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ABSTRACT Wind power scenarios have a significant impact on stochastic optimization problems for power
systems in which wind power is a significant component. Generative adversarial networks (GANs) are
a powerful class of generative models, and can generate realistic scenarios for renewable power sources
without the need for any modeling assumptions. However, the performance of GANs in generating scenarios
can further be improved by modifying the way in which a Lipschitz constraint on discriminator network is
imposed. Another critical problem of applying deep neural networks is overfitting, a phenomenon especially
prone to appear on small training sets. In this paper, we propose an improved GAN for the generation
of wind power scenarios. To improve the training speed, we use a gradient penalty term to enforce the
Lipschitz constraint based on the output and input of the discriminator network. To improve the scenario
quality, we further use a consistency term in the training procedure. Besides, the overfitting problem can be
effectively alleviated by the enforced Lipschitz continuity. The proposed method is applied to actual time
series data from the NREL wind integration data set. The experimental results demonstrate that our method
outperforms the existing methods.

INDEX TERMS Deep learning, generative adversarial networks, scenario generation, wind power.

I. INTRODUCTION
Modern power systems are undergoing a transition into
smart grids to meet environmental targets (renewable power
production, energy storage, and price-responsive demand,
as well as providing power for plug-in hybrid electric
vehicles), which poses a great challenge to the power
industry [1]. Wind energy accounts for the largest component
of the growth in renewable energy and is therefore playing an
increasingly important role in the operation and planning of
power systems. However, the uncertainty and variability of
wind power production mean that additional power produc-
tion sources must be available to provide sufficient ramping
capability, posing further technological and economic chal-
lenges, especially in the context of large-scale integration of
wind power. Therefore, accurate modeling of wind power
output is key to reducing system-wide costs and enforcing
reliability criteria to allow decision-making under the uncer-
tainty faced by power system operators and planners.

As an intermittent energy source, wind power has inherent
stochastic characteristics, which may or may not act as sug-
gested by forecasting. In wind power forecasting, there are
three different representations of wind power uncertainty,

namely, the probabilistic forecasting, risk index, and scenario
approaches [2]. The question of which of these is the best has
not been the topic of much academic research, and the choice
of the most suitable representation has generally been guided
by specific situations. In the scenario representation, the spa-
tiotemporal correlations of uncertainty information can be
considered as generating a variety of time trajectories of wind
power outputs. By using a series of possible wind power
scenarios, system operators and participants are able to inves-
tigate the influence of wind power on cost and reliability to
allow decision-making in an uncertain environment, such as
operational planningwith volatile wind power production [3],
storage portfolio optimization of wind-storage systems [4],
and strategic bidding in electricity markets [5]. It is therefore
necessary to investigate scenario generation approaches to
wind power for integrated wind power systems.

Many techniques have been proposed for wind power sce-
nario modeling. Numerical weather prediction (NWP) [6]
uses weather information to construct a physical model. The
scenario set can be generated using wind power forecasts,
by modeling the relationship between wind power output and
extracted wind speed [7], [8]. In [9], a moment matching
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technique is presented for generating synthetic scenarios con-
sistent with specified values of the marginal moments and
correlations. Cholesky decomposition and cubic transforma-
tion are applied to construct the discrete joint distribution to
obtain the specified correlations. In [10], an autoregressive
moving average (ARMA) method is proposed to produce a
plausible scenario set for multiple wind sites, and a similar
method is adopted in [11]. In [12], the vector autoregressive
formulations are extended by incorporating moving average
terms to construct a joint state space model. A state space
form of the wind speed is then proposed to generate wind
power scenarios. In [13], a Gaussian copula for stochas-
tic dependence modeling is presented and is applied to the
uncertainty analysis of large-scale wind power integration.
Inspired by the copula theory, an exponential Gaussian copula
approach is proposed in [14] for the generation of wind power
scenarios from probabilistic forecasts of wind power, and the
exponential covariance structure is further estimated from the
probability distribution of wind power variations in [15].

