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ABSTRACT Direct position determination (DPD) is a new promising technique in wireless location.
Compared with conventional two-step localization methods, DPD achieves a higher accuracy by directly
estimating the source location without computing the intermediate parameters. However, all the existing
angle-based DPD algorithms for non-circular sources use uniform linear arrays, which lead to low degrees
of freedom and poor estimation precision, and do not make use of the Doppler characteristics of the moving
station. To improve the DPD performance, this paper proposes a novel DPD algorithm for non-circular
sources based on a Doppler-extended aperture with a moving coprime array. First, the coprime array is
introduced to angle-based DPD, and an extended array model is established by exploiting the Doppler
characteristics of the moving array. The characteristics of non-circular sources are used to further improve
the positioning accuracy. Finally, merging the subspace data for each measuring position, the target positions
can be obtained. The Cramer–Rao lower bound of the DPD algorithm is presented for non-circular sources
in a coprime array combined with Doppler-extended aperture. Performance analysis and the simulation
experiments show that compared with the conventional two-step localization method and DPD based on
a uniform array, including subspace data fusion and weighted subspace fitting algorithms, the proposed
algorithm effectively improves the location accuracy at the expense of a slight complexity increase and can
determine the location of multiple targets in underdetermined conditions.

INDEX TERMS Direct position determination (DPD), coprime array, non-circular source, Doppler shift,
Cramer Rao lower bound (CRLB).

I. INTRODUCTION
Wireless location technology is an important research topic
in array signal processing. It is widely used in intelligent
transportation, logistics management, industry 4.0 and so
on [1]. There are currently two kinds of passive wireless
location technologies: two-step positioning technologies and
direct position determination (DPD) technologies. Two-step
technologies first estimate the location parameters of the
target sources, including the transmission delay, the angle
of arrival and the Doppler frequency shift, and then calcu-
late the position coordinates of the target sources from their
geometric relationships [2]–[4]. DPD is based on two-step
positioning, which establishes the cost function directly from
the relationship in coordinate geometry between the obser-
vation station and the target source positions. The location
coordinates of the target sources can be directly determined

in one step [5]–[7]. DPD does not require the estimation of
intermediate parameters, avoids the accumulation and propa-
gation of errors, and improves the positioning accuracy. It has
therefore attracted wide attention from researchers at home
and abroad.

DPD technology was first introduced byWeiss [8] in 2004,
and it gives the basic model for DPD. Current DPD tech-
nologies are divided into single-station DPD and multi-
station DPD. Single-station DPD uses the measurement
parameters (such as direction-of-arrival, time delay, Doppler
information and so on) of the station for each observation
position [9]–[11]. Single-station DPD is widely applied
because of its simple structure, low complexity, low cost
and requirement of no synchronization. The single-station
DPD technique was proposed by the German researcher
Demissie [12] in 2008. It gives the DPD model for a single
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moving station based on the direction-of-arrival, and presents
a solution to the subspace data fusion (SDF) algorithm. Based
on this model, Oispuu and Nickel [13] improved on SDF by
combined the maximum likelihood (ML) method and Capon
iterative optimization to increase the positioning accuracy.
Doppler information is employed to make full use of the
characteristics of the moving array [14], [15], and weight
subspace fitting (WSF) and maximum likelihood (ML) algo-
rithms are used to further improve the positioning precision.

