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ABSTRACT Cloud computing is an information technology paradigm that enables ubiquitous access to
shared pools of configurable system resources and higher level services required by modern technology.
Task scheduling is an important part in cloud computing for limited number of heterogeneous resources
and increasing number of user tasks. Task scheduling is to allocate tasks (cloudlets) to the best suitable
resources to increase performance in terms of some parameters, such as makespan and resource utilization.
Allocating cloudlets with good load balancing and minimummakespan is an NP-hard optimization problem.
Many meta-heuristic and heuristic algorithms have been proposed to solve the said problem, but they lack
in considering the completion time of virtual machine and total length of its allocated cloudlets instead of
only considering completion time of a cloudlet. This lack leads to decrease the performance of a cloud
system in some cases, such as large cloudlets. To address the said problem, in this paper, we propose an
optimal heuristic cloudlet allocation algorithm for resource allocation and task scheduling, referred as HCA,
to cope with the increasing large number of user cloudlets under minimum resource capacity. So, we devise
a new mechanism to combine optimal completion time and earliest finish time to minimize both degree of
imbalance and overall completion time. The experimental results show that the proposed HCA can achieve
effectively and efficiently good performance, best load balancing, and improve the resource utilization in
comparison with the other existing cloudlet allocation methods.

INDEX TERMS Cloud computing, cloudlet allocation, optimal completion time, earliest finish time, load
balancing.

I. INTRODUCTION
In recent years, cloud computing has emerged as hetero-
geneous distributed computing system to manage and allo-
cate computing resources to user applications over the Inter-
net in a self-service, dynamically scalable and metered
manner [1], [2]. User application can be divided in small
size or high size of tasks (cloudlets). The advantage of high
size is that the number of cloudlets is more reduced than
with small size. However, a great number of large cloudlets
whose cloudlet corresponds to high size lead the cloud system
to fail in good load balancing and lower completion time.
This is caused by their high execution time and delay during
their execution on virtual machine (VM). Due to the energy

consumption constraint, the number of virtual machines is
limited to the capacity of physical machines [3]–[6]. Further,
due to the security issues related to virtualization [7], all these
VMs are distributed among increasing number of cloud users
to complete running of their cloudlets. This means that the
number of these VMs is much more reduced per single user.
Thus, optimizing task scheduling with good load balancing
and minimum makespan which takes into account of large
and small cloudlets under resources capacity constraints, such
as number of VMs and processing speed, still remains the
major challenging issue not well solved in cloud computing.
Therefore, task scheduling being an NP-hard problem, then
a best optimal heuristic cloudlet allocation is required for
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managing high number of large and small cloudlets submitted
by a single user tomaximize both load balancing and resource
utilization and to minimize overall completion time.

Currently, many algorithms for resource allocation and
task scheduling in cloud computing, have been proposed
to improve load balancing, to minimize makespan, waiting
time and to maximize resource utilization. These proposed
algorithms can be divided into two categories that are as fol-
lows: heuristic algorithms [8]–[13], such as Min-Min, Max-
Min [11] and meta-heuristic algorithms [14]–[18]. Further,
in case of scheduling both large cloudlets and small cloudlets,
those of both algorithms failed in lowest degree of load
imbalance and lowest completion time of a resource at same
time. With the increasing number of large cloudlets, recent
heuristic algorithms [12], [13] suffer from imbalance load
among VMs or hosts which highly increases makespan and
leads the cloud system to the under-load and overload situa-
tions.

In order to improve task scheduling, many techniques
based heuristic algorithms have been implemented such as
heterogeneous earliest finish time (HEFT) [10] and minimum
completion time (MCT) [11]. MCT assigns cloudlets in ran-
dom order to the VM having earliest completion time. In this
method, some tasks are allocated to the VMs without having
minimum execution time. HEFT sorts firstly a list of cloudlets
in decreasing order of upward rank calculated on basis of exe-
cution time and then, assigns a cloudlet to VM with earliest
finish time using insertion-based approach. In our work, these
two heuristic techniques are modified and combined in order
to achieve a good task scheduling with best load balancing
and minimum makespan.

Due to the increasing of large amount users which involves
a large amount number of cloudlets, researchers have put
many efforts on improving load balancing among VMs.
Authors in [19] presented task scheduling algorithm based
on particle swarm optimization which distributes the load
among the virtual machine in order to minimize the overall
response time. Authors in [20] proposed a heuristic approach
which combines modified analytic hierarchy process, band-
width aware divisible scheduling, and BAR optimization,
longest expected processing time preemption (LEPT) and
divide-and-conquer methods to maximize the utilization of
computing resources under bandwidth and load on the vir-
tual machine, as constraints. This approach uses LEPT and
divide-and-conquer methods to check load of each VM and
to balance it among all VMs in overloading case. Authors
in [21] proposed load balancing algorithm based on honey
bee behavior to distribute workload in the way that avoid
underutilization and over-utilization of the resources. It allo-
cates the incoming cloudlet to a VM on basis of number
of cloudlets and processing time threshold value to achieve
fairness and avoid congestion. However, this processing time
threshold value can be higher, then leads the cloud sys-
tem to fail in good load balancing. Authors in [12] devised
range wise busy-checking 2-way balanced (RB2B) to achieve
load balancing. RB2B focuses on distributing the number

of cloudlets to the VMs in a uniform way with a balance
threshold and earliest finish time. The RB2B algorithm con-
siders the processing speed of each VM and cloudlet length
range. Its experimental results showed its improvements on
the heuristic algorithms which are as follows: min-min, max-
min, resource aware scheduling algorithm, and conductance
algorithm. However, these algorithms do not consider the
total length of global queue of cloudlets and they lack in
finding common completion time among heterogeneousVMs
which may ensure good load balancing, in case of large and
small cloudlets.