These model-based methods are usually based on statis-
tical assumptions (e.g., Gaussian), which makes them inca-
pable in practice of accurately capturing the data distribution
of wind power profiles [16]. Scenario samplings (e.g., inverse
transform and Monte Carlo) from multivariate distributions
also affect the quality of the generated scenarios. Methods
like copula and ARMA rely on probabilistic forecasts,
which are directly affected by the forecast accuracy of wind
sites. Therefore, it difficult to use model-based methods to
capture the full diversity of renewable resources, especially
when considering spatiotemporal correlations among
multiple sites.

A number of machine learning algorithms to generate wind
scenarios have also been proposed recently. Artificial neural
networks (ANNs) are among the most popular intelligent
methods. In [17], an ANN is combined with historical time
series values, one or more exogenous variables (e.g., ambient
temperature and wind speed), and appropriate time indices to
create more representative scenarios. In [18], a probabilistic
wind power prediction model is proposed to generate scenar-
ios based on radial basis function neural networks (RBFNNs).
In [19], to reduce the forecasting error in generated scenar-
ios, an ensemble of scenarios is generated in various ways,
including support vectormachine (SVM),multi-layer percep-
tron (MLP), regularized linear regression, and random for-
est methods. These intelligent algorithms should be suitable
for capturing the uncertainty in renewable power production
owing to their excellent ability to map the nonlinear relation-
ship between input and output. However, their performance
will be strongly affected by feature selection and tuning of
the problem.

With the development of machine learning, generative
adversarial networks (GANs) [20] have received great atten-
tion and have been used in various situations [21]– [26].
In [16], a data-driven method is presented for generating
renewable scenarios using GANs. This method can generate
scenarios for spatiotemporally correlated multiple sites by

learning the distribution of historical data; such scenarios can
also be generated based on conditioned information, such as
mean values, ramp events, and forecast errors in wind power.
In [27], Bayesian GANs are constructed and trained to pro-
duce a set of renewable power scenarios with the same pattern
as historical data. Even if wind and solar data are deliber-
ately blended, the method can simultaneously distinguish and
generate different scenarios, allowing better representation
of renewable power production processes. These methods of
applying GANs for scenario generation are mainly related
to generate scenarios which reflect the dynamic patterns of
renewable resources. In [28], an unsupervised approach based
on GANs for scenario forecast is proposed to generate a
group of future realizations. The generated scenarios can
capture the reliability and sharpness features and reflect both
forecast information and dynamic patterns of wind power
production [29]. Deep generative models can learn to cap-
ture uncertainty in renewable power production with a full
diversity of behavior, and can be trained through the use of
differentiable networks without the need for any additional
tuning. Because of their use of unsupervised learning, another
important advantage of GANs is that they do not require
manual labeling of data, which is usually impossible for large
datasets.

The contributions of the present paper can be briefly
summarized as follows. Based on the work described in [30]
and [31], we propose an improved GAN to generate wind
power scenarios, using an alternative technique for enforcing
the Lipschitz continuity through a gradient penalty and a
consistency term in the training procedure. Our proposed
method can avoid the problems of exploding or vanishing
gradients and achieve more stable training for wind power
scenario generation. We show that our method can generate
high quality scenarios for wind power and is superior to
existing methods in capturing the data distribution of real his-
torical observations. The proposed method can also achieve
faster convergence, thus reducing the training time for the
adversarial networks. In addition, our method has better
generalization capability and is less prone to overfitting,
which is more suitable than existing methods for cases where
there is an insufficient amount of training data or where wind
farms have not been long in power production.

The rest of this paper is organized as follows. Section II
presents the mathematical formulations of the tasks of sce-
nario generation. The GAN and improved GAN are described
in more detail in Section III. The model structure of the
improved GAN is presented in Section IV, and the algorithm
given there is then used to generate scenarios. The experi-
mental results are illustrated and compared in Section V. The
results are discussed and our final conclusions are presented
in Section VI.

II. PROBLEM FORMULATION
In this section, we present the scenario generation proce-
dure for two tasks of interest. To improve the performance
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of GANs in generating scenarios, we discuss some of the
motivations for the use of improved GANs.