Circular sources (CS) and non-circular sources (NS) refer
to sources whose elliptical covariance is zeros and nonzero,
respectively. There are many non-circular sources in modern
communications systems, including binary phase shift keying
(BPSK) and M-ary amplitude shift keying (MASK) mod-
ulation signals. Researchers have carried out research into
DPD by making full use of the characteristics of non-circular
sources. A DPD technique is proposed in a moving array [16]
that uses the characteristics of NS to improve the positioning
accuracy, and derived the Cramer-Rao lower bound (CRLB)
of this model. Current research into DPD focuses mainly on
the uniform linear array, which has limited degrees of free-
dom (DOF) and the estimation accuracy. New coprime arrays,
a kind of non-uniform sparse arrays, have appeared in recent
years and they can obtain bigger array apertures, insignifi-
cant coupling effects, a higher DOF and higher estimation
accuracy [17]–[23], because the sensor spacing is greater than
half the wavelength. To date, there have been no researches
on DPD techniques based on coprime arrays. In practice,
we should not only consider the overdetermined conditions
but also the underdetermined conditions, where the former is
the number of sensors in the array is larger than the number
of sources while the latter is smaller. To expand the aperture
of the DPD with a moving array to its full extent, improve
the estimation accuracy and estimate the signal position under
underdetermined conditions effectively, this paper introduces
the coprime array into DPD based on the angle for non-
circular sources with amoving array. The estimation accuracy
is improved by making full use of the large array aperture
and high DOF characteristics. At the same time, this paper
uses the Doppler information to full advantage, and uses the
Kronecker product to expand the array aperture. The position-
ing accuracy is greatly improved, and effective estimation of
multiple sources in the underdetermined condition can finally
be achieved.

The main contributions of this paper are listed as
follows:

1) DPD is applied to coprime array for the first time. The
DPD model, extended from a uniform array to a sparse non-
uniform array, has effectively improved the location accu-
racy and enables to estimate multiple non-circular sources
effectively.

2) Doppler information is introduced, which greatly
expands the array aperture, increases the DOF and improves
the estimation accuracy. The algorithm proposed in this
paper can achieve effective positioning in underdetermined
conditions.

3) CRLB is derived for the proposed model, demonstrating
that proposed model can achieve a significant decrease in the
variance of the position estimation. The paper also presents a
detailed complexity analysis and simulation experiments.

The remainder of the paper is arranged as follows.
Section 2 introduces the DPD model with a moving array.
Section 3 describes the design of the DPD for non-circular
sources based on a Doppler-extended aperture with a moving
coprime array, and derives the CRLB of the proposed model.
Section 4 presents a complexity analysis and the results
of performance simulation experiments, thus validating our
algorithm. Section 5 presents our conclusions.

II. DPD MODEL WITH A MOVING ARRAY
A. NOTATION CONVENTIONS
Notations used in this paper are as follows:
� IN denotes the N dimensional unit array.
� (•)∗, (•)T and (•)H respectively denote the conjugate,
transposition and conjugate transpose.
�
⋃

stands for the union.
� ⊗ is the Kronecker product.
� E(•) represents the mathematical expectation.
� Re [•] and Im [•] represent the real and imaginary parts.

B. DPD MODEL WITH A MOVING ARRAY
We assume that there are D stationary uncorrelated narrow-
band targets impinging to the measuring station, and the
corresponding location of the target source is pi = (xi, yi)T,
i ∈ {1, 2, · · ·D}. Thus, the location vector of all source targets
can be expressed as p =

(
pT1 ,p

T
2 · · · p

T
D

)T
. The receiving

array at the observation station uses a coprime array with
M sensors. Depending on the characteristics of the array,
the underdetermined condition is when D < M , that is the
number of sources is less than the number of array sensors;
the overdetermined condition is when D ≥ M . The observa-
tion station is moved to L positions during the measurement,
where the observation position is ul=(xl, yl)T and the number
of snapshot at each observation position is K . The velocity of
the observation station is v. Geometry of one moving antenna
array and multiple transmitters is shown in Fig. 1.

If we denote the kth sending snapshot at the lth observation
location for the ith source by sl,i (k), and sl (k) is the kth
sending snapshot at the lth observation location forD sources,
then

sl (k)=
[
sl,1 (k) sl,2 (k) · · · sl,D (k)

]T
(1)

If we assume that the noise is additive Gaussian white noise,
the kth received snapshot signal at the lth observation location
can be expressed as

rl (k)=
D∑
i=1

a
(
θl,i
)
sl,i (k)+ nl (k) (2)

where the steering vector is

a
(
θl,i
)
=
[
1, e−j2πd cos θl,i/λ, · · · , e−j2π(M−1)d cos θl,i/λ

]T (3)
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FIGURE 1. Geometry of one moving antenna array and multiple
transmitters.

