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ABSTRACT Cognitive radio (CR) systems exploit the accurate knowledge of primary traffic statistics to
improve the CR performance and reduce the harmful interference on primary network. It is essential for
cooperative CRs to operate in an efficient secured manner while estimating the primary statistics. In this
paper, a new reporting mechanism for cooperative estimation of primary traffic is proposed to increase the
spectrum and energy efficiency. This is achieved by the reduction of the reporting channel overhead from
cooperative users to the fusion center. Simulation results show that the proposed scheme reduces significantly
the signaling overhead, thus making the system more spectrum and energy efficient. Moreover, the openness
of cooperative CR makes it susceptible to data falsification attacks, also known as Byzantine attacks. This
attack poses a series of damages on the reliability of the estimation of primary traffic. In this paper, we define
the types of malicious coordinated attacks on CRs and analyze the possibility of estimating the primary
traffic statistics under these attacks. Moreover, we provide a simple yet effective countermeasure based on
the proposed reporting for cooperative estimation. Simulation evaluation shows that the proposed algorithm
provides an excellent countermeasure for spectrum sensing data falsification attacks.

INDEX TERMS Byzantine attacks, cognitive radio, cooperative primary activity estimation, differential
reporting.

I. INTRODUCTION
Cognitive Radio (CR) is a promising solution for the spec-
trum scarcity problem by having secondary users (SUs) to
access primary users (PUs) channel (spectrum holes) in an
opportunistic and non-interfering manner [1]. Spectrum sens-
ing is a key enabling technique for CR operation, as it allows
SUs to detect the presence/absence of PU traffic, which is
essential to reduce the interference [2], [3]. An essential
requirement for SU is to work in a fast and accurate man-
ner while identifying empty slots in the primary channel.
One way of improving the performance of SUs is having
knowledge of previous spectrum occupancy pattern (e.g.,
distribution of idle/busy periods) which can be exploited to

improve the system performance [4]. Primary traffic statisti-
cal information is essential to access the spectrum in a fast
and efficient manner by the selection of the most appropriate
channel for transmission [5], enhancing the forecasting of
PU occupancy patterns to minimize the interference [6], [7],
adjust the energy detection threshold [8] or fight against
attacks [9].

The PU traffic activity is initially unknown to SUs and is
estimated using spectrum sensing decisions. SUs sense the
PU channel periodically and in every sensing event a binary
decision (idle/busy) is made based (in case of hard decisions)
on an appropriate spectrum sensing (signal detection) algo-
rithm [10].While the main purpose of spectrum sensing is the
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detection of transmission opportunities [11], the sequence of
spectrum sensing decisions can also be used to estimate the
durations of idle/busy periods and their statistics [12].

Nevertheless, primary traffic statistics estimation is
hindered by several practical limitations that determine the
accuracy to which such statistics can be known by the CR
system [13]. This includes the use of a finite sensing period,
which imposes a fundamental limit on the temporal resolution
in which the idle and busy periods can be measured [14].
Moreover, channel statistics need to be inferred based on a
limited number of channel observations (samples) [15] and
spectrum sensing is mainly impaired by sensing errors (i.e.,
false alarms andmissed detections) [16]. Cooperative sensing
is proposed to improve the operation of spectrum sensing,
taking advantage of spatial diversity at every receiving SU.
By cooperation, SUs share their local decisions to make
a more accurate global decision of the primary channel
state [17], [18]. In this work, cooperative sensing is utilized
to provide an accurate estimation of the primary traffic
(in particular, the distribution of idle/busy periods) under
imperfect spectrum sensing (ISS). Notice that the problem of
cooperative spectrum sensing, where the target is to improve
the overall detection of PU signals, has received an enormous
deal of attention in the literature. By contrast, the focus of this
work is on cooperative primary traffic estimation, where the
target is to accurately estimate the primary traffic statistics
(based on spectrum sensing) by means of cooperation among
several SUs, which has received significantly less attention.

The improvement in performance achieved by cooperation
is hindered by the increase of cooperation overhead. Several
studies aimed at improving energy efficiency in coopera-
tive spectrum sensing by the reduction of consumed power
at each step of the cooperative sensing operation [19]. For
instance, reducing the power consumed during the sensing
stage [20], [21], or at the reporting stage [22]–[24] by select-
ing the most useful SUs for local states reporting to the fusion
center (FC). In this context, we propose a new reporting
mechanism with the aim of reducing the number of required
transmissions at each reporting stage (from SUs to FC). This
is accomplished through differential reporting where the SUs
only report when there is a change in the local channel state
observed by each SU (i.e., channel state goes from busy to
idle or vice-versa).

Another problem that has not attracted enough attention
is the estimation of primary traffic statistics under spectrum
sensing data falsification (SSDF) attacks [25]. CR systems
are more susceptible to SSDF attacks (also known as Byzan-
tine attacks) and to the presence of greedy users who send
false reports to gain more access to primary channels. Mul-
tiple studies have considered the effect of attacks on the
sensing process [26]–[28] with methods to detect the SSDF
attacks [29]. While their main aim is the estimation of the
probability of primary signal detection, in our work the main
aim is to study the effect of these attacks on the estimation
of primary traffic statistics, which to the best of the authors’
knowledge has not been investigated in the existing literature

even though the topic of CR has been around for over a
decade. Other differences can be identified among the pro-
posed work and others. For instance, the algorithm in [26]
requires soft decision reports, while ours is based on hard
decisions. The algorithms in [27] and [28] require multi-stage
trust algorithm to identify trusted SUs. In this work, we aim to
answer the possibility of estimating PU traffic statistics given
this scenario. A simple yet effective algorithm is proposed
to eliminate such attacks. In this work, not only we focus
on the cooperative estimation of primary traffic under ISS,
but also extend the estimation under malicious users (MUs)
performing Byzantine attacks. Moreover, we introduce a new
algorithm to reduce the amount of overhead in the reporting
channel and thereby increase the power efficiency.

