flows from user via cloud to field by
executing instructions; (3) Active Notification and (4) Auto-
matic Control are when the cloud plays an intelligent role
through advanced service logics in the interactionsmentioned
above [44], [45].

Human-thing interactions are conducted via the data
that are generated or to be consumed by devices and are
exchanged frequently among the three parts. So they are
defined as Operation-Input/Output in {Id + Value}, where
Value is the data generated or to be consumed corresponding
to a certain Thing-Property. Service logics of interactions thus
can be realized by Operation-Input/Outputs along with the
device resource mirror, which are lightweight descriptions of
devices (Thing-Properties) and are stored on cloud server or
gateways.

In the field part, dynamic and heterogeneous devices are
uniformly described into resources based on Thing-Property,
and gathered by the gateway. In the cloud part, resource
mirror can be built to support service logic, namely, service
logic is collected then decomposed and matched to resources
in the mirror. In various human-thing interactions, devices
only need to deal with the simple Inputs/Outputs, which
ensures the compatibility and scalability. This means all kinds
of devices can be described and utilized, and also grouped to
realize service logics either simple or complex. More specif-
ically, for a comprehensive device or a set of devices that
collaborate with one another, what is needed to describe them

is no more than a set of mutually exclusive Thing-Properties;
what is needed to interact with them is nothing but a set of
extremely simple Operation-Inputs/Outputs.

C. McSugar
TechniqueMcSugar in this middleware integratesMQTT and
CoAP to provide human-thing interactions with a framework.
We do this because both MQTT and CoAP are excellent
IoT protocols, but CoAP is suitable for low-power large-
scale sensing while MQTT fits real-time command trans-
mission and execution better [46]. As shown in Figure 7,
the McSugar clients of the field part and user part com-
municate in P2P mode via the McSugar Broker in cloud
part. So users, physical world and even service logic gain
the equal status, promising many potentials for human-thing
interactions [47], [48].

Table 2 shows theMcSugarmethods for human-thing inter-
actions based on CoAP and MQTT. User’s intention to influ-
ence the field can be achieved by one-off or continual control
via McSugar POST; monitoring information of the physical
environment of the field can be obtained via user’s McSugar
GET request. Moreover, decisions made through cloud com-
puting according to service logic can also be transmitted to
the field or user through McSugar GET or POST. Note that
some interactions, such as McSugar GET continual, have two
options (MQTT or CoAP), so developers can choose accord-
ing to the requirements. When MQTT is selected, McSugar’s
RESTful API is broken down into username, password, topic,
and other information required for the MQTT subscribe-
publish model; when CoAP is selected, the RESTful APIs
directly drive the communication of CoAP request-response
model.

McSugar RESTful APIs refer to the OpenAPI for oneM2M
proposed by [49] which has already been applied widely.
Its structure is baseUrl/resourceURI, where the structure
of the resource URI is username/groupId/componentId.
A resource, which can be a group of devices working
together or a function of a complex device, can be iden-
tified by it. BaseUrl can be Localhost, BaseUrlOfGate-
way, or BaseUrlOfServer, which respectively represents
directly operating smart objects, accessing devices within
the LAN (Local Area Network) or accessing remotely. This
technique allows authorized users and even another oneM2M
system to utilize the resources of the current system. Mean-
while, McSugar supports filtering rules, which is compatible
with that of MQTT [50]. In resource URI, ‘‘/’’ is used to sep-
arate resource levels; ‘‘+’’ is used to match all the resources
in a single layer; ‘‘#’’ is used to match all the resources

VOLUME 6, 2018 63551



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

FIGURE 7. Framework for human-thing interaction.

FIGURE 8. Human-thing interaction: McSugar + Variables.

in multiple layers. Combined with technique Variable, its
scalability, reusability and flexibility can be fully maximized.

D. HUMAN-THING INTERACTION
Based on this middleware, human-thing interaction is fairly
simple to realize. Here, we use an example to explain how
the techniques Variable + McSugar addresses the 7th goal
set in Section 3. As shown in Figure 8, developers just need to
program on the Mw-Dev to drive devices, where devices are
described into elementary resources according to Variable;
and users can define the relations of the available device
resources by touching the client UI, then obtain graphic inter-
faces for the human-thing interactions.