where d is the array sensor spacing. We usually take half of
the signal wavelength, and so d = λ/2 . θl,i denotes azimuth
of the ith source impinging to the lth observation position,
whose cosine cos θl,i has the similar format as the estimation
of two-step location. The array can be equivalent to a point
when the distance between the target and the array is far
enough (much greater than array aperture). Thus, θl,i can be
represented directly by the geometric relationship in DPD as

θl,i = arc cos
1xl,i∣∣1l,i

∣∣ = arc cos
(xi − xl)

|(xi − xl, yi − yl)|
(4)

III. DPD OF NON-CIRCULAR SOURCES BASED ON A
DOPPLER-EXTENDED APERTURE WITH A MOVING
COPRIME ARRAY (NDMCA-DPD)
A. NDMCA-DPD
The DPD model with a moving array was introduced in the
previous section. The model based on the uniform linear
array has the small array aperture. This section introduces
the coprime array into the DPD model and uses the Doppler
characteristics to expand the array aperture. We know that
each subarray of coprime array has the sensor spacing greater
than half the wavelength and then a ‘‘pseudo peak’’ will
appear because of the array manifold has a periodicity of 2π
and the position between the pseudo peak and the true peak
is related to the sensor spacing. When the sensor spacings
of two subarrays are coprime integer multiples of half the
wavelength, the position of the true peak can be overlapped
and the pseudo peak is removed.

Fig. 2 illustrates the coprime array model, where d = λ/2
and λ is the wavelength of impinging signal. Subarray 1 has
N sensors and subarray 2 has M sensors, where N and M
are coprime integers. Correspondingly, the sensor spacings
of two subarray are Md and Nd , respectively. The subarrays
coincide at the first sensor, so the total number of sensors is
M + N − 1. Considering the Doppler characteristics of the
above array, the kth receiving snapshot of the lth observation
position is expressed as

rl (k)=
D∑
i=1

^

al (pi) sl,i (k) e
j2πfl (pi)kTs + nl (k) (5)

FIGURE 2. Geometry of coprime array.

Introduction of the coprime linear array has changed the array
manifold, so the steering vector is

^

al (pi) =
[
1, · · · , e

−
j2πdM+N−1(xl−xi)/λ
|(xl−xi,yl−yi)|

]T
(6)

The location dj of the jth array sensor is given by

dj ∈ {0,Md · · ·M (N − 1)d}
⋃
{Nd · · ·N (M − 1)d} (7)

Ts in (5) represents the sampling interval for each observation
position. The Doppler shift at the lth position fl (pi) represent
the frequency offset due to the movement of the observation
position, and is given by

fl (pi) = fc
vTl (pi − ul)
c ‖pi − ul‖

(8)

rl (k) = Bl (p) sl (k)+ nl (k) (9)

where the array manifold Bl (p) is given by

Bl (p) =
[
bl (p1) · · · bl (pD)

]
(10)

bl (pi) = gl (pi)⊗
^

al (pi) (11)

gl (pi) =
[
1, ej2πfl (pi)Ts , · · · , ej2πfl (pi)(K−1)Ts

]T (12)

As the transmitted signal phase for the same signal source is
fixed in non-circular signals, we have

sl,i (k)=s
(i)
l,0 (k) e

jϕi (13)

where s(i)l,0 (k) is a real value representing the signal amplitude
andϕi indicates the ith phase of the transmitted signal. Thus,
we can write

sl (k) =


sl,1 (k)
sl,2 (k)
...

sl,D (k)

 =

s(1)l,0 (k) e

jϕ1

s(2)l,0 (k) e
jϕ2

...

s(D)l,0 (k) e
jϕD



=


ejϕ1 0 · · · 0

0 ejϕ2
. . .

...
...

. . .
. . . 0

0 · · · 0 ejϕD



s(1)l,0 (k)

s(2)l,0 (k)
...

s(D)l,0 (k)

=8sl,0 (k) (14)
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8 =


ejϕ1 0 · · · 0

0 ejϕ2
. . .

...
...

