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ABSTRACT Improvements in technology have led to enormous volumes of detailed personal information
made available for any number of statistical studies. This has stimulated the need for anonymization
techniques striving to attain a difficult compromise between the usefulness of the data and the protection
of our privacy. The k-anonymous microaggregation permits releasing a dataset where each person remains
indistinguishable from other k−1 individuals, through the aggregation of demographic attributes, otherwise
a potential culprit for respondent reidentification. Although privacy guarantees are by no means absolute,
the elegant simplicity of the k-anonymity criterion and the excellent preservation of information utility of
microaggregation algorithms has turned them intowidely popular approacheswhenever data utility is critical.
Unfortunately, high-utility algorithms on large datasets inherently require extensive computation. This paper
addresses the need of running k-anonymousmicroaggregation efficiently withmild distortion loss, exploiting
the fact that the data may arrive over an extended period of time. Specifically, we propose to split the original
dataset into two portions that will be processed subsequently, allowing the first process to start before the
entire dataset is received while leveraging the superlinearity of the involved microaggregation algorithms.
A detailed mathematical formulation enables us to calculate the optimal time for the fastest anonymization
as well as for minimum distortion under a given deadline. Two incremental microaggregation algorithms
are devised, for which extensive experimentation is reported. The presented theoretical methodology should
prove invaluable in numerous data-collection applications, including large-scale electronic surveys in which
computation is possible as the data come in.

INDEX TERMS Data privacy, statistical disclosure control, k-anonymity, microaggregation, electronic
surveys, large-scale datasets.

I. INTRODUCTION
Data analysis continues to acquire prominence in the scien-
tific and technological advances of recent years. The vast
amount of digital information stored on a daily basis in
conjunction with major breakthroughs in networking, data
storage, and processing capabilities enable the possibility of
retrieving information from numerous systems, ever more
swiftly and in greater abundance than before. In the white

paper ‘‘The Zettabyte Era’’ [10], Cisco claimed that global
IP traffic was expected to surpass the zettabyte by the end
of 2016 and predicted that it reach two zettabytes in 2019. The
opportunity of transmitting and analyzing such astounding
quantities of information has led to the use of new ways to
advertise, communicate, create, and consume digital content.
In the same vein, it has been reported by the market research
firm International Data Corp (IDC) that the amount of data
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in the world is presumed to grow at a rate of 40% each year,
going from 4.4 zettabytes in 2013 to ten times this amount
by 2020.

Clearly, this fast-paced technological scenario makes it
exceedingly difficult for privacy rights and regulatory laws
to stay up to speed, despite increasingly stricter legisla-
tion such as the recent General Data Protection Regulation
(GDPR) [20] of the European Union. Naïve anonymization
protocols merely consisting in removing identifiers in demo-
graphic surveys and databases are notoriously insufficient.
An experiment conducted in the 1990s by L. Sweeney [45]
famously demonstrated that 87% of the population in the U.S.
could be unequivocally identified using only three parame-
ters: date of birth, gender and ZIP code. Despite the legal
boundaries, under certain circumstances, being identified in a
medical or political study could lead to the loss of a job offer
and many other forms of discrimination.

A. BRIEF PRIMER ON k-ANONYMITY AND
k-ANONYMOUS MICROAGGREGATION
The field of statistical disclosure control (SDC) emerged to
address this type of privacy problems in the publication of
data for statistical analysis. SDC strives to reduce the risk
of confidential information being disclosed while maintain-
ing the usefulness of the data, permitting the release of an
effectively anonymized dataset, invaluable for any number of
demographic studies.

In this field, sensitive attributes in a dataset are commonly
classified as identifiers, quasi-identifiers, and confidential
attributes depending on the level of information contained.

• Identifiers can unequivocally lead to the recognition
of an individual, including attributes such as the
name or the social security number (SSN). These are
customarily removed in anonymized data.

• On the other hand, quasi-identifiers do not suffice to
identify an individual when considered individually,
but in combination with other quasi-identifiers, and in
the context of publicly available information, effec-
tively narrow the identity of the respondents to whom
the records in the dataset refer. Examples of quasi-
identifiers include most demographic attributes such as
address, gender, age, birthdate, job type, height, and
weight.

• Finally, confidential attributes contain sensitive infor-
mation on the respondent.

There exist several well-known methods resorting to the
modification of quasi-identifiers in an attempt to gain effec-
tive anonymity. They do so at the expense of a loss in data
utility, and with significant computational cost. This work
is directed towards the release of the results of electronic
surveys with particular emphasis on preserving the utility of
the data contained. As we shall argue later on, we accord-
ingly choose k-anonymous microaggregation as the method
employed, over alternatives offering stronger privacy guaran-
tees albeit at significant cost in data utility.