The main contributions of this work can be summarized as
follows:

1) Study the cooperative estimation of PU traffic statistics
under both sensing errors and finite sensing period with
experimental validation.

2) Propose a new reporting mechanism (differential
reporting) to reduce the overhead in the reporting chan-
nel and increase the spectrum and energy efficiency.

3) Study the estimation of primary distribution under both
sensing errors and SSDF attacks and propose a new
algorithm to counter the effect of such attacks on the
estimation of PU traffic statistics. While both aspects
have received some attention in the literature sepa-
rately, they have not been considered simultaneously
along with their combined effects on the cooperative
estimation of primary traffic statistics.

The remainder of this paper is organized as follows. First,
Section II describes the structure of the cooperative system
considered in this work along with the estimation of primary
signal durations and cooperative algorithms utilized. Differ-
ent estimation methods for the primary governing distribu-
tion are described in Section III. The problem of increasing
overhead along with an efficient reporting mechanism are
described in Section IV. Section V discusses the problem of
SSDF attacks and how to protect against them. The simula-
tion and experimental methodology employed in this work
are described in Section VI. The performance of the pro-
posedmethods is analyzed thoroughly in Section VII. Finally,
Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this work, a single PU channel is considered for the sake
of simplicity. The PU state holding times (T0 for idle periods
and T1 for busy periods) are random variables assumed to be
independent and exponentially distributed. The exponential
distribution is the most common model used to describe the
periods of the on/off states in the literature [30]–[34] even
though it has been proven not to be the most accurate since
other distributions provide better fit for real scenarios such
as the generalized Pareto, Gamma or even more compli-
cated distributions [35]. We use the exponential distribution
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FIGURE 1. System model for cooperative primary traffic estimation with
malicious users.

because it is a special case of the generalized Pareto distri-
bution with a simpler mathematical form. As for cooperative
network side, K SUs with a specialized FC are considered
along with MUs. The FC is in charge of making the final
decision of PU channel state through one of the decision rules
(only hard decision rules are considered, soft decision is out
of the scope for this work) and then exploit the sequence of
reported idle/busy channel states to estimate the durations of
the channel holding times T0/T1 and the statistics (i.e., distri-
bution). The considered system model is shown in in Fig. 1.
The cooperative estimation can be sub-characterized into

four indispensable stages. Starting with the sensing stage,
every SU performs spectrum sensing on a regular basis to
estimate the primary channel availability. Second stage is
the local hard decision, every SU utilizes a detection algo-
rithm to generate the binary channel state decisions (0 for
idle/absence of PU and 1 for busy/presence of PU). The
decisions of all SUs are assumed to be independent. The
third stage is the reporting phase, where the local decisions of
every SU are reported to the central FC through a dedicated
reporting channel for the final global decision, where the
FC (CR base station) is in charge of the final global deci-
sions while the SUs function as cooperative sensing nodes.
At every sensing event (performed with a sensing period of
Ts time units), the FC makes the global decisions regarding
the presence/busy (H1) or absence/idle (H0) of a PU. The
decision rules considered in this work are the most popular
ones (AND, OR, MAJORITY) [36].

1) AND-rule: The FC decides that a PU is present only if
all cooperative SUs report with PU present (i.e., all SUs
report with 1).

2) OR-rule: The FC decides that a PU is present when at
least one cooperative SU reports with PU present (i.e.,
at least one SU reports with 1).

3) MAJORITY-rule: The FC decides that a PU is present
when half or more of the cooperative SUs decide the
presence of a PU (i.e., K/2 or more SUs report with 1).

Based on one of these three hard decision rules the FC makes
a decision on the PU channel state and then exploits the
sequence of reported idle/busy channel states to estimate the

durations of the channel holding times T̃i (i = 0 for idle
periods, i = 1 for busy periods) of the original primary
busy/idle periods Ti. Note that the estimated periods are inte-
ger multiples of the employed sensing period (i.e., T̃i = mTs,
m ∈ N+) and as a result the estimated periods will differ from
the true original periods, which can in general be assumed to
have a continuous domain (i.e., Ti ∈ R+).

In practice, SUs can work under both low and high SNR
conditions. Under low SNR, SUs suffer from sensing errors
(on local decisions, as every SU contributes in the final
decision). ISS occurs in two types of errors: false alarm
(H̃ = H1|H0) which is characterized by the probability of
false alarm (Pfa), where the PU signal is not present but
announced as present because of the high noise level present
at SU’s receiver, and missed detection (H̃ = H0|H1) which
is characterized by the probability of missed detection (Pmd ),
where the PU signal is present but with power lower than the
receiver’s threshold because of fading and shadowing.

Sensing errors have a significant impact on the perfor-
mance of cognitive network systems (both PUs and SUs)
and on the estimation of PU traffic statistical information
as well. Inaccurate detection leads to inaccurate estimation
for PU traffic activity statistics as the estimated durations
can be longer or shorter than the original values. Another
source of error is MUs who report with fake channel states
to confuse the FC and lead it to announce wrong global
decisions, thus missing the opportunity of transmission and
leading to inaccurate PU traffic estimations.