Assume that we want to control indoor temperature and
humidity intelligently. According to Variable, if open state
is marked as 1 and close state is 0, then the humidifier has
only one Thing-Property and can be described as in Figure 9a;
if the DHT11 sensor can measure humidity between 20 and
90% with a resolution of 1% and temperature between 0 and
50 ◦C with a resolution of 1 ◦C, then the device has two
Thing-Properties, so it can be described as in Figure 9b.
Once combined, the two devices can be described as shown
in Figure 9c. The Operation-Input Variable of Humidifier
is shown in Figure 9d; the Operation-Output Variable of
DHT11 is as shown in Figure 9e. When a user wants the sens-
ing data of DHT11, all data to be delivered are just instances

of Figure 9e, which takes up just 1 + 1 + 4 + 1 + 4 = 11
bytes only, thanks to the device resource mirror of Figure 9b.
The three ‘‘1’’ in the equation are bytes used by the OIDs
(mentioned in Section 4.2) of ‘‘dht11’’, ‘‘hmdt’’ and ‘‘tmpr’’;
the two ‘‘4’’ are bytes used by the float values of humidity
and temperature sensed by DHT11. This is how human-thing
interactions of high-efficiency and low-latency achieved.

Via McSugar, RESTful APIs for basic human-thing inter-
actions can be achieved as in Table 3: ¬ and  are the inter-
action APIs that when available device resources (Humidifier
and DHT11) are discovered, and their Variables are sent to
server to build resource mirror for service logics; ® is the
API when user creates the group indoorEnv for Humidi-
fier and DHT11 to realize the automatic control mentioned
in Figure 6; ¯ is the API that user acquires all sensing data
in group indoorEnv, and ° is another approach; ± is the
API when user just acquires the sensing data of DHT11;
and ² is the API that user controls Humidifier or that server
autonomously controls Humidifier when automatic control
rules are set and triggered. Obviously, by combining the brief
URIs and GET/POST methods, comprehensive interactions
can be very simple even when it’s a virtual ‘‘thing’’ where a
group of things are aggregated. This is how the flexibility is
achieved.

By the way, the human-readable Ids here are used only
for understanding while the OIDs are actually employed.

63552 VOLUME 6, 2018



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

FIGURE 9. Examples of variables.

TABLE 3. Example APIs of human-thing interactions.

And the structure charts of Variable instances can
be described by JSON, which is widely adopted in
IoT applications.

Like the McSugar, interaction methods of instances men-
tioned in Section 2 are also RESTful, but they do not have
the same conciseness shown by the Variable URI and Entity
columns of Table 3. So the unique advantages of our solution
are (1) further steps in the homogenization of the heteroge-
neous devices for comprehensive services; (2) compatibility
in multiple protocols including HTTP, CoAP andMQTT, and
uniformity in APIs at themeantime; and (3) most importantly,
compliance with the global standard oneM2M.

V. CASE STUDY
With thismiddleware, IoT development can be simplified into
the following key steps:

(S1) Flash the middleware’s Mw-Dev component to non-
IoT devices; as for IoT devices, the operation is similar
to (S2).

(S2) InstallMw-Gtw to gateway board if there is a gateway.
(S3) Deploy Mw-Svr on the PaaS platform you’ve

bought, or on a local server.
(S4) Access the target server using your browser to obtain

human-thing interactions.

(S5) Login the remote administration page, then define and
enable advanced service logics.

Its take very little efforts to do (S2)-(S4) as only the reg-
istration information is needed. Here are two case studies in
IoT development and research to explain these five steps and
demonstrate the advantages of this middleware.

A. BOOSTING IoT DEVELOPMENT
Since temperature, humidity, light, and CO2 concentration
are key factors that influence the quality of flower cultivation,
this IoT application aims at overcoming farmers’ subjective
judgment and enabling intelligent precise control of their
greenhouse environment [51], [52].

The user part of this IoT application uses the original
version of this middleware’s webapp client. The cloud part
is deployed on a local workstation as this is only for private
use; dynamic domain name service (DDNS) is introduced to
enable remote access. The field part includes a gateway and
WSAN, where sensors (temperature, humidity, CO2 concen-
tration, illumination) are added and existing equipment (heat-
ing, sprinklers, curtains, lights, ventilation) are transformed
then organized, as shown in Figure 10, Figure 11 and Table 4.

In terms of implementation, this middleware can highly
simplify it. (S1) For the devices in the field, connect

VOLUME 6, 2018 63553



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

TABLE 4. Details of field devices.