A. SCENARIO GENERATION FOR A SINGLE SITE
The wind power output of a site can be modeled as a stochas-
tic process. We assume that historical data xt , t = 1, . . . ,T ,
on wind power are available for a certain generation site. Our
objective is to construct and train a GAN model to generate
scenarios representing uncertainties for a single site by using
these historical wind power data {xt } as the training set.
The generated wind power scenarios should capture various
patterns representing all possible behaviors of the wind power
production process.

B. SPATIOTEMPORAL SCENARIO GENERATION
It is well known that for a large system, the wind varies
among different areas. The scale of these changes is affected
by distance. Thus, what we focus on here is not a single
wind farm or a single region. Rather, our task is to generate
wind power scenarios in different places at the same time.
Consider a set of historical observations for multiple wind
energy sources at N sites. We denote by xt,s, t = 1, . . . ,T ,
s = 1, . . . ,N , a data matrix of historical wind power data.
Our objective is to construct and train a GAN model to
generate scenarios for multiple wind generation sites by using
the historical data {xt,s} as the training set. The generated
wind power scenarios should capture the spatiotemporal cor-
relations among multiple sites.

GANs are a popular class of generative models, and have
been widely studied and used owing to their excellent ability
to learn from experience. However, optimization of GANs is
difficult and may result in low-quality samples or failure
of convergence due to the application of weight clipping
for enforcing a Lipschitz constraint in the training process.
In addition, deep learning on small datasets is very prone
to overfitting. To deal with these problems,we introduce an
improved GAN, as described in the next section.

III. METHOD
We first present the GAN and how to enforce Lipschitz
continuity in the neural network setting. We then describe the
application of our improved method to wind power scenario
generation.

A. WASSERSTEIN GAN
A GAN is among the most powerful frameworks arising in
the context of generative models and is modeled as a com-
peting game between two interconnected neural networks.
The general architecture of a GAN is shown in Fig. 1.
A generator network attempts to generate realistic-looking
samples given some noise source, while a discriminator net-
work tries to distinguish between generated samples and
true samples. Since their invention, GANs have become
widely used for unsupervised learning of data distributions
of unlabeled data. The Wasserstein GAN (WGAN) [32] is
a development that is considered to be an effective alter-

FIGURE 1. General architecture of a GAN.

native to traditional GAN training. Through its use of the
Wasserstein distance, its performance is better than that of a
traditional GAN.

For convenience, we use x to denote the historical data for
a single site or multiple sites. We denote the true distribution
of the historical data x by Pr and assume that the random
noise variable input z is sampled from a simple known distri-
bution Pz (e.g., a Gaussian). Our goal is to translate a sample z
drawn from Pz into a desired sample that follows the distri-
bution Pr . This is accomplished by constructing and training
adversarial networks: a generator network and a discriminator
network. These two networks are trained alternately until the
training converges.

The generator network is trained to fool the discriminator
network by taking upsampling operations of several fully
connected layers and deconvolutional layers to output plau-
sible samples. To achieve this task, we need to define a
loss function LG to update the parameters for the generator
network. During the training process, a random variable z
sampled from the distribution Pz is fed into the generator.
Then, the output G(z) of the generator is a new random vari-
able, whose distribution is denoted by PG. A small value of
LG indicates that the samples generated from the distribution
PG are almost the same as the historical samples from the
perspective of the discriminator. We use the loss function LG
defined in [32]:

LG = −Ez∼Pz [D(G(z))], (1)

where E denotes the empirical means of the batch
updates.

The discriminator network is trained alternately with the
generator network. It is fed with input samples coming
either from the generator network or from the training set.
By taking a series of downsampling operations of several
fully connected layers and convolutional layers, the discrim-
inator network outputs a continuous value to measure the
input samples. Depending on the sources of different sam-
ples, the output value of the discriminator network can be
expressed as follows:

Preal = D(x), (2a)

Pfake = D(G(z)). (2b)

The discriminator network is trained to distinguish
between Pr and PG, i.e., to maximize the difference between
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E[D(·)] and E[D(G(·))]. Similarly, we need to define a loss
function LD to update the parameters of the discriminator net-
work. When the discriminator network is good at differenti-
ating between generated samples and real samples, the value
of LD should be small. Therefore, the loss function LD can be
written as

LD = −Ex∼Pr [D(x)]+ Ez∼Pz [D(G(z))]. (3)