The main objective of this research is to study the coop-
erative estimation of the primary statistics (distribution of
period durations) under spectrum sensing errors and SSDF
attacks, and propose methods that can provide an accurate
estimation of the PU traffic statistics under such challenging
conditions.

III. COOPERATIVE ESTIMATION OF THE DISTRIBUTION
OF PRIMARY CHANNEL HOLDING TIMES
Twomethods are considered in this work for the estimation of
the distribution of primary idle/busy periods, the Direct Esti-
mation Method (DEM) and the Method of Moments (MoM).

A. DIRECT ESTIMATION METHOD (DEM)
The direct estimation of the distribution is based on the empir-
ical cumulative distribution function (ecdf in MATLAB),
where the Kaplan-Meier estimation is obtained utilizing the
ecdf function for the given samples. The main advantage of
this method is that it requires no prior knowledge about the
primary distribution. The main drawback of this method is
that the estimated distribution is a discrete version of the orig-
inal continuous distribution as the estimated periods are dis-
crete (integer) multiples of the sensing period Ts. Moreover,
this method can not achieve high accuracy for all sensing
periods, which can not be improved even by increasing the
number of SUs as it will be seen in the results section. This
motivates the consideration of the following method.
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B. METHOD OF MOMENTS (MoM)
To overcome the limitations of the DEM, a solution based
on the MoM is considered. For the MoM, the distribution
of the primary periods has to be known or assumed to be
known. The distribution parameters are then estimated from
the sample moments. The probability density function (PDF)
and cumulative density function (CDF) for the exponential
distribution are given by [37]:

fTi (t) =

{
0 t < µi
λie−λi(t−µi) t ≥ µi

(1)

FTi (t) =

{
0 t < µi
1− e−λi(t−µi) t ≥ µi

(2)

where λi ≥ 0 is the scale parameter of the distribution and
µi > 0 is the location parameter (also the smallest value for
the PU activity period. i.e., Ti ≥ µi) .
The distribution parameters can be estimated following

three approaches:

1) DIRECT ESTIMATION OF MINIMUM
The minimum period µ̃demi can be estimated as:

µ̃demi = min
(
{T̃i}Nn=1

)
= Ts (3)

where {T̃i,n}Nn=1 is a set of N observed periods and its mini-
mum value under ISS is given by Ts as discussed in [16]. The
value of λi can be inferred from:

Ṽ(Ti) =
1

λ2i

≈
1

N − 1

N∑
n=1

[
T̃i,n − E(T̃i)

]2 (4)

where Ṽ(Ti) is the variance of the observed PU periods and
E(T̃i) is the mean which is given by (5).

2) MINIMUM BASED ON MoM
In general, the higher the number of SUs for the cooperative
estimation of mean and variance, the higher the accuracy of
the estimation. This observation can be utilized to estimateµi
as follows:

E(T̃i) = µ̃i +
1
λi

≈
1
N

N∑
n=1

T̃i,n (5)

µ̃i = E(T̃i)−
√
Ṽ(Ti) (6)

whereE(T̃i) is the mean of the observed PU periods andV(T̃i)
is their variance.

3) MINIMUM BASED ON MODIFIED MoM
A similar procedure as above is utilized, but with a correction
factor to reduce the effects of finite spectrum sensing period.

The estimation of Ṽ(Ti) is given by:

Ṽ(Ti) =
1

λ2i
−
T 2
s

6

≈
1

N − 1

N∑
n=1

[
T̃i,n − E(T̃i)

]2
−
T 2
s

6
(7)

where T 2
s /6 is the correction factor introduced in [38] to

remove the effect of the finite sensing period Ts.
While the main difference among the methods described

above is the ability to remove the impact of using a finite
sensing period on the estimated distribution, another impor-
tant aspect of practical importance is how the presence of
sensing errors affects the accuracy of the estimated distri-
bution for each method. An adequate study of this aspect
from an analytical point of view would need to take into
account not only the probabilities of errors but also other
more complex aspects such as the (random) number of
errors and their (random) relative locations within each PU
period, since this determines how the original PU periods
would be split into shorter periods as explained in [16],
and how the errors are correlated. An adequate analytical
treatment of this specific problem requires a separate study
that is out of the scope of this work and is suggested as
future work. The impact of sensing errors will be illus-
trated in this work in Section VII based on a simulation
approach.

IV. LOCAL STATE REPORTING METHODS
AND OVERHEAD
Cooperation can improve the estimation of both the instan-
taneous channel state and the primary traffic statistics,
however the cooperative process introduces signaling over-
head, which reduces the spectrum and energy efficiencies.
Reporting in every sensing event is in general necessary
in the case of cooperative spectrum sensing but is not
essential in the case of cooperative PU traffic estimation
considered in this work. A possible increase in spectrum
and energy efficiency can be achieved by reducing the
amount of channel reports required at each sensing stage.
In this section, first the original reporting mechanism is
described followed by the On/Off reporting method pro-
posed in [39], then a new method (differential reporting) is
proposed.