FIGURE 10. Equipment layout inside the flower cultivation base. Existing
equipment: sprinklers, heating pipes, ventilation, top curtains and lights.
Newly-add equipment: DHT11s, DS-CO2-20s and GY-30s.

legacy equipment (via proper transition circuits) and new
devices (directly) to Arduino-ZigBee boards; code devices’
init/read/write functions according to Variable, which is quite
easy as demos are provided by their retailers. The follow-
ing is the pseudo code for DHT11. When it initializes,
init()describes DHT11 as two components hmdt and tmpr
(see code#1 and Figure 9b); and submit it to the gateway
(code#2), so as to build resource mirrors for human-thing
interactions. When user requests the sensing data, all com-
ponents of DHT11 can be located by McSugar API plus
identifiers dht11-1/hmdt or dht11-1/tmpr; then read() packs
data into ‘‘{dht11-1; {hmdt; value1 }; {tmpr; value2 } }’’ and
upload them (see code#3 and Figure 9e). The write() is null
for sensors.

function init() {
str = "{
id:’dht11-1’; type:’multi’; rw:0;
members:{{id:’hmdt’; lower:0;

upper:99; step:1; },
{id:’tmpr’; lower:-39; upper:60;

step:0.1 }
};

}"; // c#1
set_DHT11_resource_mirror(str);
send_resource_mirror_via_RF_to_gateway
(str); // c#2
configure_hardware_connection_with_MCU();

}
function read() {

data = scan_MCU_pins_for_sensing_data();
send_sensing_data_via_RF_to_gateway(data);

// c#3
}

Compile the coded Mw-Dev and flash it into the boards.
Then forms theWSAN,which is connected to the gateway via

FIGURE 11. Application structure: sensors/actuators are organized by
WSAN and gateway; then the field conditions can be monitored/
controlled remotely via local server with the help of a DDNS server.

a serial port. (S2) For the gateway, install Mw-Gtw directly
to Raspberry Pi board, and do necessary configurations like
username/password and target domain name to connect to the
‘‘cloud’’ server. (S3) For the ‘‘cloud’’ server, just install Mw-
Svr to the local workstation; then set up the DDNS service
we bought to map the local server to a public domain name
to realize remote access, which is also quite simple. We do
so not because the middleware doesn’t support real cloud
server, but for the sake of cost. (S4) For the client, visit that
domain name using browser then register using the same
username/password, then connections with the field are built
via the cloud; after that, device resourcemirrors are submitted
automatically to the server by the gateway; and basic human-
thing interactions powered by McSugar are thus obtained
by the client, such as remote real-time monitor/control
and visualized analysis of historic sensing data. (S5) For
advanced services, log in the remote management page, then
define service logics using simple text over the APIs. Here,
based on Variable, devices are virtualized into four groups:
(1) temperature, DHT11 × 6 + Heating Pipes; (2) humidity,
DHT11 × 6 + Sprinklers + Ventilation; (3) illumination,
GY-30 × 6 + Roof Curtains + Lights; and (4) CO2 con-
centration, DS-CO2-20 × 6 + Ventilation. The rules for
the system to intelligently control actuators to take actions
according to sensors’ sensing data are also set.

In brief, developers just need to make circuits, code
functions, flash firmware/install software, input user
information, and define advanced services; no need
to deal with complex underlying technologies of sup-
port/communication/computing. This middleware is of
course not an enclosed box, and when required, in-depth
customization or optimization can be realized easily thanks
to its modular and loosely coupled structure.

63554 VOLUME 6, 2018



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

FIGURE 12. Client GUI: monitor/control (upper); adding rules (lower).

With the client, farmers can browse temperature, humidity,
illumination, and CO2 concentration of their greenhouse at
anytime from anywhere. Farmers can also visually analyze
the influence of these factors on the flowers. The intuitional
charts can adaptively visualize the sensing data based on
Thing-Properties, and allow adjustment in display styles,
such as the average of several data sources and the scope
of coordinate axes. In addition, users can tap the GUI views
such as ‘‘switch’’, ‘‘progress bar’’ and ‘‘text box’’, which are
matched to corresponding device resources according to their
Variables, to control the greenhouse environment, as shown
in Figure 12a. With user-defined rules, the system can auto-
matically control the actuators and alert users about emergen-
cies. For example, in rule ‘‘Auto CO2’’ shown in Figure 12b,
when dsco220_avr (the average value of the six DS-CO2-20s,
obtained via their Variables, created in rule ‘‘CO2 Average’’)
is less than 350 or greater than 500, ventilation will be given
value ‘‘1’’ to turn on the ventilation facilities in the field to
adjust CO2 concentration autonomously.