. . .
. . . 0

0 · · · 0 ejϕD

 (15)

sl,0 (k) =
[
s(1)l,0 (k) s

(2)
l,0 (k) · · · s

(D)
l,0 (k)

]T
(16)

where sl,0 (k) is a real vector. From these expressions, we can
restructure the received signal using (9)

zl (k)=
[
rl (k)
r∗l (k)

]
=

[
Bl (p) sl (k)
B∗l (p) s

∗
l (k)

]
+

[
nl (k)
n∗l (k)

]
(17)

as

s∗l (k)=8
∗s∗l0 (k)=8

∗8−1sl (k)=
(
8∗
)2sl (k) (18)

So (19) is equivalent to the following form

zl (k) =
[
rl (k)
r∗l (k)

]
=

[
Bl (p)

B∗l (p)8
∗8∗

]
sl (k)+

[
nl (k)
n∗l (k)

]
= Hl (p) sl (k)+

[
nl (k)
n∗l (k)

]
(19)

where

Hl (p) =
[

Bl (p)
B∗l (p)8

∗8∗

]
=
[
hl (p1) hl (p2) · · · hl (pD)

]
(20)

hl (pi) =
[

al (pi)
a∗l (pi) e

−j2ϕi

]
(21)

Then the covariance matrix of received signals for each mea-
surement position is calculated, and eigenvalue decomposi-
tion (EVD) is performed as follows:

Rl =
1
K

K∑
k=1

zl (k) zHl (k)

=

[
U(s)l ,U

(n)
l

]
6l

[
U(s)l ,U

(n)
l

]H
(22)

Take U(n)l =

[
U(n)l,1
U(n)l,2

]
, where U(n)l,1 and U(n)l,2 have the same

dimensions. From the above deduction,

U(n)l,1=
(
U(n)l,2

)∗
(23)

Moreover,
(
U(n)l,1

)T
=
(
U(n)l,2

)H
, where U(n)l,2

(
U(n)l,1

)H
and

U(n)l,1
(
U(n)l,2

)H
are in a conjugate relationship. From the loca-

tion estimation expressions for non-circular sources in [16],
the SDF objective function for non-circular sources can be
obtained as

f (p) =
L∑
l=1

{
hHl (p)U

(n)
l,1

(
U(n)l,1

)H
hl (p)

−

∣∣∣∣hTl (p)U(n)l,2(U(n)l,1)Hhl (p)∣∣∣∣} (24)

The target source locations can be obtained through a spectral
peak search of minimum points.

B. SUMMARY OF ALGORITHM STEPS
Based on the above analysis, steps of NDMCA-DPD can be
summarized as follows:

Algorithm 1 Algorithm Steps of NDMCA-DPD
1. Construct a DPD model considering (2) and Fig. 1 with a
single moving array .
2. Use (11) to extend the dimension of the receiving array
by the Doppler shift of the observation station, and calculate
the extended covariance matrixRl . Obtain the noise subspace
U(n)l by performing EVD on the extended receiving signal
covariance matrix.
3. Decompose and reconstruct the eigenvalues in the noise
subspace and use (25) to construct the cost function of the
source coordinates.
4. Solve the cost function (25) by searching for the spectral
peaks, where the Dminimum values of the spectral peaks are
the location coordinates of the target sources.

C. CRLB OF NDMCA-DPD
The CRLB as the lower bound of the unbiased estima-
tion variance represents the degree of location estima-
tion deviation. CRLB of steps of NDMCA-DPD is quoted
from [24]–[27]. First, containing all observation locations,
the received signal snapshot vector is

z (k)=
[
zT1 (k) , · · · z

T
L (k)

]T
(25)

The corresponding transmission signal vector and the noise
vector can be expressed as s (k) and n (k). Assuming that
noise follows a Gaussian distribution, then

s (k) =
[
sT1 (k) , · · · s

T
L (k)

]T
(26)

n (k) = z (k)−Hs (k) (27)

P (z (1) · · · , z (K )) =
1

(2π)(M+N−1)K
(
σ 2
n /2

)(M+N−1)K
×exp−

1
σ 2
n

K∑
k=1

[z (k)−Hs (k)]H

× [z (k)−Hs (k)] (28)

where the array manifold H is

H=

H1 (p) · · · 0
...