A. PERIODIC REPORTING MECHANISM
In the default periodic reporting mechanism, every SU trans-
mits a report containing the local decision (at every sensing
event) during the reporting stage to the central FC. Each
report is sent through a dedicated report channel for every SU.
The periodic reporting is summarized in Algorithm 1. The
main drawback with periodic reporting is the high number
of reports as every SU sends reports to the FC with local
decisions via its own dedicated reporting channel in every
single sensing event.
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Algorithm 1 Periodic Reporting

Input : λ ∈ R+ F Energy decision threshold
Ns ∈ N+ F Number of signal samples

Output
:

Rch,i ∈ {0, 1} F Channel state report

1 for each sensing event i do
2 Yi← Energy of Ns samples F Energy detection
3 if Yi ≥ λ then
4 Rch,i← 1 F Flag channel as busy
5 else
6 Rch,i← 0 F Flag channel as idle
7 end
8 SU sends Rch,i to FC
9 end

Algorithm 2 On/Off Reporting

Input : λ ∈ R+ F Energy decision threshold
Ns ∈ N+ F Number of signal samples

Output
:

Rch,i ∈ {0, 1} F Channel state report

1 for each sensing event i do
2 Yi← Energy of Ns samples F Energy detection
3 if Yi ≥ λ then
4 Rch,i← 1 F Flag channel as busy
5 SU sends Rch,i to FC
6 else
7 Rch,i← 0 F Flag channel as idle
8 SU remains silent
9 end
10 end

B. ON/OFF REPORTING MECHANISM
In this method, which is proposed in [39], all SUs report
the local states back to the FC only during busy periods and
remain silent during idle periods. This way the reporting over-
headwould be reduced from the periodic reporting, especially
at low channel usage (i.e., low duty cycle). An alternative
approach is to report the local states back to the FC only
during idle periods and remain silent otherwise. This way
the reporting overhead would be reduced from the periodic
reporting under high channel usage (i.e., high duty cycle).
The reporting option that provides the lowest number of
reports depends on whether the duty cycle is lower than 0.5
(reporting during busy periods) or greater (reporting during
idle periods). If the primary channel duty cycle is around
0.5, then both options are equivalent. In practice, SUs target
primary channels with limited primary usage. As a result,
only the first case for the On/Off reporting mechanism (i.e.,
reporting during busy periods) will be considered for compar-
ison purposes in this work. The considered On/Off reporting
is summarized in Algorithm 2.

C. PROPOSED DIFFERENTIAL REPORTING MECHANISM
Adifferential reportingmethod is proposed where, in contrast
to periodic reporting, SUs report their local decisions only

Algorithm 3 Differential Reporting

Input : λ ∈ R+ F Energy decision threshold
Ns ∈ N+ F Number of signal samples

Output
:

Rch,i ∈ {0, 1} F Channel state report

1 for each sensing event i do
2 Yi← Energy of Ns samples F Energy detection
3 if Yi ≥ λ then
4 Rch,i← 1 F Flag channel as busy
5 else
6 Rch,i← 0 F Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 SU remains silent
10 else
11 SU sends Rch,i to FC
12 end
13 end

when there is a change in the locally detected PU state (i.e.,
bit 1 is sent when the local decision goes from idle to busy
and bit 0 is sent when the local decision goes from busy to
idle). When SUs remain silent, the FC assumes that the new
detected state is the same as the last reported state. The dif-
ferential reporting mechanism is summarized in Algorithm 3.
For differential reporting, the FC needs to keep a copy of
every SU last state (for comparison with new sensed states)
to estimate the PU period durations.

The differential reporting mechanism is expected to have
a significant impact on the reporting overhead by reducing
the amount of required reports and therefore increase the
total system efficiency. This will be discussed in detail in
Section VII.

D. ANALYSIS OF THE REQUIRED NUMBER OF REPORTS
Closed form expressions for the expected number of reports
for the periodic, On/Off and differential reporting mech-
anisms are derived for two scenarios: first under perfect
spectrum sensing (Pfa = Pmd = 0), then under imperfect
spectrum sensing (Pfa, Pmd > 0).
First, the expected number of reports np for the periodic

reporting mechanism, at both high SNRs (Perfect Spectrum
Sensing, PSS) and low SNRs (Imperfect Spectrum Sensing,
ISS) scenarios, is given by:

E{np} =
E{T1}
Ts

N
2
+
E{T0}
Ts

N
2

(8)

where N ∈ N+ is the total number of idle and busy periods in
the observed set {T̃i,n}Nn=1, E{T0} and E{T1} are the expected
durations of idle and busy periods, respectively, and Ts is the
sensing period. Notice that Pfa and Pmd do not affect the total
amount of reports since in the periodic reporting case a report
is always sent in every sensing event.

Second, for the On/Off reporting mechanism (which only
reports during busy periods), the expected number of reports
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nof under PSS is given by:

E{nof } =
E{T1}
Ts

N
2

(9)

while it can be easily seen that for ISS the expected number
of reports is given by:

E{nof } =
E{T1}
Ts

N
2
(1− Pmd )+

E{T0}
Ts

N
2
Pfa (10)

Lastly, for the differential reporting mechanism, the
expected number of reports nd under PSS is given by:

E{nd } = N (11)

since under high SNR, the total number of reports sent to
the FC is the same as the total number of periods, as one
report is sent for every new observed period. On the other
hand, an upper bound for the expected number of reports for
differential reporting under ISS is found as follows:

E{nd } = N + N
[
E{T1}
Ts

Pmd +
E{T0}
Ts

Pfa

]
(12)

notice that one error (either false alarm or missed detection)
will result in two reports. The upper bound in (12) is loose and
can be approximated by taking into consideration the effect
of the sensing error position within the period. For instance,
consecutive sensing errors within the same period or sensing
errors occurring at beginning or ending of the period result in
a single report, then the following expression is obtained:

E{nd } = N + N
[
E{T1}
Ts

Pmd +
E{T0}
Ts

Pfa

]
−NPmd −

bE{T1}/Tsc∑
k=2

N
2
E{T1}
Ts

Pkmd

−NPfa −
bE{T0}/Tsc∑

k=2

N
2
E{T0}
Ts

Pkfa (13)

The previous analytical results are for a single CR and
can be easily scaled up by multiplying by the number of
cooperative SUs K .