Based on task scheduling, many heuristic algorithms have
been proposed to minimize the execution time of a task and
finish time such as first strategy algorithm (FSA) [13], round
robin (RR) [9] and standard deviation based modified cuckoo
optimization algorithm (SDMCOA) [22]. FSA is based on a
deadline, length of cloudlets and speed of execution of VMs,
and vector that defines the number of cloudlets per VM, is
distributed to each VM. FSA lacks in considering the com-
pletion time of VM and size of large cloudlets. As a result,
this lack leads to higher completion time and improper load
balancing. RR uses the ring as its queue to store cloudlets, and
it allocates resources in circular order without using priority
of the cloudlets. Each cloudlet in a queue has a same fixed
unit of time, called quantum, allocated by scheduler and it
will be executed in turn. If a cloudlet is unable to complete
during its turn, it will be stored back to the queue waiting for
the next turn. Large cloudlets are often assigned to the VMs
with low MIPS (million instructions per second) increas-
ing waiting time and overall completion time. As a meta-
heuristic method, SDMCOA allocates cloudlets to suitable
virtual machines by using fitness function based on finding
maximum finish time. However, all these algorithms lack
in finding a common completion time among heterogeneous
VMs which may impact better on load balancing and overall
completion time. In addition, there is no need to consider
number of cloudlets, but the size of large and small cloudlets
has to be considered. However, these heuristic algorithms
do not focus on minimizing the completion time of each
VM instead of only minimizing the execution time of a
cloudlet which can increase the overall completion time.

In this paper, we mainly focus on designing an optimal
heuristic cloudlet allocation algorithm for resource alloca-
tion and task scheduling, referred as HCA to cope with the
increasing large amount number of cloudlets submitted by
a single user over heterogeneous virtual machines. The pro-
posed algorithm is divided in two phases, namely allocation
based on optimal completion time and allocation based on
earliest finish time. We devise a new mechanism to combine
optimal completion time and earliest finish time to mini-
mize both degree of imbalance and overall completion time
and to maximize resource utilization. In allocation based
on optimal completion time, the optimal completion time
is calculated as common minimum completion time for all
VMs leased by provider to ensure proper load balancing
between all VMs and to impact on overall completion time.
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From global queue, user cloudlets are assigning to the VMs
under this completion time. In allocation based on earliest
finish time, the unallocated user cloudlets are assigning to
the VMs under earliest finish time in order to minimize
waiting time, completion time of cloudlets and to maximize
resource utilization. We simulate the proposed algorithm and
the recent heuristic algorithms, such as RB2B, FSA and
RR. To measure the performance of the proposed algorithm,
we compare the algorithm against the recent ones using var-
ious metrics such as degree of imbalance (DI), makespan,
resource utilization (RU), running time (RT) and waiting time
of a cloudlet (WT).
Our main research contributions in this paper are as

follows:
(1) A heuristic load balancing and task scheduling method

is designed to minimize completion time, as makespan and
to maximize utilization of heterogeneous virtual machines
under optimal completion time and earliest finish time.

(2) We propose optimal completion time to ensure proper
load balancing and to impact on overall completion time as
well as makespan.

(3) We devise a new strategy to combine optimal comple-
tion time and earliest finish time to minimize both degree of
imbalance and overall completion time. This strategy avoids
overloaded and under-loaded cases. Comparing with recent
heuristic and meta-heuristic algorithms which are complex
methods, our strategy is simple in a way that is required
for a good scheduler to achieve good performance of cloud
system [23].

(4) We performed extensive experiments under different
application scenarios, and successfully confirmed that our
proposed approach is feasible for improving both load balanc-
ing and the resource utilization in comparison with the other
existing counterparts. This is in case of any number of VMs,
independent small cloudlets, independent large cloudlets and
real workloads.

The remainder of this paper is organized as follows:
Section II states themain problem to be resolved of this paper;
Section III gives its solution through a proposed optimal
heuristic algorithm for task scheduling and resource alloca-
tion, impact analysis of proposed solutions and its complexity
analysis; Section IV shows experimental results and analysis
and Section V draws conclusions.

II. BALANCE RULE ANALYSIS AND PROBLEM
STATEMENT
A. BALANCE RULE ANALYSIS
Definition 1 (Virtual Machine): A virtual machine (VM)

can be described as a tuple VM={id, mips, bw, pesnumber},
where id represents identifier of a VM, mips represents the
processing speed per processing element (PE) at a VM, bw
represents bandwidth of a VM and pesnumber represents the
number of PE in a VM.
Definition 2 (Cloudlet): A cloudlet (C), referred to a task

in this paper, can be described as tuple C ={id, length,

pesnumber}, where id represents identifier of a C , length
represents the size of C in MI (million instructions) and
pesnumber represents the number of PE for running a C on a
suitable VM.
Definition 3 (Small Cloudlet): A small cloudlet can be

defined as a cloudlet whose length is small and needs a short
execution time [11].
Definition 4 (Large Cloudlet): A large cloudlet can be

defined as cloudlet whose length is large and needs a long
execution time. Based on work [24], a large cloudlet can be
viewed as a set of dependent cloudlets with no communi-
cation cost. So, in this paper, it will not be decomposed in
multiple sequences of cloudlets to be executed on multiple
virtual machines in order to minimize the communication
cost at value of zero.

Assuming that there are m VMs, and n independent
cloudlets (small or large cloudlets), let eti,j be the execution
time for cloudlet Cj corresponding to VMi, as shown by (1).

etij =
Cj .length

VMi .pesnumber × VMi .mips
(1)

where Cj .length denotes size of cloudlet Cj in MI,
VMi .pesnumber denotes number of PE in a VMi, and
VMi .mips denotes execution speed of VMi in MIPS. Thus, m
VMs and n cloudlets will construct m× n cloudlet allocation
matrix CA.

CA=


et1,1 et1,2 et1,3 . . . . . . . . . et1,n−1 et1,n
et2,1 et2,2 et2,3 . . . . . . . . . et2,n−1 et2,n

...
...

... . . . . . . . . .
...

...

etm,1 etm,2 etm,3 . . . . . . . . . etm,n−1 etm,n


m×n
(2)

In the above matrix CA, each row represents the execution
time of different cloudlets processed on a targeted VM, and
each column represents the execution time of a cloudlet on
different VMs. The sum of execution time eti,j on each row i,
defines the completion time in VMi.
Let CTi denote completion time in targeted VMi; it is

defined by (3).

CTi =
∑n

j=1
eti,j for i = 1, ..,m (3)

From the above formula and cloudlet allocation matrix,
we deduce three rules for a balanced cloud system that are
as follows:
Rule 1: Given a list of cloudlets. If all the allocated VMs

have the same completion time, expressed by CTi = CTi+1,
then degree of load imbalance is equal to zero, resource
utilization equal to 100%. Hence, the cloud system is ideal
and well balanced (R1).
Rule 2: If all the allocated VMs have closest completion

time, denoted byCTi ∼= CTi+1, then degree of load imbalance
gets close to zero, resource utilization close to 100%. Hence,
the cloud system is much more balanced. (R2).
Rule 3: If R1 and R2 are not satisfied, denoted by CTi 6=

CTi+1, then the system is worse (R3).
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FIGURE 1. Heuristic cloudlet allocation framework.