. . .
...

0 · · · HL (p)

 (29)

The logarithm likelihood function can be obtained by taking
the logarithm of (28)

L (z (1) , · · · , z (K )) = − (M + N − 1)

×K
[
ln (2π)− ln

(
σ 2
n /2

)]
−

1
σ 2
n

K∑
k=1

[z (k)−Hs (k)]H [z (k)−Hs (k)] (30)
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Define s̄k = Re [s (k)] and s̃k = Im [s (k)]. The Fisher
information matrix �=

[
E
(
χχT

)]−1
, where

χT
= ∂L/∂

[
σ 2
n , s̄

T (1) , s̃T (1) · · · , s̄T (K ) , s̃T (K ) ,pT
]
(31)

Finally, the Cramer Rao lower bound expression for non-
circular sources can be obtained from the Fisher information
matrix

CRLB (p) =
σ 2
n

2

{
K∑
k=1

Re
[
FH (k)DHP⊥HDF (k)

]}−1
(32)

where P⊥H = I − PH = I − H
(
HHH

)−1HH,

F (k) = I2 ⊗ diag (s (k)), I2 =

[
1 0
0 1

]
, D =[

∂HH

∂x1
,
∂HH

∂y1
, · · · ,

∂HH

∂xD
,
∂HH

∂yD

]
.

IV. PERFORMANCE ANALYSIS
A. COMPLEXITY ANALYSIS
In this section, we compare the proposed algorithm with
the two-step positioning algorithm, SDF algorithm and WSF
algorithm. The number of array sensors is M + N − 1.
For convenience of expression, define Na = M + N − 1.
The number of snapshots is K , the number of sources
is D. Jx , Jy and Jθ represent the number of search grids
for the x coordinates, the y coordinates and the angle.
The computational complexity of the algorithm consists of
three main parts: while calculating the expanded covariance
matrix Rl at each observation location, the computational
complexity is O

(
4LK 2N 2

a
)
; while carrying out eigenvalue

decomposition for the above covariance matrix, the compu-
tational complexity is O

(
8LK 3N 3

a
)
; while decomposing the

noise subspace, constructing the cost function of DPD for
non-circular sources and searching for the spectrum peaks,
the computational complexity is O

(
2JxJyKNa(KNa − D)

)
.

Thus the computational complexity of this paper is
O
(
8LK 3N 3

a +
(
4L + 2JxJy

)
K 2N 2

a − 2JxJyDKNa
)
. The

complexity of the two-step positioning algorithm, the SDF
algorithm and the WSF algorithm are given in Table 1.

TABLE 1. Comparison of algorithm complexity

Table 1 shows that the two-step positioning method
reduces the two-dimensional coordinates search to doing a
one-dimensional DOA search twice, and the computational
complexity is the lowest. The complexity of this paper is
slightly higher than that of the SDF algorithm (see [13])
and the two-step localization algorithm (this method divides

the positioning process into two parts: parameter estimation
and location calculation), which is lower than the WSF algo-
rithm (see [15]). Under the same conditions, compared with
the two-step location algorithm, the increase in complexity
mainly comes from the expanded array aperture required by
the non-circular characteristics of the source. At the same
time, compared with the SDF algorithm, the increase in
complexity mainly comes from the expanded array manifold
resulting from full use of the Doppler information. The com-
plexity of the four algorithms is shown in Fig. 3 when Jx , Jy
and Jθ take the same value and change from 1000 to 10000,
M = 4, N = 5, K = 20,and the number of sources D = 2.

FIGURE 3. Computation complexity with the number of search grid.