For a given discriminator network, maximizing the output
LD means minimizing −E[D(G(·))], resulting in the expres-
sion (1). For a given generator network, the discriminator
network should maximize E[D(·)] (real samples) and at the
same time minimize E[D(G(·))] (generated samples). This
gives the expression (3). Note that the adversarial networks
are parametrized by the weights that are leveraged to remem-
ber learning experiences in the training process. With the loss
functions defined, we can then formulate the value function
of the two-player game. Based on Kantorovich–Rubinstein
duality [33], the game between the two interconnected neural
networks is the minimax objective

min
G

max
D

V (G,D) = Ex∼Pr [D(x)]− Ez∼Pz [D(G(z))]. (4)

The Wasserstein distance, also known as the earth-mover
distance, was introduced intoGANs in [32]. In terms ofmodel
training, this distance has better properties than other metrics
(e.g., the Jensen–Shannon divergence and the Kullback–
Leibler divergence) because it directly measures the dif-
ference between the probability distributions PG and Pr .
This metric is given by

W (Pr ,PG) = sup
ω

Ex∼Pr [D(x)]− Ez∼Pz [D(G(z))], (5)

where ω is the parameter of the discriminator network.
Since theWasserstein metricW (Pr ,PG) directly calculates

data distributions of samples from different sources, it is a
more valuable cost function and provides an index for training
of GANs. Not only is this metric related to the quality of gen-
erated scenarios, but it is also very convenient for debugging
and hyperparameter searching.

B. IMPROVED GAN
The WGAN uses the Wasserstein metric to measure dif-
ferent data distributions of disjoint parts, which solves the
problem of training instability caused by the data distribu-
tion not being appropriately measured by the cross-entropy
(Jensen–Shannon divergence). The use of this metric requires
that the weights of the discriminator network lie within a
compact space to satisfy a Lipschitz constraint. Since the
capacity of the network is limited and there could be gradient
exploding or vanishing problems in the training, the weight
clipping may lead to optimization difficulties. An improved
strategy for enforcing Lipschitz continuity is proposed in
[30] based on optimal transport theory [33]. Inspired by the
optimal discriminator network that has unit gradient norm
almost everywhere under PG and Pr , this alternative strategy

adds a gradient penalty based on the output and input of the
discriminator network. This gradient penalty is given by

GP|x̂ = Ex̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2], (6)

where x̂ = tx + (1− t)G(z) for t ∼ U [0, 1] .
Although it is difficult to enforce the unit gradient norm

constraint everywhere, there is an effective alternative for
model training. With the gradient penalty GP explicitly
defined, the loss function of the discriminator is

LGP = Ez∼Pz [D(G(z))]− Ex∼Pr [D(x)]+ λGP|x̂ . (7)

The gradient penalty term GP performs better than the
weight clipping for enforcing the Lipschitz continuity, and
can achieve more stable training on a wide variety of
GAN architectures (e.g., the DCGAN architecture and the
101-layer ResNet) and can generate higher-quality samples
on different datasets (e.g., the CIFAR-10 and LSUN bed-
rooms). Since the gradient term can only be punished at
sampled data points in the training process, a large number of
data points will not be sampled at all. In addition, the output
of the generator network is significantly different from the
actual data point at the start of the training. The Lipschitz
continuity is not enforced until the data distribution PG of
the generated data points and the real distribution Pr of
the training data points are sufficiently close to each other.
Therefore, the performance of the gradient penalty method
can be further improved.
In [31], an additional Lipschitz continuity condition is

proposed to improve the training of GANs. Instead of focus-
ing on particular data points sampled between the real and
generated points, a region around the real data manifold is
considered. In particular, two perturbed data points x ′ and
x ′′ near the observed real data point x are used to check the
continuity condition. The two virtual points are found by
applying the stochastic dropout to the hidden layers of the
discriminator. The performance can be improved slightly by
further controlling the second-to-last layer of the discrimina-
tor. Therefore, there is an additional consistency term in the
loss function (7) of the following form:

CT |x ′,x ′′ = Ex∼Pr [max(0, d(D(x ′),D(x ′′))