Although rule R1 is the ideal view to make a perfect bal-
anced cloud system, it is much more complicated to achieve
it because of heterogeneity of cloudlets and resource capacity
constraints. While rule R2 can be achieved, despite it is more
difficult. So, this work focuses on rule R2 to minimize load
imbalance with purpose of maximizing resource utilization.

B. PROBLME STATEMENT
The problem under investigation can be described as follows.
There are n independent cloudlets (small or large cloudlets)
given by a user to be executed on m heterogeneous VMs.
LetCVM={VM1, VM2,. . . ,VMm} denote the list of virtual
machines, and CC={C1, C2, . . . , Cn} denote the list of
independent cloudlets. In practical scenario, the number of
cloudlet is larger than the number of VMs. Thus, the divi-
sion of n/m will generally be greater than 1 which means
more cloudlets than virtual machines, so that some VMs will
need to be assigned multiple cloudlets. However, the exe-
cution time of each cloudlet is increased proportionally to
its length. In addition, the completion time on each VM not
only depends on execution time of each running cloudlet, but
also on the total length of all the running cloudlets in that
VM. So, as consequence, a great number of large cloudlets
may increase highly overall completion time, decrease the
efficiency of resource utilization and lead cloud system to fail
in load balancing.

Considering the said consequence and referring to the
balance rules, our problem can be formulated into three
points, as follows: Minimizing load imbalance between high-
est loaded VM and lowest lighted VM, minimizing makespan
and maximizing resource utilization under optimal comple-
tion time and earliest finish time.

III. OUR APPROACH
This section presents a description of our proposed frame-
work, its corresponding algorithm and its pseudo-code

(Algorithm 1) and defines the flowchart for the proposed
approach.

A. FRAMEWORK
In our proposed architecture, virtual machines are created and
allocated to the host(s) and are arranged in increasing order
of processing speed. A cloudlet arrives from the global queue
(GQ) to the effective datacenter broker (EDCB). EDCB is a
cloud datacenter broker where the proposed HCA algorithm
is implemented. Fig. 1 illustrates an overview of HCA frame-
work. The framework consists of three modules, as follows:

The first module is the user cloudlet which represents the
set of the cloudlets.

The second module is effective data center broker which
outputs a cloudlet local queue for each VM. In EDCB, there
are two sub-modules which are as follows: effective dispatch
queues algorithm (EDQA) and mapping. EDQA computes
and finds all cloudlets for each VM according to optimal
completion time and earliest finish time constraints, while
Mapping assigns each local queue to the corresponding VM.

The third module is virtual machine manager relying on
different hosts. It manages a set of virtual machines that are
used to execute user cloudlets. The cloudlets have been stored
in anm×nmatrix, wherem is the number of virtual machines
and n is the number of cloudlets.

B. OPTIMAL COMPLETION TIME
In order to maximize load balancing which implies to have
closest completion time between all VMs, this paper defines
the calculation of optimal completion time for all cloudlets
given by a user, denoted as OCT at first phase of allocation
of cloudlets to VMs.
Definition 5:Optimal completion time (OCT) is defined as

common minimum completion time distributing to all VMs
in order to queue a set of cloudlets; it is given by (4).

OCT = min {CTi/m}i=1···m (4)

VOLUME 6, 2018 61717



J. P. B. Mapetu et al.: Heuristic Cloudlet Allocation Approach Based on Optimal Completion Time and Earliest Finish Time

where CTi represents completion time in VMi(i = 1. . .m)
following (3), and m, number of VMs. It is oriented virtual
machine.

Here, we give the demonstration of eq. (4).
Consider a collection of n cloudlets

CC = {C1,C2, · · · ,Cn} and m virtual machines, CVM =
{VM1,VM2, · · · ,VMm}.
Let TLC, TLQ, CTi, CTLQi denote total length of CC, total

length of a subset of CC, completion time in VMi for TLC,
completion time in VMi for TLQ.
According to (1) and (3), we derive (5).

CTi =
C1 .length

VMi .pesnumber × VMi .mips

+
C2 .length

VMi .pesnumber × VMi .mips
+ · · ·

+
Cn .length

VMi .pesnumber × VMi .mips

Then,

CTi =
C1 .length+ C2 .length+ · · · + Cn .length

VMi .pesnumber × VMi .mips
(5)

But,

TLC = C1 .length+ C2 .length+ · · · + Cn .length (6)

TLC corresponds to total length of global queue of all user
cloudlets.

So, (6) in (7)⇒ CTi =
TLC

VMi .pesnumber × VMi .mips
(7)

By applying an equal distribution of TLC to all themVMs,
we deduce TLQ (8).

TLQ =
TLC
m

(8)

TLQ corresponds to total length of user cloudlets executing
by each VM.

Then, let us find completion time for each VM to process
TLQ (9).

CTLQi =
TLQ

VMi .pesnumber × VMi .mips
(9)

(8) in (9) ⇒ CTLQi =
TLC
m

×
1

VMi .pesnumber × VMi .mips

⇒ CTLQi =
1
m
×

(
TLC

VMi .pesnumber×VMi .mips

)
(10)

S =
TLC

VMi .pesnumber × VMi .mips
(11)

(11) = (7) = (3)⇒ CTLQi =
CTi
m

Considering definition 3,

OCT = min (CTLQi)⇔ OCT = min
(
CTi
m

)

C. EARLIEST FINISH TIME
In order to reduce the execution time of each unallocated
cloudlet, we define earliest finish time, denoted as EFT,
at second phase of allocation of cloudlets.
Definition 6: Earliest start time (EST) is the earliest pos-

sible time that a cloudlet begins after the time that all prede-
cessors are supposed to complete their execution. In our case,
EST is initialized to CT determined at the first phase of the
proposed algorithm, as shown by (12).

ESTi = CTi (12)

Definition 7: Earliest finish time (EFT) is the earliest pos-
sible time that cloudlet can be finished from EST, as shown
by (13). It is oriented cloudlet.

EFTi,j = eti,j + ESTi (13)

where ESTi is the earliest execution start time for cloudlet Cj
on VMi.