Maintaining a suitable CO2 concentration is vital to the
cultivation of flower quality. Figure 13 and 14 present
the tendencies of CO2 concentration over a period of two
similar days, with and without auto-control. The values
of CO2 concentration are the average of the sensing data of
six DS-CO2-20s. The auto-control rules are to ventilate if

FIGURE 13. Curve of CO2 concentration with auto-control rules.

FIGURE 14. Curve of CO2 concentration without auto-control rules.

CO2 concentration is not in the range of 300-475 ppm. As it
shows, the concentration remained within the favorable range
all the time with the auto-control rules, while the concen-
tration varied greatly due to respiration and photosynthesis
without the rules. The former clearly has an advantage in
flower cultivation.

B. FACILITATING IoT RESEARCH
This middleware can be used as a testbed to put IoT research
simulations into practice. The following is an example of the
probe of distributed computing in elderly care.

There are many diverse devices in a nursing scenario where
the service should be persistent and the emergency response
should be as swift as possible [53], [54]. In a conventional
cloud-centered architecture, sensing data have to be uploaded
to the far cloud and congestion occurs unpredictably. It is
time/resource consuming, unable to respond to emergencies
timely and constantly. Distributed computing is an ideal
solution: local resources are utilized, and service logics are
handled nearer to the field. Assume that monitoring equip-
ment in each room is organized by a gateway and connected
to a cloud server. The gateways and server complete tasks
together: the central node (a gateway) distributes computing
tasks to ‘‘adjacent’’ nodes (other gateways or the server); each
node calculates the assigned task and returns the result to the

VOLUME 6, 2018 63555



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

TABLE 5. Specifications of the nodes.

central node; the result is very lite, so only its transmission
delay is considered. If the total amount of task is A, and the
computing capacity of node n cn, communication bandwidth
of the center node bn and communication delay with the
central node dn are all known, then the task proportion done
by node n is

pn =
an
6ai

, where an = xcn + ybn + z
1
dn

(a)

The time node n receives its tasks, the time node n completes
its tasks, and the latency node n receives/returns its task data
respectively are

tbn =
Apn
bn

Kb, tcn =
Apn
cn

Kc, tdn = 2dn (b)

The aim of the collaboration is to minimize the time con-
sumption of distributed computing:

max
n
tn→ min, where tn = tbn + tcn + tdn (c)

The system model is shown in Figure 15, which includes
the server in the cloud part and several gateways that drive
some sensors and actuators in field part. Each gateway dis-
tributes sensing data among the gateways and server to com-
plete the computing task together. For simplicity, just con-
sider the condition of Gw0. For Gw0, the server and other
gateways are all peer nodes that can be utilized. As shown
in Figure 16, all these nodes logically comprise three lay-
ers: service logic, neuron and sensing layers. (1) Sensing
layer collects sensing data from sensors (just consider that
of Gw0). (2) Neuron layer integrates all nodes together and
updates communication parameters among nodes and their
free resources (cn, bn, dn) and distribute tasks according to
Equation (a) via McSugar. Jubatus in this layer is a powerful
online machine learning tool, serving to update those param-
eters. (3) Service logic layer executes distributed tasks, based
on resource mirrors powered by Variables.

In terms of implementation, steps (S1-S4) are similar to the
former case, easy as always. For advanced tasks in (S5), Juba-
tus need to be introduced in. The data needed by Jubatus’s
online learning and dynamic updating are all described by the
extremely lightweight Variables, saving a lot of communica-
tion resources. Thanks to the OSGi feature of the middleware,
which makes the middleware itself highly modularized and
loosely coupled, the introduce of Jubatus is just as easy as
playing building blocks even though Jubatus is programmed
in C++: we encapsulate it in Java and invoke it using
JNI (Java Native Interface), making it a plug-and-play mod-
ule running on these nodes.

In short, by conducting experiments with this middleware,
researchers can set up the testbed quickly and concentrate

FIGURE 15. Model of the experiment. Consider Gw0 only: cloud server
and other Gws (gateways) in the field are nodes can be utilized;
Gw0 collects and distributes sensing data to other nodes to conduct
distributed computing, then gathers computing results to finish it.