V. SPECTRUM SENSING DATA FALSIFICATION
In previous sections, all cooperative users are assumed to
be honest. Unfortunately, given the openness nature of wire-
less communications, cognitive networks and advances in
software defined radios have made the system vulnerable to
data falsification attacks carried out by malicious or greedy
nodes disguised [40]. MUs will send falsified reports. This
type of attack is known as SSDF [25]. MUs have two main
objectives for attacks [41]: first is to interfere with the primary
system by having MUs report with idle states at busy primary
channels, second is to report with busy states when local
sensing decisions provide an idle state and, as a result, the FC
falsely declares the primary channel as busy so that legitimate
SUs have to wait for another sensing event. Meanwhile, MUs
can access the idle channel exclusively. This attack strategy is
typically utilized by greedy MUs to maximize their data rate.
In this work, the main focus is on the later scenario.

Algorithm 4 Modified Blind Attack (With Differential
Reporting)

Input : λ ∈ R+ F Energy decision threshold
Ns ∈ N+ F Number of signal samples

Output
:

Rch,i ∈ {0, 1} F Channel state report

1 for each sensing event i do
2 Yi← Energy of Ns samples F Energy detection
3 if Yi ≥ λ then
4 Rch,i← 1 F Flag channel as busy
5 else
6 Rch,i← 0 F Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 MU remains silent
10 else
11 MU sends Rch,i = 1 to FC
12 end
13 end

A. SPECTRUM SENSING DATA FALSIFICATION ATTACKS
In this work, the considered SSDF attacks are similar to the
ones described in [29], [42], and [43]. Intelligent attacks such
as those in [44] are out of scope of this work. The considered
SSDF attacks are:

1) Blind attack: The attackers report with busy state in
every sensing event [25].

2) Random attack: The MUs attack (i.e., report an idle
channel as busy) with a given probability of attack
Pa < 1 [45].

The blind attack would have a devastating effect on the
resulting global detection if it succeeds, however its detection
is straightforward. Notice that under periodic and On/Off
reporting, the MU would report a busy PU channel in 100%
of the submitted reports, while under differential reporting
the MU would indicate the channel as busy in the initial
report and then would not report anymore, implying that the
channel still remains busy. These extreme cases would be
very easy to detect by the FC by simply counting the number
of reports and states sent by each user and comparing with
the rest of users (taking into account the employed reporting
mechanism). As a result, a modified version of the pure blind
attack is here considered (see Algorithm 4), which is more
sophisticated and therefore increases the chances of this type
of attack to succeed. Notice that this modified blind attack
requires MUs to sense the PU channel before sending a report
to the FC, while the pure blind attack would not require
any sensing at all. The random attack (Algorithm 5) also
requires MUs to sense the PU channel before sending a report
(regardless of the reporting mechanism employed) since the
actual states of the PU channel need to be known in order to
meet the desired probability of attack (Pa). Therefore, in both
types of attack (blind and random) MUs need to sense the
channel before sending the report to the FC.
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Algorithm 5 Random Attack (With Differential Report-
ing)

Input : λ ∈ R+ F Energy decision threshold
Ns ∈ N+ F Number of signal samples

Output
:

Rch,i ∈ {0, 1} F Channel state report

1 for each sensing event i do
2 Yi← Energy of Ns samples F Energy detection
3 if Yi ≥ λ then
4 Rch,i← 1 F Flag channel as busy
5 else
6 Rch,i← 0 F Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 MU remains silent
10 else
11 MU generates a radom number Z ∼ U (0,1)
12 if Z < Pa then
13 MU sends Rch,i = 1 to FC
14 else
15 MU sends Rch,i to FC
16 end
17 end
18 end

For the case of differential reporting, in order to be
able to apply SSDF attacks successfully, MUs need to fol-
low the reporting rules imposed by the FC. Not follow-
ing the reporting rules would lead to anomalous sequences
of reports, with much higher/lower number of reports than
the average, which would make the attack process suscep-
tible of being detected by the FC. Thus, it is essential for
MUs to follow the same reporting procedure imposed by
the FC.

Finally, it is also worth mentioning that MUs may attack
not only during the idle periods of the PU channel (by sending
a busy report), but also during the busy periods of the PU
channel (by sending an idle report), or a combination of both.
While attacks during PU busy periods may be possible, in this
case the MU does not obtain an individual benefit from lead-
ing the FC to believe that the channel is idle when it is actually
busy and therefore the MU does not have a strong incentive
to carry out such attack. On the other hand, leading the FC
to believe that the channel is busy when it is actually free
allows the MU to prevent other SUs from transmitting and
hence use the PU channel idle times for its own transmissions.
Therefore the MU does have a strong incentive to attack
during idle periods (by sending a busy report), which is not
the case during busy periods. Notice that the algorithms and
analyses presented in this work can be readily adapted to the
either type of attack by simply reverting idle/busy periods
(both in the algorithms and analysis of results). However,
in order to simplify the subsequent analysis and discussion,
we restrict ourselves, without loss of generality, to the case
where MUs attack during idle periods only.