+ 0.1d(D−(x ′),D−(x ′′))−M ′)], (8)

where M ′ is a bounded constant, D−(·) is the second-to-last
layer of the discriminator, and d is the `2 metric on the input
space.
The gradient penalty term GP, (6), enforces the continuity

at specific data points, while the consistency term CT , (8),
complements the continuity over the data manifold and its
surrounding regions. Therefore, these two terms can be used
together to improve the training of a GAN. Putting them
together, the loss function of the discriminator can then be
expressed as follows:

LCT = Ez∼Pz [D(G(z))]− Ex∼Pr [D(x)]
+ λ1GP|x̂ + λ2CT |x ′,x ′′ . (9)
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In order to verify the effect of GP and CT onmodel training
for wind power scenario generation, we plot the histograms
of the discriminator’s weights in Fig. 2 after we train it using
weight clipping, GP, and GP and CT, respectively. Fig. 2(a)
shows that the weights are pushed to two values, which are
the extreme values of the clipping range. It suggests that the
network capacity of the discriminator trained using weight
clipping is underused in the training. Besides, the gradient
may change exponentially or not significantly depending on
the value of the clipping threshold. Therefore, the optimiza-
tion process is difficult and there could be gradient explod-
ing or vanishing problems in the training process. In contrast,
as Fig. 2(b) shows, the GAN trained using GP does not suffer
from these behaviors. The more stable gradients enable the
discriminator network’s capacity to bemore fully utilized.We
also compare the weights of the discriminator trained using
GP with those of the discriminator trained using GP and CT.
Fig. 2(b) and Fig. 2(c) show that both methods can control the
weights within a symmetric distribution. And it is interesting
to see the weights range [0.2251, −0.2269] in Fig. 2(c) is
within a smaller and more symmetric distribution compared
with that [0.2764, −0.2387] in Fig. 2(b). In order to fur-
ther verify the role of the CT term, we plot the maximum
Euclidean norm of the gradients for each iteration in Fig.3.
As stated previously, the optimal WGAN discriminator has
unit gradient norm almost everywhere under PG and Pr . The
closer to 1 the norms are, the better the 1-Lipschitz continuity

FIGURE 2. Histograms of the weights of the discriminator trained for
wind power scenario generation using (a) weight clipping, (b) GP, and
(c) GP and CT, respectively.

FIGURE 3. Training evolution of the gradient norm of the discriminator
with respect to its input on a wind dataset.

is preserved. It is obvious that the GAN trained using GP and
CT can better enforce the Lipschitz continuity in the training
process.

With the redefined value function LCT , we then can use the
GAN to implement the generation ofwind power scenarios by
training two interconnected adversarial networks. In the ini-
tial stage of the training process, LCT is small and LG is large,
because the generator network has not yet learned the data
distribution of the wind power profiles. In this case, the gen-
erator network generates wind scenarios totally different
from real scenarios, and the discriminator network can easily
distinguish between them. The generator network gradually
learns various patterns in historical wind data. The adversarial
networks are continuously updated and alternately trained.
As the training tends to convergence, the generator network is
able to generate realistic wind power scenarios with small LG,
while LCT is large and the discriminator network can hardly
distinguish between generated scenarios and real scenarios.
Eventually, the output wind power scenarios of the generator
network are able to represent the stochastic processes of wind
power production.

IV. MODEL STRUCTURE AND TRAINING ALGORITHM
GANs have a flexible network structure. The framework for
a GAN is to formulate the generative modeling problem as
an adversarial process consisting of two interconnected deep
neural networks. In this section, the model structure and the
algorithm are described.

A. MODEL STRUCTURE
The model structure of our GAN is based on the structures
used in [30], [31], and [34]. To make a fair comparison
between our method and existing ones, we use the same
network structure. Table 1 lists the details of the generator
and discriminator network structures. In this table, ‘‘MLP’’
denotes the multi-layer perceptron, ‘‘Conv’’ and ‘‘Deconv’’
denote the convolutional and deconvolutional layers, respec-
tively, ‘‘DIM’’ is the dimension of the filters, ‘‘D_’’ denotes
the second-to-last layer of the discriminator, and ‘‘Sigmoid’’
is an activation function used to limit the output range in the
interval [0, 1].
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TABLE 1. Model structure of the GAN for scenario generation.