FIGURE 16. Three layers of the experiment. Sensing layer of Gw0 collects
data; neuron layers of all nodes update factors needed by distributed
computing; service logic layers complete tasks allocated to the nodes.
Gw1-4 and server are nodes that can be utilized by Gw0.

on their research; even introducing new modules into it is no
challenge.

To facilitate the comparison and analysis, the following
constraints are defined for the experiment: (1) The computing
task is to predict future value according to 20 DHT11s’
historical sensing data, which is of linear complexity.
(2) The task volume can be set by the sampling frequency,
which ranges from 5 to 100 Hz. (3) The nodes are five
Raspberry Pi gateways and a ThinkStation P310 server, as
shown in Table 5, in the same WLAN. (4) The Raspberry Pis
have had their OSs re-installed and unrelated processes killed.
(5) The ThinkStation has had its OS re-installed and unrelated
processes killed; latency of 20 ms is added to IP packets
to simulate the communication delay of a commercial cloud
platform.

Figure 17 shows the proportion of tasks undertaken by
each node under different sampling frequencies when tasks
are computed in field-cloud mode. Figure 18 shows the time
required by modes cloud-only, field-only and field-cloud to
complete a task at different sampling frequencies. Accord-
ing to Figure 17, the computing task is always distributed

63556 VOLUME 6, 2018



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

FIGURE 17. Task ratio allocated to all nodes.

FIGURE 18. Completion time of three modes.

evenly among the field nodes. When the sampling rate is
low, the completion of computing tasks depends mainly on
the cooperation of field nodes. However, as task quantity
increases, cloud nodes play an increasingly important role
due to its strong performance. According to Figure 18, when
the sampling rate is relatively small, mode field-only can
complete tasks the fastest, while cloud-only has poor instanta-
neity performance due to its inherent delay. With the increase
of sampling rate, mode field-cloud becomes the best solution.
However, according to our expectations, when the sampling
rate is low, the performance of field-cloud should be at
least as good as field-only. Obviously, the assumption that
an has linear relationships with cn, bn and d−1n is not fully
reasonable.

C. DISCUSSION
As can be seen from these cases, the overall goals set in
Section 3 are achieved in this middleware.

With this middleware, developers basically don’t have to
handle the underlying technologies in the common basic
development and thus can build up their IoT application
quickly. The APIs and tools for visualized analysis work
well in the advanced development. The cases of both smart
floriculture and field-cloud computing function smoothly in

tests, which proves the middleware’s maintainability and reli-
ability. The strengths of this modular and decoupled stack are
demonstrated either when Jubatus is introduced in.

The flexible, uniform and effective human-thing interac-
tions are enabled by techniques Variable and McSugar. In the
first case, the cooperation of McSugar and Variable is the
key to real-time monitor/control, historic data visualization
and other services; in the second case, device resource mirror
based on Variable is the basis of distributed computing.

The potentials like semantic reasoning due to its compli-
ance with oneM2M are not fully presented though, and thus
further investigation is required. Although not directly illus-
trated by these cases, the middleware’s adaptability to various
software/hardware platforms is fine according to responses
from IoT communities.

VI. CONCLUSIONS
In this paper, we propose a oneM2M-compliant stacked mid-
dleware for IoT development and research. Its innovative
stack of support-communication-computing integrates those
excellent open source software and hardware into a com-
prehensive entity, where those tricky common basic tasks
in IoT development are fulfilled and APIs and tools are
provided for advanced tasks. Particularly, its Variable and
McSugar techniques enable the uniform and flexible inter-
actions between human and things, maximizing its value in
practical applications. As the tests demonstrate, with this
middleware, IoT developers can focus on top-level require-
ments instead of being trapped in underlying technologi-
cal details; researchers can build up testbeds quickly and
conduct experiments for novel IoT technologies. Further-
more, this middleware complies with the global standard
oneM2M and thus inherits its great potentials. Foundations
for those cutting-edge IoT technologies like fog/cloud com-
puting and semantic reasoning are established, which still
require much research and development though. Our follow-
ing goals are contextual resource integration and semantic
reasoning guided by oneM2M ontology, so as to foster more
intelligent and practical IoT applications.

ACKNOWLEDGMENT
Technological support from Fei Qin and his startup company
Glrsmart Tech. Jiangsu Co., LTD is gratefully acknowledged.
Fellow apprenticeHui Li helped a lot in this paper’s literal and
logic expression.