D. IMPACT ANALYSIS OF OPTIMAL COMPLETION TIME
AND EARLIEST FINISH TIME
This section gives the impact of optimal completion time
(OCT) and earliest finish time (EFT) through the analysis of
these two following scenarios:

(1) Among all VMs, some VMs are running high number
of large cloudlets than small cloudlets.

(2) Among all VMs, some VMs are running high number
of small cloudlets than large cloudlets.

The first scenario may be similar to Max-Min algo-
rithm which prioritizes running large cloudlets than small
cloudlets [11]. Due to the high number of large cloudlets,
VMmay first run large cloudlets, then small cloudlets. Based
on works [11], [25], this scenario may lead the cloud system
to high makespan, to high degree of load imbalance, and then
to poor resource utilization when large cloudlets outnumber
small ones.

The second scenario may be similar to Min-Min algo-
rithm which prioritizes running small cloudlets than large
cloudlets [11]. Due to the high number of small cloudlets,
VMmay first run small cloudlets, then large cloudlets. Refer-
ring to the work [12], this scenario may lead the cloud system
to high makespan, to high degree of load imbalance, and
then to poor resource utilization when the number of small
cloudlets is too much.

In order to avoid these two scenarios which lead the cloud
system to fail in proper load balancing, this paper proposed
the distribution of cloudlets under combination of OCT and
EFT. The sequence order of this distribution is presented as
follows. At the first phase, we consider the allocation on
completion time to maintain a proper load balancing. The
algorithm firstly calculates OCT, as shown by (4) in section
III (B). Unlike to max-min and min-min, each VM receives
OCT, then large and small cloudlets are assigned to that
VM with respect to OCT by using FCFS method (First come
first serve). This is in order to maintain the same completion
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time among all VMs. If OCT is maximized, then maximum
completion time can be equal to OCT. Hence, the overall
makespan will be highly increased. So, OCT must be mini-
mized. As results, low overall makespan, high load balancing
level and high resource utilization rate at this phase. After
completing the first phase, the second phase based on allo-
cation under EFT is activated to distribute all unallocated
cloudlets among all VMs. For each unallocated cloudlet, EFT
is firstly calculated, as shown by (13) in section III (C), then it
is allocated to a VM which presents a minimum EFT. Hence,
this phase will maintain a low overall makespan and lead
cloud system to high load balancing level and high resource
utilization.

E. HEURISTIC CLOUDLET ALLOCATION ALGORITHM
Our proposed HCA algorithm is described, in two phases, as
follows: allocation based completion time phase and alloca-
tion based earliest finish time phase. At allocation based com-
pletion time phase, optimal completion time based on total
length of set of user cloudlets, resource capacity and number
of heterogeneous virtual machines leased by a provider is
computed; and then, a set of cloudlets which the estimated
completion time is not greater than OCT(optimal completion
time), are allocated to a virtual machine (line 3-4). At alloca-
tion based earliest finish time phase, earliest finish time based
on execution time of each unallocated cloudlet and its earliest
start time on a virtual machine is computed. The cloudlet with
lowest EFT (earliest finish time) corresponding to a virtual
machine is allocated to that virtual machine (line 5-6).

Algorithm 1 Heuristic Cloudlet Allocation (HCA)
Input: A global queue (GQ) of n cloudlets (C) and list of m
virtual machines (VM)
Output: Allocation of all cloudlets on suitable VMs
First phase: Completion time
1. Arrange a set of virtual machines increasing order of
processing speed
2. Submit a list of cloudlets to EDCB
3. Calculate OCT as shown by (4)
4. EDQA targets a VM, and selects all cloudlets whose
completion time in the targeted VM is less than OCT. Then,
remove all allocated cloudlets from GQ.
Second phase: Earliest finish time
5. EDQA checks whether all cloudlets from global queue are
queued to be mapped on VMs, after completion of the first
phase. If the condition is satisfied, then terminate the second
phase.
6. EDQAassigns the non-allocated cloudlets toVMs accord-
ing to EFT, as shown by (13), until GQ become empty.

F. FLOWCHART FOR HCA ALGORITHM
Figure 2 shows a flowchart of HCA Algorithm. This
flowchart defines three main parts, which are as follows:
computation of optimal completion time, allocation under

optimal completion time and allocation under earliest finish
time. The principal difference between the second part and
the third part is that the second part focuses on minimizing
completion time of a VM as well as completion time of
its all assigned cloudlets whereas the third part focuses on
minimizing execution time of each cloudlet.

G. COMPLEXITY ANALYSIS
In order to obtain the time complexity of the algorithm,
we analyze the time complexity of its two phases respectively.

In allocation based on optimal completion time phase,
the most complicated computations are calculating optimal
completion time and allocating a set of cloudlets from global
queue to each virtual machine (VM) under the calculated
completion. Hence, the time complexity can be equal to
O(n)+O(m)+O(mn) where n andm are number of cloudlets
and number of VMs, respectively. So, the time complexity of
this phase is O(mn).

In allocation based on earliest finish time phase, all unal-
located cloudlets after the first phase are concerned in this
phase. The main computations are as follows: calculating
earliest completion time of a cloudlet on each virtual machine
and allocating a cloudlet to suitable virtual machine with
respect to the calculated time. The time complexity of this
phase depends on the position of the last unallocated cloudlet
in the global queue. In these cases, we define the worst-case
and the best case running time. Let k be the position of a
cloudlet in the global queue and it starts from the end of list
by 0. In the worst case, k = 0; and then, the time complexity
is O(nm). In best case, k > 0; and, then, the time complexity
is O((n− k)m).
To sum up, the proposed HCA algorithm’s time complexity

isO(mn). Finally, the time complexity is approximately equal
to O(n) in polynomial time since m is constant.

IV. EXPERIMENTS AND RESULTS
In this section, we conduct five groups of experiments to
verify the performance of the proposed approach, which are
dedicating to answer the following questions:

(1) How does HCA perform under short number of
cloudlets with small size (small cloudlets)?

(2) How does HCA perform under great number of
cloudlets with high size (large cloudlets)?

(3) How does HCA perform under real workloads?
(4) What is the impact of the number of virtual machines

(VM)?
(5) What is the efficiency of HCA?

A. EXPERIMENT SETUP
We conduct experimental studies carried out by simulation,
using CloudSim 3.0.3 simulator to evaluate the effectiveness
of the proposed HCA algorithm under different application
scenarios [26], [27]. All algorithms were written using Net-
beans 8.2 Java programming language and running on a
computer with Core i5-6500 CPU, 3.2GHz, 4G RAM. The
experimental parameter settings are shown in Table 1.
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FIGURE 2. Flowchart for HCA Algorithm.