The discriminator network has the reverse structure to the
generator network. The latter includes three deconvolutional
layers to upsample the input noise z to generate wind power
scenarios, whereas the discriminator network includes three
convolutional layers to downsample data from historical and
generated samples. ReLU activation and LeakyReLU activa-
tion are used in the hidden layers of the generator network
and the discriminator network, respectively. Dropout is only
applied in the output of each hidden layer of the discrimi-
nator network. Batch normalization has been used in most
previous GAN structures [34], [35]. Since the penalty terms
in the loss function of the discriminator network are handled
independently for a single input, not for the entire batch [35],
the batch normalization can be omitted or replaced by layer
normalization [36] in our model structure.

B. ALGORITHM
Our proposed method for generating wind power scenarios
can be trained using Algorithm 1.We use the Adam optimizer
to update the parameters of the discriminator network and
the generator network [37]. Our adversarial networks learn
the data distribution of historical data in a batch updating
style. In our experiment, we use λ1 = 10 from [30] and
λ2 = 2 from [31] for the setting of the improved GAN.
Another hyperparameter M ′ from the consistency term CT
can be set to zero. In all experiments, ncritic is set to 5, so that
there are five discriminator iterations per generator itera-
tion in the alternating training of the adversarial networks.
Once the model has been trained to convergence using this
algorithm, the generator network is able to generate wind
power scenarios that preserve the same data distribution as
historical data. Note that both the generator and discrimina-
tor networks are trained through deep learning, which can
be implemented through various deep learning frameworks.
All our experiments for training GANs are programmed
using Python 3.6 with an open source software library
TensorFlow [38].

V. EXPERIMENTS
In this section, we describe our experiments on a historical
wind power dataset and their results. We first show the sce-
nario generation for two tasks of interest, then we compare
our method with existing methods for scenario generation

Algorithm 1 Proposed GAN for Generating Scenarios.
We Use Default Values of m = 64, λ1 = 10, λ2 = 2,
Niter = 4× 104, ncritic = 5, γ = 0.0003, β1 = 0.5, β2 = 0.9
Require: m, the batch size; λ1 and λ2, weights; Niter,
the number of iterations; ncritic, the number of discrimi-
nator iterations per generator iteration. γ , β1, β2, Adam
hyperparameters.
Require: initial parameters ω for discriminator and θ for
generator
for Niter training iterations do
for ncritic iterations do
# Update parameters for discriminator network
for i = 1, . . . ,m, do
Sample data x∼Pr , variable z∼Pz, a number
ε∼ U [0, 1]
x̃ ← G(z)
x̂ ← εx + (1− ε)x̃
L(i)← D(x̃)− D(x)+ λ1 GP|x̂ + λ2 CT |x ′,x ′′

end for
ω← Adam

(
∇ω

1
m

m∑
i=1

L(i), ω, γ, β1, β2

)
end for
# Update parameters for generator network
Sample a batch of variables {z(i)}mi=1 ∼ Pz

θ ← Adam
(
∇θ

1
m

m∑
i=1
−D(G(z(i))), θ, γ, β1, β2

)
end for

though several aspects. These experimental results indicate
that our method should provide a more efficient and flexible
fashion for the generation of wind power scenarios.

A. DATA DESCRIPTION
The wind power data we use is from the paper [16]. The data
is collected from the NREL Wind Integration Dataset [39].
This dataset is designed to support the next generation of
integration studies and provides wind power data for more
than 126,000 sites in the United States. Historical data with
a temporal resolution of 5 minutes is provided. The wind
farms in Washington State are selected to use as the input
dataset. For different scenario generation tasks, the input
samples are divided into a training set and a validation set.
In general, we can randomly select 20% of the input samples
as the validation set. Since we want to generate wind power
scenarios for a single site and for multiple sites, we need to
prepare different datasets for the tasks.