Algorithm 6 Defense Against Attackers (With Differen-
tial Reporting)
Input : Reports from sensing nodes
Output
:

Decision

1 for each report Rk,i from SUk in sensing event i do
2 if Rk,i = Rk,i−1 then
3 Rk,i is discarded
4 Apply MAJORITY rule to K − 1 SUs
5 else
6 Apply MAJORITY rule to K SUs
7 end
8 end

B. PROPOSED ALGORITHM
To eliminate the effects of SSDF attacks, a secure and effi-
cient data fusion is essential, which in turn requires a reliable
defense reference to identify MUs [42]. However in practical
scenarios, a reliable reference is not always available. Even-
tually honest reports are mixed with malicious ones. In this
context, we propose a novel algorithm to identify contrived
MUs reports without the requirement of a previous reference.
The key idea, which is shown in Algorithm 6, is based on
the differential reporting mechanism. Whenever a report is
available at the FC from a specific SU, a comparison is made
with the previous report from the same SU. If the report
contains information of same state as the previous report,
then the report is discarded and the decision rule is applied
based on the reports from the other K − 1 SUs. Furthermore,
the proposed algorithm can almost function in real-time with-
out the need for a comparison with statistical characteristics
for sensors as the operation of obtaining accurate statistical
information requires a significant sample size [15]. The pro-
posed algorithm differs from the literature in that it is much
simpler and does not require any pre-defined trusted nodes
nor sophisticated rules at the FC.

VI. SIMULATION AND EXPERIMENTAL METHODOLOGY
The performance of the considered methods was evaluated
both with simulations and hardware experiments. Simula-
tions were performed in MATLAB by generating several
sequences with a sufficiently large number of interleaved
on/busy and off/idle periods from an exponential distribution.
The simulation procedure can be summarized as follows:

1) Generate idle/busy periods’ lengths Ti following an
exponential distribution with predefined location (µi)
and scale (λi) parameters.

2) Perform idle/busy sensing decisionsH0/H1 on the gen-
erated sequence in step 1 every Ts time units (t.u.).

3) Calculate the idle/busy lengths estimated under PSS.
4) Add random errors (with Pfa > 0 and Pmd > 0) in the

sequence resulting from step 2.
5) Using the new H0/H1 sequence from step 4, calculate

the period lengths T̃i that would be estimated under ISS.
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FIGURE 2. Block diagram of the PECAS prototype employed for hardware experiments [46].

6) MUs will fake H0 to H1 with a given attack probability
of Pa > 0.

7) FC computes the CDF of the idle/busy lengths obtained
in steps 5 & 6 by applying a hard decision rule and
compares with the CDF of the original periods.

The hardware experiments were conducted with a Pro-
totype for the Estimation of Channel Activity Statistics
(PECAS) [46]. This prototype is implemented with common
low-cost components with the aim to reproduce a realistic
scenario with inexpensive CR devices and introduce typical
hardware sources of error and inaccuracies. This prototype is
based on free open source code.1

The hardware experiments are based on the same prin-
ciple as the simulations but using a real transmitter and a
real receiver. The block diagram is shown in Fig. 2. The
transmitter (primary user) sends a sequence of exponentially-
distributed idle/busy periods utilizing a 433 MHz ON-OFF
Keying (OOK) modulator with an output power of 2 dBm
(controlled from a C program based on the wiringPi library).
The receiver (secondary DSA/CR user), placed 1 meter apart,
uses anRTL-SDRSoftware-DefinedRadio (SDR)with a gain
of 20 dB to monitor the transmitter activity (idle/busy) at
433 MHz every Ts seconds. At every sensing event, signal
samples are captured at a sample rate of 106 samples per sec-
ond, which are processed to decide the instantaneous chan-
nel state (idle/busy) using energy detection. The outcomes
of the energy detection decisions are used to estimate the
durations of the observed idle/busy periods and compute the
primary activity statistics. While transmitter and receiver are
controlled by C programs running on the same Raspberry
Pi microcomputer, both programs run independently without
synchronization (as it would be the case of primary/secondary
users in a real scenario). Real-time operation is achieved by a
patched version of the Linux kernel and running the programs
as processes with real-time priority.

The energy detection threshold can be selected through one
of the following criteria:

• To meet a specific probability of false alarm (Pfa). This
method requires knowledge of the SU noise power.
In practice, this can be achieved by keeping the receiver
function on an empty frequency channel for a sufficient

1Available at: www.lopezbenitez.es/misc/PECAS.zip

time (several minutes in PECAS [46]) then setting the
threshold to maintain the desired Pfa [47].

• To meet a specific probability of missed detection. This
method requires knowledge of the received primary
SNR in addition to the device noise power [48].

• To minimize the combined error from Pfa and Pmd . This
method also requires the knowledge of both the device
noise power and primary signal SNR [49].

A more detailed description of these methods can be found
in [50]. Since it is difficult to set accurately the energy detec-
tion threshold to result in a specificPfa andPmd with the RTL-
SDR [46], the errors are introduced through emulations to the
on/off periods received by the RTL-SDR.

Even though the original PECAS is designed for a single
CR scenario, the experiments are repeated for the required
number of SUs to produce different streams for every SU and
emulate a cooperative estimation scenario.

VII. SIMULATION AND EXPERIMENTAL RESULTS
In this section, the analysis and validation of the proposed
methods are provided. The value considered for each param-
eter is shown in the title of each figure in terms of generic
time units (t.u.). In the case of experimental results, where
a particular time unit needs to be selected according to the
real-time capabilities of the employed hardware platform,

FIGURE 3. Accuracy of the estimated distribution for different fusion
rules and periodic reporting under sensing errors.
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FIGURE 4. Different methods to estimate the distribution under periodic reporting: (a) Ts = 0.01 t.u., (b) Ts = 0.05 t.u., (c) Ts = 0.09 t.u.

the reference unit is the second (i.e., 1 t.u. = 1 second).
First, different decision rules will be assessed, followed by
different methods to assess the estimated primary distribution
accuracy. The comparison between the estimated and original
distributions is performed using the classic Kolmogorov-
Smirnov (KS) distance [51], defined as:

DKS = sup
Ti

∣∣FTi (Ti)− FT̃i (Ti)∣∣ (14)

where FTi (Ti) and FT̃i (Ti) represent the CDFs of the original
and estimated periods, respectively.