For evaluation purpose, we compare our HCA algorithm
with three other methods, named RR (Round robin) [9],
RB2B (Range wise busy checking 2 way balanced) [12], and
FSA (First strategy algorithm) [13].

RR focuses on fairness and on distributing the list of
cloudlets equally to all VMs. Each cloudlet in a queue has
same execution time, called quantum and it will be executed
in turn. This algorithm starts with a cloudlet and moves on to
the next cloudlet, after a VM is assigned to that cloudlet until
all VMs have been allocated at least one VM. Then, it returns
to the first cloudlet again. As an example, if there are four
cloudlets and four VMs, each cloudlet would be allocated one
VM.

RB2B focuses on distributing a batch of cloudlets to the
VMs in a most uniform way under cloudlet length acceptance
range, balance threshold, local queue length limitation and
earliest finish time, as constraints to achieve load balancing.
At first, this algorithm sorts a list of VMs by processing
speed (MIPS) in ascending order; then, it defines three phases
to distribute a list of cloudlets from a user. In first phase,
this algorithm defines a cloudlet length acceptance range for
each VM. Then, it measures the length of each cloudlet, and
targets a VM following cloudlet length acceptance range.

In the second phase, it checks both the availability of targeted
VM and balance threshold condition to allocate the cloudlet
to that VM. In the third phase, the algorithm searches for a
VM according to earliest finish time (EFT), balance threshold
and local queue (LQ) length limitation to allocate a cloudlet.

FSA is based on assigning cloudlets to suitable VMs under
vector of number of cloudlets, as balance threshold, deadline
of a cloudlet, cloudlet length and processing speed of VM.
This FSA algorithm has three steps. First, it sorts a list of
cloudlets by instruction deadline and length in ascending
order; second, it sorts a list of VMs by processing speed
(MIPS) in ascending order; third, FSA calculates the vector
of number of cloudlets for each VM. Then, it applies FCFS
method to distribute a list of cloudlets among a list of VMs
with respect to calculated vector.

B. METRICS
The performance metrics in our experiments are over-
all degree of imbalance (DI), average resource utilization
(ARU), makespan and average waiting time of cloudlet
(AWT). DI is calculated by (14).

DI = (Tmax − Tmin)/Tavg (14)
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FIGURE 3. Comparisons with short number of cloudlets with small size on DI and ARU (small cloudlets). (a) DI (b) ARU.

TABLE 1. Experimental parameter settings.

where Tmax , Tmin and Tavg are execution time maximum,
execution time minimum and average total execution time of
all VMs respectively.

ARU is gaining significance as service providers want to
earn maximum profit by renting limited number of resources.
ARU is computed by (15).

ARU =

∑m
i=1 CTi

makespan× m
(15)

wherem is the number of allocated VMs andCTi, completion
time described by (3).

Makespan is the maximum completion time of all VMs for
running user cloudlets which is expressed as (16).

makespan = max
1≤i≤m

{CTi} (16)

Note that small values ofmakespanmean that the scheduler
is providing good and efficient planning of tasks to resources.

C. PERFORMANCE WITH SHORT NUMBER OF CLOUDLET
WITH SMALL SIZE
To study the performance of our proposed HCA algorithm
without real workload for small cloudlets, the size of cloudlet
is set between 1000 MI and 100,000 MI in random distribu-
tion executed on 20 heterogeneous VMs which are arranged
in uniform distribution by increasing order and distributed
among 6 hosts. The processing speed of VM is set between
500 MIPS and 10,000 MIPS.

In comparison with FSA, RB2B and RR, Fig. 3(a) shows
that degree of imbalance in the proposed HCA algorithm gets
closest to zero when the number of small cloudlets increases.
First, this is because many cloudlets are allocated to each
VMwith high value of OCT (optimal completion time) which
depends on total length of all cloudlets, as described in (4)
and (5). Second, it is because of equal distribution of these
cloudlets with respect to OCT. As shown in the formula
of degree of imbalance (14) and considering the results,
we can deduce that most of all VMs have closest completion
time. Hence, HCA achieves a best load balancing for small
cloudlets.

Fig. 3(b) shows that our HCA outperforms FSA, RB2B
and RR in term of resource utilization. For instance, with
1000 small cloudlets, ARU with HCA is closest to 100%.
Regarding these results, we can say that HCA keeps resources
more busy than other algorithms.

In comparison with FSA, RB2B and RR, Table 2 presents
the results and minimum improvement of the proposed HCA
algorithm in term of makespan and waiting time. First,
the average waiting time of a cloudlet produced by HCA
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TABLE 2. Comparisons with short number of cloudlets with small size on makespan and AWT.

FIGURE 4. Comparisons with great number of cloudlets with high size on DI and ARU (large cloudlets). (a) DI. (b) ARU.

is little less than RB2B and much less than RR. However,
compared to FSA, it is a little high. The minimum rate
of improvement is negative which means no improvement
in comparison with FSA, one of existing algorithms. This
is because FSA uses equal distribution of cloudlets based
on number of cloudlets and sorts a list of cloudlets which
reduce delay between two cloudlets. Second, we observe that
HCA produces the smallest makespan which is close to FSA
and much smaller than RB2B and RR. Due to the equal
distribution of number of cloudlets, low VM (VM with the
smallest processing speed) is as same as high VM (VM with
the highest processing speed) which leads to high makespan.
However, waiting time in FSA is less than in HCA. That is
why FSA produces makespan closer to HCA.

Despite the results of waiting time, the proposed HCA
algorithm is suitable to task scheduling and load balancing
for small cloudlets. So, a cloud user can get more satisfaction
to complete running of all its cloudlets in short time.

D. PERFORMANCE WITH GREAT NUMBER OF CLOUDLET
WITH HIGH SIZE
Based on definition 4 in section II (A), a large cloudlet is
regarded as a set of dependent cloudlets with no communica-
tion cost [28] in this section. To study the performance impact

of our proposed algorithm without real workload for large
cloudlets, we set cloudlet size between 1,000,000 MI and
2,000,000 MI randomly; cloudlets are executed on 20 hetero-
geneous VMs which are arranged in uniform distribution by
increasing order and distributed among 6 hosts. The process-
ing speed of VM is set between 500 MIPS and 10,000 MIPS.