B. SCENARIO GENERATION AND SPATIOTEMPORAL
CORRELATIONS
For different scenario generation tasks, we can use the same
GAN model. The framework for using the same GAN for
scenario generation is illustrated in Fig. 4. For a single site
of interest, wind farms in geographical proximity are col-
lected as input samples to represent the stochastic generation
dynamics. For multiple sites, instead of inputting historical
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FIGURE 4. Illustration of the framework for using the same GAN for different tasks.

data x(i) for a single site, here we input the model with a data
matrix {x(i)} that is composed of 24 wind farm data points
with a resolution of one hour as the historical observations.

1) TEMPORAL CORRELATION
For scenario generation for a single site, our generatingmodel
is repeatedly inputted with the historical samples until the
discriminator loss converges. Fig. 5 compares the scenarios
generated by WGAN and our method. These samples are
selected by visual inspection. We compare the generated
samples with the real samples and select the samples with the
same patterns. We can see that the samples generated by both
methods can correctly capture the hallmark features (e.g.,
large peak values, daily variations, and ramp events of large
fluctuations) of the wind power profiles from the validation
set, which is used to assess whether the generating model is
well trained.

To evaluate if the generated samples have the same statis-
tical properties as the real samples, we calculate the autocor-
relation coefficient R(h) for them by

R(h) =
n−h∑
i=1

(Si − µ)(Si+h − µ)
n∑
i=1

(Si − µ)2
, (10)

where h is the look-ahead time and S represents generated
samples or realizations with mean µ.

The autocorrelation coefficient measures the degree of
correlation of a time series between two different periods. The
bottom rows of Fig. 5 show that the scenarios generated by
the two methods have very similar temporal correlations with
the historical data.

2) SPATIAL CORRELATION
For scenario generation for multiple sites, we examine
whether our generating model can capture the spatial

FIGURE 5. Comparison of scenario generation for a single site.

correlation of wind power outputs. Fig. 6 shows a comparison
of the wind power scenarios generated by WGAN and our
method. Their dynamic behaviors are similar. By visual
inspection we find the spatial and temporal correlations in
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FIGURE 6. Wind power scenarios and spatial correlation coefficient
colormaps for multiple sites: (top) historical data; (middle) sample
generated by WGAN; (bottom) sample generated by our method.

the real data are correctly preserved by these two methods.
Owing to the resemblance of the generated scenarios and the
historical observations in terms of, for example, peak values,
mean values, and ramp events, the trained discriminator can
hardly distinguish input samples with the same pattern.

To further examine the spatial correlation of generated sce-
narios, we make use of the Pearson correlation coefficient ρi,j
for different wind farms. The Pearson correlation coefficient
is a statistic that reflects the degree of similarity between two
variables. Given the set of time series S, each term ρi,j is
calculated by

ρi,j =
Cov(Si, Sj)
σSiσSj

, (11)

where σ is the standard deviation andCov(Si, Sj) is the covari-
ance of Si and Sj.

We compute the spatial correlation coefficients of gener-
ated samples and historical data, and visualize them in Fig. 6.
The multi-dimensional data of the samples is shuffled, which
makes the spatial correlation more complex to learn. We can
see that all the patches of these three sets of colormaps have
relatively large values. Therefore, our generating model can
provide uswith a useful tool to capture the stochastic behavior
of wind power for correlated multiple sites.

C. MEANINGFUL EVALUATION INDEX AND
IMPROVED PERFORMANCE
One advantage of the WGAN is that the Wasserstein distance
is continuously approximated by training the discriminator

to optimality, which provides a useful convergence index
for research on adversarial networks [32]. This index is not
only useful for debugging and hyperparameter searching, but
also has a direct relation to the quality of generated samples.
Convergence of the index to a small value should correspond
to high quality of the generated wind power scenarios. The
proposedmethod also has the desirable property that the value
function is correlated with the quality of the generated sam-
ples, as can be seen in Figs. 5 and 6. To compare the quality of
generated scenarios, we train the GAN using three different
methods (i.e., weight clipping, GP, and GP and CT) on the
training set and plot the training curves in Fig. 7. For any of
these methods, the discriminator losses of real and generated
samples exhibit large difference in the early stage of training.
This is because the generator has not yet learned the data
distribution of the real data at this stage. Then, the adversarial
networks start training and force the discriminator losses to
gradually converge. When the model is trained to converge,
the Wasserstein distance in Fig. 7(b) is closer to zero than
that in Fig. 7(a). It suggests the data distribution of the his-
torical observations can be better captured by using GP in the
training procedure. Fig. 7(b) and Fig. 7(c) show that we can
further use the CT term to improve the quality of generated
samples. These experimental results indicate the GP and CT
can be used together to improve the quality of generated wind
power scenarios.