Fig. 3 compares the estimation accuracy of the consid-
ered hard decision rules (AND, OR, MAJORITY) when the
cooperative SUs use periodic reporting and the FC uses the
DEM to estimate the CDF of busy periods. For comparison
purposes, the case of single SU is also included in Fig. 3.
The duty cycle is set to 0.5 (9 = 0.5), where both busy and
idle periods will have similar parameters. The MAJORITY
rule outperforms the other rules in the estimation of the
primary statistics (4 cooperative SUs can estimate accurately
the primary statistics under Pfa = Pmd = 0.01, while
12 SUs are required to estimate the primary statistics under
Pfa = Pmd = 0.1). As for the AND and the OR rules, both
of them fail to provide an accurate estimation of the primary
distribution (low KS distance value) for both scenarios of
high and low sensing error probabilities. For the OR rule,
the obtained results can be explained as any CR reports with
a busy period will result in the FC announcing the channel
as busy and as the number of cooperative SUs increases the
probability of having false alarms increases as well. It is
interesting to notice that the direct estimation of the CDF (i.e.,
DEM, which is considered in all cases in Fig. 3) never reaches
a perfect accuracy (DKS = 0) regardless of the number of SUs
and the fusion rule. This is a result of the finite sensing period
Ts [38]. Based on these results, further numerical results will
only consider the MAJORITY fusion rule.

Fig. 4 shows the accuracy of the considered methods to
estimate the distribution of the primary traffic for different
sensing periods. Experimental results are considered only
here due to the significant amount of time required to run
experiments for cooperative SU scenarios using a single SU

hardware platform. As it can be observed, the experimental
results (with PECAS) provide a perfect fit with simulations.
For small sensing periods (Fig. 4(a)), the DEM performs
better than the MoM and its modified version in Section III-
B.3 (MMoM), but for high number of SUs,MoM andMMoM
can provide a more accurate estimation. For higher sensing
durations (Fig. 4(b) and Fig. 4(c)) MoM and MMoM pro-
vide better accuracy in the estimation of the primary traffic
over the whole range of the number of cooperative SUs.
The minimum period obtained from MMoM gives better
estimation than the minimum obtained through the original
MoM, except for the case where Ts has a small duration (i.e.,
multiple sensing events occur in a single period) where both
minimums provide a similar KS distance. The direct esti-
mated minimum with MoM provides results with significant
inaccuracy regardless of the sensing period or the number of
cooperative SUs. Since the MMoM performs better than the
rest of methods, it will be the only method considered in the
remainder of this section.

The performance of the periodic reporting, On/Off report-
ing and the proposed differential reporting mechanisms
for cooperative estimation will be discussed based on the

FIGURE 5. Accuracy of the estimated distribution for different reporting
mechanisms.
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FIGURE 6. Required number of reports under sensing errors (Pfa = Pmd = 0.1) for: (a) Periodic reporting, (b) On/Off reporting, (c) Differential
reporting.

MAJORITY fusion rule withMMoM distribution estimation.
As it can be appreciated in Fig. 5, the three considered meth-
ods have a similar performance under sensing errors, however
the differential reporting mechanism provides higher effi-
ciency and security advantages in comparison with the other
methods as discussed below.

Fig. 6 shows the required number of channel reports for
20,000 periods for the three considered reportingmechanisms
(periodic, On/Off and differential) under different primary
loads (high 9 = 0.75, moderate 9 = 0.5 and low 9 =

0.25). As it can be appreciated, the derived analytical expres-
sions provide a perfect match for the periodic and On/Off
reporting methods, while the result of (13) provides a tight
upper bound for the required number of reports in the case
of the differential reporting mechanism. The reduction in
the amount of reports transmitted using the On/Off and dif-
ferential reporting mechanisms with respect to the periodic
reporting mechanism can be quantified, respectively, as:

Bof =
E{nof }
E{np}

(15)

FIGURE 7. Reduction in the number of reports under PSS (Pfa = Pmd = 0).

Bd =
E{nd }
E{np}

(16)

where Bof and Bd are the reduction in the amount of reports
for On/Off and differential reporting mechanisms respec-
tively. The smaller the value of Bof /Bd , the lower the amount
of reporting overhead required for feedback and therefore the
higher the efficiency. Figs. 7 and 8 show the reduction in
the amount of reports for On/Off and differential reporting
mechanisms with respect to the periodic reporting mecha-
nism under perfect and imperfect spectrum sensing scenar-
ios, respectively. The scenario of perfect spectrum sensing
is considered to give an idea on the reduction in the case
of high primary signal power present at the SU. As it can
be concluded from both figures, the differential reporting
mechanism outperforms the On/Off in nearly every channel
load, except for small duty cycles (9 = 0.25) and large
sensing periods (Ts >

µi
2 ) as at low duty cycles the SUs will

remain idle for most of the time due to the absence of PU
traffic. As it can be observed, the best estimation accuracy
obtained for smaller sensing periods. In practice, the duty
cycle of PU is unknown and the differential reporting mech-

FIGURE 8. Reduction in the number of reports under ISS
(Pfa = Pmd = 0.1).
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FIGURE 9. Accuracy of the estimated distribution for different fusion
rules under both ISS (Pfa = Pmd = 0.01) and random attacks (MUs = K/4,
Pa = 0.75).

anism provides higher efficiency. As it can be appreciated,
the proposed mechanism reduces significantly the amount of
required reports for all scenarios.