REFERENCES
[1] W. Ejaz,M. Naeem, A. Shahid, A. Anpalagan, andM. Jo, ‘‘Efficient energy

management for the Internet of Things in smart cities,’’ IEEE Commun.
Mag., vol. 55, no. 1, pp. 84–91, Jan. 2017.

[2] B. L. R. Stojkoska and K. V. Trivodaliev, ‘‘A review of Internet of Things
for smart home: Challenges and solutions,’’ J. Cleaner Prod., vol. 140,
pp. 1454–1464, Jan. 2017.

[3] M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, and C. -H. Youn, ‘‘Wearable 2.0:
Enabling human-cloud integration in next generation healthcare systems,’’
IEEE Commun. Mag., vol. 55, no. 1, pp. 54–61, Jan. 2017.

[4] H. M. Jawad, R. Nordin, S. K. Gharghan, A. M. Jawad, and M. Ismail,
‘‘Energy-efficient wireless sensor networks for precision agriculture: A
review,’’ Sensors, vol. 17, no. 8, pp. 1781–1825, 2017.

VOLUME 6, 2018 63557



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

[5] M. Wollschlaeger, T. Sauter, J. Jasperneite, ‘‘The future of industrial
communication: Automation networks in the era of the Internet of Things
and industry 4.0,’’ IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27,
Mar. 2017.

[6] TS-0001-Functional_Architecture-V2_10_0.pdf. Accessed: Mar. 28, 2018.
[Online]. Available: http://www.onem2m.org/images/files/deliverables/
Release2/TS-0001-%20Functional_ArchitectureV2_10_0.pdf

[7] oneM2M. oneM2M: Standards for M2M and the Internet of
Things. Accessed: Mar. 28, 2018. [Online]. Available: http://
www.onem2m.org

[8] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, ‘‘Potentials, trends,
and prospects in edge technologies: Fog, cloudlet, mobile edge,
and micro data centers,’’ Comput. Netw., vol. 130, pp. 94–120,
Jan. 2018.

[9] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research
opportunities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[10] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. Le Gall, and M. Zhao, ‘‘Standards-
based worldwide semantic interoperability for IoT,’’ IEEE Commun. Mag.,
vol. 54, no. 12, pp. 40–46, Dec. 2016.

[11] S. Mayer, J. Hodges, D. Yu, M. Kritzler, and F. Michahelles, ‘‘An open
semantic framework for the industrial Internet of Things,’’ IEEE Intell.
Syst., vol. 32, no. 1, pp. 96–101, Jan./Feb. 2017.

[12] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[13] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[14] V. Gazis, ‘‘A survey of standards for machine-to-machine and the Internet
of Things,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 482–511, 1st
Quart., 2017.

[15] I. C. L. Ng and S. Y. L. Wakenshaw, ‘‘The Internet-of-Things: Review
and research directions,’’ Int. J. Res. Marketing, vol. 34, no. 1, pp. 3–21,
2017.

[16] EVRYTHNG IoT Smart Products Platform. Accessed: Mar. 28, 2018.
[Online]. Available: http://evrythng.com

[17] IFTTT Helps Your Apps and Devices Work Together. Accessed:
Mar. 28, 2018. [Online]. Available: https://ifttt.com

[18] SensorCloud. Accessed: Mar. 28, 2018. [Online]. Available: http://www.
sensorcloud.com

[19] IoT Analytics-ThingSpeak Internet of Things. Accessed: Mar. 28, 2018.
[Online]. Available: https://thingspeak.com

[20] ThingWorx Delivers Industrial Innovation. Accessed: Mar. 28, 2018.
[Online]. Available: https://www.thingworx.com

[21] K. Yelamarthi, S. Aman, and A. Abdelgawad, ‘‘An application-
driven modular IoT architecture,’’ Wireless Commun. Mobile Com-
put., vol. 2017, May 2017, Art. no. 1350929. [Online]. Available:
https://www.hindawi.com/journals/wcmc/2017/1350929

[22] S. Jeon and I. Jung, ‘‘MinT: Middleware for cooperative interaction of
things,’’ Sensors, vol. 17, no. 6, pp. 1452–1476, 2017.

[23] T. Popović, N. Latinović, A. Pešić, Ž. Zečević, B. Krstajić, S. Djukanović,
‘‘Architecting an IoT-enabled platform for precision agriculture and eco-
logical monitoring: A case study,’’ Comput. Electron. Agricult., vol. 140,
pp. 255–265, Aug. 2017.