An obvious benefit of our method over weight clipping
for wind power scenario generation is that it has a high
training speed. Owing to the use of weight clipping on dis-
criminator network, the GAN is relatively slow to train as
shown in Fig. 7(a). When the GAN is trained using GP,
as shown in Fig. 7(b), it can make better use of the capacity
of discriminator network and achieve a significantly faster
training speed. Therefore, the Wasserstein distance can reach
a minimum at a very early stage of the model training.
Fig. 7(b) and Fig. 7(c) indicate that the CT term has no
obvious improvement for training speed. As can be seen from
the experimental results, ourmethod starts to converge toward
a minimum after about 10,000 iterations [see Fig. 7(c)],
while the GAN trained using weight clipping takes nearly
30,000 iterations [see Fig. 7(a)] to reach the same level.
Clearly, our method can achieve faster convergence than the
existing method for scenario generation.

D. OVERFITTING PROBLEM AND EFFECTIVE
IMPROVEMENT
Deep learning has become a key research topic in machine
learning, but one of the biggest problems of deep neural net-
works is overfitting. This problem is prone to occur especially
in very small training sets. This can be due to the presence
of noise or to a small number of samples, which leads to
insufficient representation of the predetermined rules. In gen-
eral, the performance of the training model is evaluated by
decreasing the quantity of data and by using a validation set
to verify the training results and check the training model to
see how well it performs.
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FIGURE 7. Comparison of training curves of GAN trained on a wind
dataset using (a) weight clipping, (b) GP, and (c) GP and CT.

GANs, like all deep neural network models, are prone to
overfitting when trained on limited data [40]. To explore the
behavior that occurs when adversarial networks overfit the
training set, we train the GAN on a subset of the dataset for

FIGURE 8. Training and validation losses of GAN trained on a small
training set using (a) weight clipping, (b) GP, and (c) GP and CT,
respectively.

multiple sites using three different methods, namely, weight
clipping, GP, and GP and CT. The subset consists of 500 sam-
ples and is randomly selected from the dataset. Fig. 8 presents
the negative discriminator losses for these three methods on
the training set (blue curves) and the validation set (orange
curves). The validation set error is checked every 100 genera-
tor iterations. When overfitting occurs, the model is perfectly
able to match the training data, but cannot adapt to the
validation data. It can be seen from Fig. 8(a) and Fig. 8(b)
that the two losses diverge, suggesting that the adversarial
networks are subject to obvious overfitting and provide an
inaccurate estimate of W (Pr ,PG), at which point all bets
are directly related to the quality of the generated scenarios.
In contrast, from Fig. 8(c), we can see that the discriminator
losses consistently decrease with the almost same trend for
both the training and validation sets, which demonstrates that
our method is less prone to overfitting than the other two
methods when used for scenario generation.

VI. DISCUSSION AND CONCLUSIONS
We have presented a new method using an improved GAN
for scenario generation for wind power production. This
method is data-driven and does not require any statistical
assumptions. We use an alternative technique for enforcing a
Lipschitz constraint to train the adversarial networks. A gra-
dient penalty term is used to improve the training speed. The
data distribution of wind power profiles can be better captured
by our enforced Lipschitz continuity. Experimental results
based on anNRELwind dataset show that our method is more
efficient and of greater practical value than existing methods
for generating wind power scenarios.
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Since our method can implement scenario generation tasks
both for a single site and for correlated multiple sites without
any changes to the model structure, different datasets can
be trained with great flexibility. In addition, as our method
does not rely on any sampling techniques, it can be used to
directly generate a large number of scenarios and can provide
a useful tool for uncertainty modeling in integrated wind
power systems. In future work, we will extend this work
to explore probabilistic forecasting problems over various
forecast horizons and prediction intervals related to the inte-
gration of wind power production.
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