The accuracy of the estimation of primary traffic statistics
under random attacks with different fusion rules is shown
in Fig. 9. As it can be appreciated, the MAJORITY rule
outperforms the AND/OR rules in the presence of attacks.

The OR rule is ineffective against attacks because only one
busy report is required to declare the channel as busy, there-
fore a single MU would be able to prevent the whole SU
network from transmitting. The AND rule would be effective
in an ideal case of perfect spectrum sensing, since a single
honest SU who reports an idle channel as idle would be
enough to make any attack fail, regardless of the number of
MUs; however, in a realistic ISS scenario, the presence of
sensing errors means that an idle channel may be reported
as busy (false alarm) and vice versa (missed detection) even
by honest SUs. Overall, the MAJORITY rule provides the
best balance between malicious and erroneous reports, and
therefore leads to the best estimation accuracy as observed
in Fig. 9. By increasing the number of SUs, the MAJOR-
ITY rule enables an accurate estimation even under SSDF
attacks. Comparing Figs. 3 and 9, it can be observed that
the presence of MUs (Fig. 9) increases the total number of
required SUs in order to achieve an accurate estimation of
the distribution with the MAJORITY rule with respect to the
case of no MUs (Fig. 3), however the MAJORITY rule still
provides the best estimation accuracy. Similar conclusions
are obtained in the case of blind attacks (not shown here for
brevity). Therefore, the MAJORITY rule provides the best
estimation accuracy, even in the presence of SSDF attacks.
The subsequent performance analysis under SSDF attacks
will consider the MAJORITY fusion rule only.

FIGURE 10. Accuracy of the estimated distribution under blind attacks: (a) MUs = K/2, (b) MUs = K/3, (c) MUs = K/4.

FIGURE 11. Accuracy of the estimated distribution under random attacks: (a) MUs = K/2 and Pa = 0.25, (b) MUs = K/2 and Pa = 0.5, (c) MUs = K/2
and Pa = 0.75.
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FIGURE 12. Accuracy of the estimated distribution under SSDF attacks with the proposed defence method: (a) MUs = K/2 and Pa = 1 (blind attack),
(b) MUs = K/3 and Pa = 1 (blind attack), (c) MUs = K/2 and Pa = 0.5 (random attack).

The accuracy of the estimation of primary traffic statistics
under blind and random attacks is shown in Figs. 10 and 11
respectively. As it can be appreciated, the blind attack has
the same level of degradation on the estimation of the PU
distribution for the three reporting mechanisms (periodic,
On/Off and differential). Moreover, when the population of
attackers becomes half of the SUs (Fig. 10(a)), the FC will
be overwhelmed with wrong reports and produce false global
decisions regardless of the probability of missed detection
and false alarm. For smaller MUs population (Fig. 10(c)),
a large number of SUs is required to produce an accurate esti-
mation of the primary statistics. The random attack has less
severe effects on the estimation of the statistics in comparison
with the blind attack. In fact, the blind attack is a special
case of the random attack with attack probability Pa = 1.
In general, the differential reporting mechanism performs
better than the periodic and On/Off counterparts regardless
of the Pa value. Nevertheless, all methods fail to provide an
accurate estimation of the PU statistics except for small Pa
(Fig. 11(a)), where a high number of SUs are essential to
have a relatively acceptable estimation (SUs > 20). As it can
be appreciated from Fig. 12, the proposed defense algorithm
can significantly improve the estimation of primary statistics
while mitigating the effects of MUs by discarding the con-
trived reports and keeping the correct ones for the cooperative
estimation.Moreover, the proposedmethod provides accurate
results regardless of the attack type or the population of MUs.

VIII. CONCLUSIONS
CR systems can benefit from the knowledge of PU activ-
ity statistics, which can be exploited to prevent interference
and access the spectrum more efficiently. This information
can be obtained individually by each CR user based on its
local spectrum sensing observations, however a cooperative
estimation approach can provide significant benefits both in
terms of accuracy (overcoming the degrading effects of sens-
ing errors) and reliability (overcoming the degrading effects
of malicious users). In this context, this work has provided a
detailed study on the cooperative estimation of the PU activity
statistics (in particular, the distribution of the channel holding

times) under both spectrum sensing errors and SSDF attacks.
This study has evaluated the impact on the accuracy of the
estimated statistics that several aspects may have, such as
the hard decision rule used for cooperative sensing-based
estimation (the MAJORITY rule was observed to provide
the best performance) and the method employed to estimate
the distribution (the MMoM approach proposed in this work
has been proven to provide the most accurate estimation).
While cooperative estimation can improve the estimation
accuracy, it also increases the amount of signaling in the sys-
tem (associated with the reporting overhead) and introduces
security threads (from MUs deliberately sending incorrect
reports). Both issues have been successfully addressed in
this work by proposing a differential reporting mechanism
that can decrease significantly the signaling overhead as well
as a defence mechanism that can effectively remove both
blind and random SSDF attacks. The obtained simulation
and experimental results demonstrate that the methods pro-
posed in this work enable a more accurate estimation of
the PU activity statistics with a reduced level of signaling
overhead and a high level of security against SSDF attacks.
Future extension to the presented work is to pair the differ-
ential reporting mechanism with other defence algorithms to
tackle more sophisticated and intelligent attacks performed
by MUs.
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