[24] G. Lilis and M. Kayal, ‘‘A secure and distributed message oriented mid-
dleware for smart building applications,’’ Automat. Construct., vol. 86,
pp. 163–175, Feb. 2018.

[25] B. Hafidh, H. Al Osman, J. S. Arteaga-Falconi, H. Dong, and A. El Saddik,
‘‘SITE: The simple Internet of Things enabler for smart homes,’’ IEEE
Access, vol. 5, pp. 2034–2049, 2017.

[26] U. V. Ramana and T. V. Prabhakar, ‘‘Some experiments with the per-
formance of LAMP architecture,’’ in Proc. 5th Int. Conf. Comput. Inf.
Technol., Shanghai, China, Sep. 2005, pp. 916–920.

[27] K. J. Singh and D. S. Kapoor, ‘‘Create your own Internet of Things: A
survey of IoT platforms,’’ IEEE Consum. Electron. Mag., vol 6, no. 2,
pp. 57–68, Apr. 2017.

[28] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, Q. Z. Sheng, ‘‘IoT middle-
ware: A survey on issues and enabling technologies,’’ IEEE Internet Things
J., vol. 4, no. 1, pp. 1–20, Feb. 2017.

[29] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ‘‘Middle-
ware for Internet of Things: A survey,’’ IEEE Internet Things J., vol. 3,
no. 1, pp. 70–95, Feb. 2016.

[30] M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev,
and V. H. C. de Albuquerque, ‘‘A reference model for Internet of
Things middleware,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 871–883,
Apr. 2018.

[31] G. Barbon, M. Margolis, F. Palumbo, F. Raimondi, and
N. Weldin, ‘‘Taking Arduino to the Internet of Things: The ASIP
programming model,’’ Comput. Commun., vols. 89–90, pp. 128–140,
Sep. 2017.

[32] Contiki: The Open Source OS for the Internet of Things. Accessed:
Mar. 28, 2018. [Online]. Available: http://www.contiki-os.org

[33] Eclipse Paho-MQTT and MQTT-SN Software. Accessed: Mar. 28, 2018.
[Online]. Available: http://www.eclipse.org/paho

[34] Eclipse Kura-Open Source Framework for IoT. Accessed: Mar. 28, 2018.
[Online]. Available: http://www.eclipse.org/kura

[35] Californium (Cf) CoAP Framework. Accessed: Mar. 28, 2018. [Online].
Available: http://www.eclipse.org/californium

[36] Apache Camel. Accessed: Mar. 28, 2018. [Online]. Available:
http://camel.apache.org

[37] Eclipse OM2M-Open Source Platform for M2M Communication.
Accessed: Mar. 28, 2018. [Online]. Available: http://www.
eclipse.org/om2m

[38] Eclipse Mosquitto. Accessed: Mar. 28, 2018. [Online]. Available: https://
mosquitto.org

[39] Eclipse Hono. Accessed: Mar. 28, 2018. [Online]. Available: http://www.
eclipse.org/hono

[40] Eclipse Ditto. Accessed: Mar. 28, 2018. [Online]. Available: http://www.
eclipse.org/ditto

[41] Eclipse hawkBit-IoT Software Update. Accessed: Mar. 28, 2018. [Online].
Available: http://www.eclipse.org/hawkbit

[42] BIRT. BIRT Buzz. Accessed: Mar. 28, 2018. [Online]. Available:
http://www.eclipse.org/birt

[43] oneM2M Technical Specification TS-0012-V2.0.0 Base Ontology.
Accessed: Mar. 28, 2018. [Online]. Available: http://www.onem2m.org/
images/files/deliverables/Release2/TS-0012-oneM2M-Base-Ontology-
V2_0_0.zip

[44] M. Tao, J. Zuo, Z. Liu, A. Castiglione, and A. Castiglione, ‘‘Multi-
layer cloud architectural model and ontology-based security service frame-
work for IoT-based smart homes,’’ Future Gener. Comput. Syst., vol. 78,
pp. 1040–1051, Jan. 2017.

[45] A. Markus, G. Kecskemeti, and A. Kertesz, ‘‘Flexible representation of
IoT sensors for cloud simulators,’’ in Proc. 25th Euromicro Int. Conf.
Parallel, Distrib. Netw.-Based Process., St. Petersburg, Russia, Mar. 2017,
pp. 199–203.