B. SIMULATION RESULTS
This paper proposes a DPD method for non-circular sources
based on a Doppler-extended aperture with a moving coprime
array.We assumed that the noise is Gaussian white noise in all
simulation experiments. To verify the estimation performance
of this algorithm, we applied Monte Carlo experiments to
compare the estimation performance with the performance
of the two-step localization algorithm, SDF algorithm and
WSF algorithm. The SDF algorithm is based on the subspace
algorithm, and the cost function of the location coordinates
is established by covering the subspace data for each mea-
surement position. It is a typical direct position determination
method based on the angle made with a single moving sta-
tion [13]. The WSF algorithm is based on the SDF method.
It improves the positioning accuracy by replacing theMUSIC
method with the weight subspace fitting method, and [15]
gives a detailed introduction. To measure the positioning
accuracy of this algorithm, we define the root mean square
error (RMSE) as

RMSE =

√√√√ 1
QD

Q∑
m=1

D∑
i=1

∥∥p̂i (m)− pi
∥∥2 (33)

Where Q is the number of Monte Carlo experiments, D is
the number of source targets and p̂i (m) is the ith source
location of the mth Monte Carlo experiment. The simulation
parameters are given in Table 2.
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TABLE 2. Simulation conditions for the experiments.

Simulation 1: Positioning performance of this algorithm
for non-circular sources in the underdetermined condition.

To verify the performance of this algorithm in the underde-
termined condition at different SNRs, the estimation scatter
plot is simulated when the SNR is -10 dB and 20 dB. The
number of sources is 9 (the number of array sensors is 8).
The estimation results are shown in Fig. 4, Fig. 5 and Fig. 6.
The simulation shows that the algorithm can not only estimate
the location of all the sources accurately with a high SNR,
but can also effectively estimate the source location in the
underdetermined condition with a low SNR.

FIGURE 4. Trajectory of the station movement related to the target
sources.

Simulation 2: Comparison of the RMSE performance of
the proposed algorithm, two-step location algorithm, SDF
algorithm, WSF algorithm and the CRLB with different
SNRs.

The RMSE performances of the proposed algorithm,
two-step algorithm, SDF algorithm and WSF algorithm are
simulated with the simulation parameters given in Table 2,
and the comparison is shown in Fig. 7. The simulation results
show that the performance of DPD is better than the two-step
location algorithm. Using the same parameters, the perfor-
mance of the proposed algorithm is better than the WSF and
SDF algorithms. The coprime array and use of the Doppler
information significantly extend the array aperture, which

FIGURE 5. Positioning performance of the proposed algorithm
(SNR = −10dB).

FIGURE 6. Positioning performance of the proposed algorithm
(SNR = 20dB).

FIGURE 7. RMSE performance comparison of different SNR.

effectively improves the estimation accuracy of the algorithm
and reduces the CRLB.

Simulation 3: Comparison of the RMSE performance of
the proposed algorithm, two-step location algorithm, WSF
algorithm, SDF algorithm and the CRLB under different
snapshots.
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The number of snapshots is an important factor affecting
the positioning accuracy. The larger the number of snapshots,
the more samples and the longer the signal accumulation
time. In this simulation, the number of snapshots is changed
from 10 to 600, with SNRs of −10 dB and 20 dB. The
other parameters are the same as in Table 2. The RMSE
performance under the different snapshots is shown in Fig. 8
and Fig. 9. The figures show that the estimation performance
of these algorithms improves with an increased number of
snapshots; the DPD performance is better than the perfor-
mance of the two-step algorithm under the same conditions.
The proposed algorithm performs best at the same number of
snapshots.

FIGURE 8. RMSE performance comparison of different
snapshots(SNR=-10dB).

FIGURE 9. RMSE performance comparison of different
snapshots(SNR=20dB).

V. CONCLUSION
The existing DPD algorithms for non-circular sources are
all based on the uniform linear array, which leads to low
degrees of freedom and poor estimation precision, and the
Doppler characteristics of the moving station are not made
use of. To solve this problem, this paper presents a DPD
algorithm based on a Doppler-expanded aperture for non-
circular sources with a moving coprime array. This algo-
rithm introduces the coprime array into the DPD model,

and makes full use of the Doppler information of the observa-
tion station, which increases the array aperture and the DOF.
The characteristics of non-circular sources are used fully to
further improve the positioning accuracy. The complexity
analysis and simulation experiments perform that, compared
with the two-step positioning algorithm, SDF algorithm and
WSF algorithm, the proposed algorithm can not only deter-
mine the location of non-circular sources in underdetermined
conditions effectively, but can also improve the positioning
accuracy with only a slight increase in complexity.
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