Fig. 4(a) shows that HCA produces far better minimum
degree of imbalance than FSA, RB2B andRR. This is because
of distribution of cloudlets among VMs with respect to OCT
and EFT (earliest finish time) without determining in advance
a balance threshold or prioritizing a cloudlet. These results
demonstrate that HCA has the best effect on load balancing
to manage large cloudlets under virtual machines capacity
constraints.

Fig. 4(b) shows that the resource utilization is far bet-
ter maximized with HCA than FSA, RB2B and RR due
to achievement of load balancing based on OCT and EFT.
We can deduce that HCA produces closest completion time
between all virtual machines. Hence, HCA provides the high-
est utilization of heterogeneous resources.

The Table 3 shows the results of HCA in comparison with
FSA, RB2B and RR in term of makespan and waiting time.
Unlike to the experiment in section IV (C) in term of waiting
time, the results in Table 3 shows a high minimum rate of
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TABLE 3. Comparisons with great number of cloudlets with high size on makespan and AWT.

FIGURE 5. Comparisons with different real workload on DI and ARU. (a) DI. (b) ARU.

improvement with HCA. This is because HCA focuses on
distributing cloudlets with respect to OCT and EFT which
range the cloudlets in special execution order to minimize
delay. This shows the inefficiency of FSA to minimize delay
between cloudlets by sorting them. Considering the results of
makespan, we observe that the rate of improvement in HCA
is much high than other existing algorithms, as RR, RB2B
and FSA. Unlike to RR, RB2B and FSA, this is because our
proposed HCA algorithm does not only focus on minimizing
execution time, but on minimizing completion time.

Regarding these results, it can be concluded that HCA
achieves task scheduling with best load balancing and mini-
mum makespan under resource capacity constraints for large
cloudlets. Further, our proposedHCA algorithm can deal with
dependent cloudlets in minimizing the communication cost
accordingly with definition of large cloudlet.

E. PERFORMANCE WITH REAL WORKLOADS
In this section, we conducted the experiment on five different
real workloads with 2,000 heterogeneous virtual machines
(VMs) to check the performances of the heuristic algorithms
for task scheduling and load balancing for IaaS cloud com-
puting. We considered four different types of VMs with,
5,000 MIPS, 10,000 MIPS, 15,000 MIPS and 20,000 MIPS.

TABLE 4. Description of real workloads.

Theses VMs are distributed among 200 hosts. These work-
loads are used to evaluate the performance by degree of
imbalance, resource utilization, makespan and waiting time
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TABLE 5. Comparisons with different real workloads on makespan and AWT.

TABLE 6. Comparisons with different number of virtual machines on makespan and AWT.

FIGURE 6. Comparisons with different number of virtual machines on DI and ARU. (a) DI. (b) ARU.

in heterogeneous environment. They are presented as W01,
W02, W03, W04 and W05 respectively which are generated
from ParallelWorkload Archives [29]. The description of real
workloads is given by Table 4.

Regarding the results of degree of imbalance in Fig. 5(a),
HCA minimizes degree of imbalance much less than FSA,
RB2B and RR. For instance, with W04, HCA produces DI=
0.012, while DI = 0.856 with FSA, DI = 0.644 with RB2B
and DI = 1.674 with RR. This is because HCA determines a
common minimum completion time which controls the load
balance in each VM in order to avoid over-loaded VMs and

under-loaded VMs. These results mean that our proposed
HCA algorithm achieves a best load balancing. In addition,
they mean that the cloud system is available to receive new
incoming workloads.

Fig. 5(b) shows that the average resource utilization is
far better maximized with HCA than FSA, RB2B and RR.
For instance, with W05, the results in HCA are closest to
100% due to the lowest degree of imbalance which means
that no single VM among all VMs is underutilized. With
low degree of imbalance, the completion time difference
among all VMs is much more minimized. This means that
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resource utilization is maximized according to formula (15).
Therefore, the results in Fig. 5(b) show that the proposed
HCA algorithm can provide the optimum usage of available
heterogeneous resources.

In Table 5, we observe that the proposed HCA algorithm
produces the best minimum makespan and waiting time is
minimized in comparison with FSA, RB2B and RR. This is
because HCA focuses on minimizing completion time and
using a common completion time among all VMs leased by
a cloud provider. The results in HCA mean that HCA can
improve well the QoS (Quality of service) in cloud system
such as availability and performance.

Comparing with the two above experiments, we observe
that RB2B algorithm outperforms FSA algorithm in term
of degree of imbalance, resource utilization, makespan and
waiting time while HCA algorithm still outperforms all of
them. Hence, our proposed algorithm is stable and effective.

We concluded that the proposed HCA algorithm can pro-
vide proper load balancing and task scheduling in case of real
datasets.

F. IMPACT OF THE NUMBER OF VIRTUAL MACHINES
To investigate the impact of the number of VMs without real
workload, we set a fixed number of cloudlets to 1000, and
the number of VMs has been conducted with 5 VMs, 10 VMs,
15VMs, 20VMs and 30VMs. The processing speed of VM is
set between 500 MIPS and 10,000 MIPS. As compared with
the small cloudlet, the size of cloudlet is set between 1000MI
and 100,000 MI in random distribution.

Fig. 6(a) shows that HCA is far better than FSA, RB2B and
RR algorithms with the varying number of VMs from 5 to
30. For instance, with 30 VMs, DI with HCA is closest to 0.
Hence, HCA provides a best load balance with the increasing
number of heterogeneous VMs. In addition, it can provide
high availability of resources.

In Fig. 6(b), HCA outperforms FSA, RB2B and RR algo-
rithms in term of resource utilization by maximizing the
utilization of resources at value closest to 100 %. This means
that any resource is not under-utilized. So, this is a benefit for
providers to keep resources more busy and earn maximum
profit by renting limited number of resources.

Table 6 shows that makespan is decreasing when the num-
ber of VM increases due to the distribution of cloudlets
among all VMs. However, we observe that the proposed
HCA algorithm outperforms FSA, RB2B andRR. Comparing
with RB2B and RR, HCA can even use 15 VMs to run
1,000 cloudlets in short time of 581 sec, while RB2B and
RR need more than 20 VMs. Thus, HCA well minimizes
makespan despite the increasing number of VMs that is an
advantage of coping with energy issue in the cloud comput-
ing. However, as compared to the experiment 1 in Section IV
(C), HCA produces waiting time which is little greater than
FSA, as shown by Table 6, this experiment used 1,000 small
cloudlets.