[46] C. Pereira and A. Aguiar, ‘‘Towards efficient mobile M2M commu-
nications: Survey and open challenges,’’ Sensors, vol. 14, no. 10,
pp. 19582–19608, 2014.

[47] F. Khan, I. ur Rahman, M. Khan, N. Iqbal, and M. Alam, ‘‘CoAP-based
request-response interaction model for the Internet of Things,’’ in Proc.
Int. Conf. Future Intelligent Veh. Technol., Porto, Portugal, Sep. 2016,
pp. 146–156.

[48] A. Khakimov, A. Muthanna, R. Kirichek, A. Koucheryavy, and M. S. Ali
Muthanna, ‘‘Investigation of methods for remote control IoT-devices based
on cloud platforms and different interaction protocols,’’ in Proc. IEEE Rus-
sia Section Young Researchers Elect. Electron. Eng. Conf., St. Petersburg,
Russia, Feb. 2017, pp. 160–163.

[49] J. Kim, S.-C. Choi, I.-Y. Ahn, N.-M. Sung, and J. Yun, ‘‘From WSN
towards WoT: Open API scheme based on oneM2M platforms,’’ Sensors,
vol. 16, no. 10, p. 1645, 2016.

[50] MQTT Version 3.1.1. Accessed: Mar. 28, 2018. [Online]. Available:
http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[51] Monteiro, J.A.; Nell, T.A.; Barrett, J.E., ‘‘Postproduction of potted minia-
ture rose: Flower respiration and single flower longevity,’’ J. Amer. Soc.
Horticultural Sci., vol. 126, no. 1, pp. 134–139, 2001.

[52] R. Şenol and K. Taşdelen, ‘‘A new approach for LED plant growth units,’’
Acta Polytechnica Hungarica, vol. 11, no. 6, pp. 57–71, 2014.

[53] S. M. M. Fattah, N.-M. Sung, I.-Y. Ahn, and M. R. J. Yun, ‘‘Building
IoT services for aging in place using standard-based IoT platforms and
heterogeneous IoT products,’’ Sensors, vol. 17, no. 10, p. 2311, 2017.

[54] J. Sun, Y. Guo, X. Wang, and Q. Zeng, ‘‘mHealth For aging China:
Opportunities and challenges,’’ Aging Disease, vol. 7, no. 1, pp. 53–67,
2016.

63558 VOLUME 6, 2018



R. Zhao et al.: OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development

RONGZHEN ZHAO received the master’s degree
from Nankai University, Tianjin, China. He is
currently with the Tianjin Key Laboratory of Opto-
electronic Sensor and Sensing Network Technol-
ogy, Nankai University.

His current research interests include Internet of
Things and deep learning.

LITIAN WANG is currently pursuing the Ph.D.
degree in electronic science and technology with
Nankai University, Tianjin, China. His main
research interests include Internet of Things,
microwave passive components and systems, and
HTS tunable filter design.

XINGZHE ZHANG is currently pursuing the mas-
ter’s degree with the College of Electronic Infor-
mation and Optical Engineering, Nankai Univer-
sity, Tianjin, China. His current research interest
is Internet of Things.

YU ZHANG is currently pursuing the master’s
degree with the College of Electronic Information
and Optical Engineering, Nankai University, Tian-
jin, China. Her current research interest is Internet
of Things.

LIZHI WANG is currently pursuing the bachelor’s
degree with the College of Computer and Control
Engineering, Nankai University, Tianjin, China.
His current research interest is Internet of Things.

HONGZHAO PENG is currently pursuing the
master’s degree with the College of Electronic
Information and Optical Engineering, Nankai Uni-
versity, Tianjin, China. His current research inter-
est is Internet of Things.

VOLUME 6, 2018 63559


	INTRODUCTION
	RELATED WORK
	OVERALL GOALS
	MIDDLEWARE DETAILS
	IMPLEMENTATION
	FIELD PART
	CLOUD PART
	USER PART

	VARIABLES
	McSugar
	HUMAN-THING INTERACTION

	CASE STUDY
	BOOSTING IoT DEVELOPMENT
	FACILITATING IoT RESEARCH
	DISCUSSION

	CONCLUSIONS
	REFERENCES
	Biographies
	RONGZHEN ZHAO
	LITIAN WANG
	XINGZHE ZHANG
	YU ZHANG
	LIZHI WANG
	HONGZHAO PENG