Through this experiment and its analysis, we concluded
that the proposed HCA algorithm improves much better the

TABLE 7. Running time of HCA under different configurations.
(a) Number of VMs=20, Cloudlet length=1000-100,000 (MI). (b) Number
of VMs=20, Cloudlet length =1000,000-2000,000 (MI). (c) Number of
cloudlets=1000. (d) Number of VMs=2000.

utilization of resources and maximizes load balancing despite
number or capacity of resources, so that cloud provider can
be well satisfied.

G. EFFICIENCY ANALYSIS
This section analyzes the efficiency of the proposed algo-
rithm in term of running time with varying number of small
cloudlets, large cloudlets, virtual machines and real work-
loads.

Concerning running time, in Table 7 (a), we observe that
the result in HCA algorithm is a little less than other algo-
rithms, RR, FSA and RB2B. This means that HCA runs faster
than RR, FSA and RB2B in case of small cloudlets. However,
in Table 7 (b), it shows that HCA only runs faster than FSA
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and RB2B with the increasing number of large cloudlets, but
its running time is greater than RR.

In Table 7 (c), we observe that the result in HCA is closest
to FSA, RB2B and RR algorithms. This means that HCA runs
as fast as FSA, RB2B and RRwith different number of virtual
machines. However, Table 7 (d) shows that HCA produces
high minimum improvement than FSA, RB2B and RR with
real workloads. This means that our proposed HCA algorithm
runs faster than FSA, RB2B and RR.

Through this analysis of efficiency of different algorithms
based on running time, we can conclude that the proposed
HCA algorithm is efficient and can produce best running
time to satisfy cloud providers. This is because the time
complexity of HCA algorithm which has presented as equal
toO(n) in Section III (G), depends on the number of cloudlets
and their position in the virtual machines.

V. CONCLUSION
This paper presents a heuristic cloudlet allocation approach
(HCA) which improves load balancing and task scheduling in
cloud resource management under the environmental chang-
ing of the number of VMs, small cloudlets (tasks), large
cloudlets and real workloads. The main innovation is the
combination of optimal completion time and earliest finish
time which implies the combination of completion time of
virtual machine and earliest finish time based on execution
time of a cloudlet. In addition, optimal completion time
has been introduced to ensure a best load balancing while
earliest finish time was for minimizing overall completion
time andmaximizing resource utilization. The proposedHCA
works into two phases that are as follows: allocation based
on optimal completion time and allocation based on earliest
finish time. The detailed experimental results demonstrate
that the proposed HCA provides a best load balancing, high-
est resource utilization and lowest makespan in comparison
with FSA, RB2B and RR algorithms. Further, the results
of running time validate the efficiency of HCA. In the near
future, we intend to extend our approach for live migration
and security problem and on real cloud infrastructures.

REFERENCES
[1] A. A. Buhussain, R. E. De Grande, and A. Boukerche, ‘‘Elasticity

based scheduling heuristic algorithm for cloud environments,’’ in Proc.
IEEE/ACM 20th Int. Symp. Distrib. Simulation Real Time Appl., London,
U.K., Sep. 2016, pp. 1–8.

[2] S. R. Shishira, A. Kandasamy, and K. Chandrasekaran, ‘‘Survey on meta
heuristic optimization techniques in cloud computing,’’ in Proc. IEEE
Int. Conf. Adv. Comput., Commun. Informat., Jaipur, India, Sep. 2016,
pp. 1434–1440.

[3] A. Beloglazov and R. Buyya, ‘‘Energy efficient resource management in
virtualized cloud data centers,’’ in Proc. 10th IEEE/ACM Int. Conf. Cluster,
Cloud Grid Comput., Melbourne, VIC, Australia, May 2010, pp. 826–831.

[4] Y. Chen, G. Xie, and R. Li, ‘‘Reducing energy consumption with cost
budget using available budget preassignment in heterogeneous cloud com-
puting systems,’’ IEEE Access, vol. 6, pp. 20572–20583, 2018.

[5] F. Juarez, J. Ejarque, and R.M. Badia, ‘‘Dynamic energy-aware scheduling
for parallel task-based application in cloud computing,’’ Future Gener.
Comput. Syst., vol. 78, pp. 257–271, Jan. 2018.

[6] H. Liu, F. Yan, S. Zhang, T. Xiao, and J. Song, ‘‘Source-level energy
consumption estimation for cloud computing tasks,’’ IEEE Access, vol. 6,
pp. 1321–1330, 2017.

[7] R. Jithin and P. Chandran, ‘‘Virtual machine isolation: A survey on the
security of virtual machines,’’ in Proc. Int. Conf. Secur. Comput. Netw.
Distrib. Syst., 2014, pp. 91–102.

[8] D. Chaudhary and B. Kumar, ‘‘An analysis of the load scheduling algo-
rithms in the cloud computing environment: A survey,’’ in Proc. 9th IEEE
Int. Conf. Ind. Inf. Syst., Gwalior, India, Dec. 2014, pp. 1–6.

[9] S. Banerjee, M. Adhikari, S. Kar, and U. Biswas, ‘‘Development and
analysis of a new cloudlet allocation strategy for QoS improvement in
cloud,’’ Arabian J. Sci. Eng., vol. 40, no. 5, pp. 1409–1425, 2015.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[11] S. H. H. Madni, M. S. A. Latiff, M. Abdullahi, S. M. Abdulhamid, and
M. J. Usman, ‘‘Performance comparison of heuristic algorithms for task
scheduling in IaaS cloud computing environment,’’ PLoS One, vol. 12,
no. 5, p. e0176321, 2017.

[12] S. Roy, S. Banerjee, K. R. Chowdhury, and U. Biswas, ‘‘Development and
analysis of a three phase cloudlet allocation algorithm,’’ J. King Saud Univ.
Comput. Inf. Sci., vol. 29, no. 4, pp. 473–483, 2017.

[13] E. I. Djebbar and G. Belalem, ‘‘Tasks scheduling and resource allocation
for high data management in scientific cloud computing environment,’’ in
Mobile, Secure, and Programmable Networking (Lecture Notes in Com-
puter Science), vol. 10026. New York, NY, USA: Springer-Verlag, 2016,
pp. 16–27.

[14] H. B. Alla, S. B. Alla, and A. Ezzati, ‘‘A novel architecture for task
scheduling based on dynamic queues and particle swarm optimization in
cloud computing,’’ in Proc. 2nd IEEE Int. Conf. Cloud Comput. Technol.
Appl., Marrakech, Morocco, May 2016, pp. 108–144.

[15] R. K. Jena, ‘‘Multi objective task scheduling in cloud environment using
nested PSO framework,’’ in Proc. 3rd Int. Conf. Recent Trends Comput.,
Delhi, India, 2015, pp. 1219–1227.

[16] A. Khalili and S. M. Babamir, ‘‘Makespan improvement of PSO-based
dynamic scheduling in cloud environment,’’ in Proc. 23rd IEEE Iranian
Conf. Elect. Eng., Tehran, Iran, May 2015, pp. 613–618.

[17] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, ‘‘A survey of PSO-
based scheduling algorithms in cloud computing,’’ J. Netw. Syst. Manage.,
vol. 25, no. 1, pp. 122–158, 2017.

[18] P. Singh, M. Dutta, and N. Aggarwal, ‘‘A review of task scheduling
based on meta-heuristics approach in cloud computing,’’ Knowl. Inf. Syst.,
vol. 52, no. 1, pp. 1–51, 2017.

[19] S. Singh and A. Ranjan, ‘‘An improved task scheduling algorithm based
on PSO for cloud computing,’’ Int. J. Innov. Res. Comput. Commun. Eng.,
vol. 5, no. 11, pp. 16773–16777, 2017.

[20] M. B. Gawali and S. K. Shinde, ‘‘Task scheduling and resource allocation
in cloud computing using a heuristic approach,’’ J. Cloud Comput., vol. 7,
no. 4, pp. 1–16, 2018.

[21] W. Hashem, H. Nashaat, and R. Rizk, ‘‘Honey bee based load bal-
ancing in cloud computing,’’ Trans. Internet Inf. Syst., vol. 11, no. 12,
pp. 5694–5711, 2017.

[22] M. B. Gawali and S. K. Shinde, ‘‘Standard deviation based modified
cuckoo optimization algorithm for task scheduling to efficient resource
allocation in cloud computing,’’ J. Adv. Inf. Technol., vol. 8, no. 40,
pp. 210–218, 2017.

[23] E. J. Ghomia, A. M. Rahmania, and N. N. Qader, ‘‘Load-balancing algo-
rithms in cloud computing: A survey,’’ J. Netw. Comput. Appl., vol. 88,
pp. 50–71, Jun. 2017.

[24] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, ‘‘Cost-efficient
task scheduling for executing large programs in the cloud,’’ Parallel Com-
put., vol. 39, pp. 177–188, Apr./May 2013.

[25] R. J. Priyadarsini and L. Arockiam, ‘‘Performance evaluation of min-
min and max-min algorithms for job scheduling in federated cloud,’’ Int.
J. Comput. Appl., vol. 99, no. 18, pp. 47–54, 2014.

[26] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

[27] P. Humane and J. N. Varshapriya, ‘‘Simulation of cloud infrastructure
using cloudsim simulator: A practical approach for researchers,’’ in Proc.
Int. Conf. Smart Technol. Manage. Comput., Commun., Controls, Energy
Mater., May 2015, pp. 207–211.

[28] Q.-Y. Chen, Z.-H. Liang, H.-W. Kang, Y.-M. Ma, and D. Wang, ‘‘Research
of dependent tasks scheduling algorithm in cloud computing environ-
ments,’’ in Proc. 3rd Annu. Int. Conf. Inf. Technol. Appl., vol. 7, pp. 1–6,
Nov. 2016.

61726 VOLUME 6, 2018



J. P. B. Mapetu et al.: Heuristic Cloudlet Allocation Approach Based on Optimal Completion Time and Earliest Finish Time

[29] S. J. Chapin et al., ‘‘Benchmarks and standards for the evaluation
of parallel job schedulers,’’ in Job Scheduling Strategies for Parallel
Processing (Lecture Notes in Computer Science), vol. 1659,
D. G. Feitelson and L. Rudolph, Eds. New York, NY, USA:
Springer-Verlag, 1999, pp. 66–89. [Online]. Available: http:
//www.cs.huji.ac.il/labs/parallel/workload/logs.html

JEAN PEPE BUANGA MAPETU received B.S.
degree in computer science from Kinshasa Uni-
versity, Democratic Republic of Congo, in 2006,
and the M.S. degree in computer science and engi-
neering from Yanshan University, China, in 2016,
where he is currently pursuing the Ph.D. degree
with the College of Computer Science and Engi-
neering. He is currently working on cloud comput-
ing and parallel and distributed computing.

ZHEN CHEN received the B.S. and Ph.D. degrees
in computer application technology from Yanshan
University, China, in 2010 and 2017, respectively.
He is currently a Post-Doctoral Researcher with
the College of Computer Science and Engineering,
Yanshan University. He is currently working on
service computing, cloud computing, and collab-
orative computing.

LINGFU KONG received the Ph.D. degree in
computer science and technology from the Harbin
Institute of Technology University, China, in 1995.
He is currently a Professor and a Ph.D. Supervisor
with the College of Computer Science and Engi-
neering. His main research interests include robot,
computer vision, intelligent information process-
ing, and cloud computing.

VOLUME 6, 2018 61727


	INTRODUCTION
	BALANCE RULE ANALYSIS AND PROBLEM STATEMENT
	BALANCE RULE ANALYSIS
	PROBLME STATEMENT

	OUR APPROACH
	FRAMEWORK
	OPTIMAL COMPLETION TIME
	EARLIEST FINISH TIME
	IMPACT ANALYSIS OF OPTIMAL COMPLETION TIME AND EARLIEST FINISH TIME
	HEURISTIC CLOUDLET ALLOCATION ALGORITHM
	FLOWCHART FOR HCA ALGORITHM
	COMPLEXITY ANALYSIS

	EXPERIMENTS AND RESULTS
	EXPERIMENT SETUP
	METRICS
	PERFORMANCE WITH SHORT NUMBER OF CLOUDLET WITH SMALL SIZE
	PERFORMANCE WITH GREAT NUMBER OF CLOUDLET WITH HIGH SIZE
	PERFORMANCE WITH REAL WORKLOADS
	IMPACT OF THE NUMBER OF VIRTUAL MACHINES
	EFFICIENCY ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	JEAN PEPE BUANGA MAPETU
	ZHEN CHEN
	LINGFU KONG