Recall that the k-anonymity criterion ensures that each
person cannot be identified due to the existence of, at least,
k − 1 identical tuples of demographic attributes within the
processed dataset. More precisely, this technique consists
in clustering k or more records according to the values of
the quasi-identifiers, which are then replaced with a com-
mon reconstruction tuple, usually the arithmetic mean when
numerical data is involved. To minimize the distortion loss,
these clusters are assembled by similarity of the quasi-
identifiers. A simple example of k-anonymousmicroaggrega-
tion is shown in Fig. 1, representing an electronic survey con-
taining confidential attributes such as hourly wages and polit-
ical preferences. Once a dataset is aggregated in this manner,
a specific respondent cannot be reidentified on the basis
of their quasi-identifiers. Safeguarding the identity of the
individuals participating in the released dataset or electronic
survey hinders a privacy attacker in their effort to gain access
to confidential attributes. Evidently, a larger k-anonymity
parameter reduces the probability of reidentification, but it
does so at the cost of further distorting the data.

B. CONCEPTUAL PROBLEM STATEMENT
Even though the basic privacy guarantees of traditional
k-anonymous microaggregation are conducive to efficient
anonymization with low distortion in the data released,
the computation requirements on large-scale datasets are by
no means negligible. The leading objective of this contribu-
tion is to offer a fast k-anonymization strategy to address the
computational requirements in the special case of electronic
surveys in which the respondents participate over an extended
period of time.

We shall reasonably assume in the sequel that the data from
our electronic survey is collected through a significant span
of time, in relation to the duration of the anonymization pro-
cess. Traditional k-anonymous microaggregation would start
once all the data has been collected. The incremental method
for k-anonymous microaggregation introduced in this work
proposes microaggregating in two algorithmic steps instead,
operating on two portions of the data. The first algorithm,
which we call base algorithm, would start before all the data
is available, say one hour before finishing the data collection
process, and operate on the incomplete portion of data avail-
able at that point. Subsequently, the second microaggregation
process, called here incremental algorithm, would start once
all the data has been collected, and operate on the portion
of the data yet unprocessed. In principle, as we shall see,
the second process could also exploit the results computed
by the first to its advantage.

Naturally, owing to the fact that the anonymization process
starts earlier, the two-step approach should finish faster. Far
less obvious is the fact that this approach also benefits from a
remarkable property ofmost low-distortionmicroaggregation
algorithms. It turns out that the running time of such algo-
rithms is not linear in the number of records, but superaddi-
tive. This means that the running time t(n + m) on a dataset
of n+m records is in general greater than or equal to the sum
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FIGURE 1. Synthetic example of k-anonymous microaggregation in published data with k = 3, relating
various demographic attributes acting as quasi-identifiers, namely gender, age, and ZIP code, with
confidential attributes, specifically income and political affiliation.

FIGURE 2. Example of incremental approach versus traditional one in a 10-hour electronic survey.
Note that the traditional approach would not be usable if the result were required in less than
2 hours. On the other hand, our method allows finishing the process in just 39 minutes. This
motivational example is revisited in the conclusions, showing that our mathematical optimization
enables us to finish even earlier.

of running times corresponding to the individual operation of
the parts, that is,

t(n+ m) > t(n)+ t(m).

That is the case of the maximum distance to average vec-
tor (MDAV) algorithm [14], [18], for example, which indeed
runs in (asymptotically) quadratic time. The underlying
reason is that forming k-anonymous clusters with similar
quasi-identifying values to minimize distortion requires com-
parisons between records in one way or another. Superlinear-
ity is to be expected from any algorithm striving for high data
utility.

As a consequence, the two-step process split into base
and incremental microaggregation will have a shorter total
running time than the traditional one, in addition to the time
saved from starting earlier. This becomes of capital impor-
tance for the anonymization of large-scale electronic surveys,
which are severely affected by these typically quadratic run-
ning times. We shall see that the work presented here exploits
both advantages in a synergic manner, from a mathematically
optimized perspective.

C. EXAMPLE OF INCREMENTAL MICROAGGREGATION
We illustrate our proposal with an example of electronic
survey represented in Fig. 2. The figure shows that the

base algorithm starts when most of the data is available.
Next, the incremental algorithm starts when the base one
finishes and all the data is available. Our method, consisting
in running the traditional algorithm in two portions, allows
anonymization to be completed in 39 minutes after the com-
pletion of the electronic survey, instead of two hours. The
incremental algorithm is typically ran on a much smaller
dataset, therefore, even if the same microaggregation algo-
rithm were used, it would still finish earlier than the tradi-
tional one. This permits the two-step process to considerably
outperform the traditionalmethod in time efficiency. The time
saved is possible not only thanks to the head start, but also to
the aforementioned property of superadditivity of the running
time of most high-utility microaggregation algorithms.

The two-step approach proposed may be perfectly suitable
in most forms of electronic surveys, but we must caution that
it may not be applicable to processes such as elections in
which ballot boxes must remain closed until the end.

D. SPECIFIC CONTRIBUTIONS
Specifically, the leading object of this paper is a novel, opti-
mized methodology to employ k-anonymous microaggre-
gation in a convenient, incremental fashion. We investigate
how to implement incremental microaggregation efficiently,
taking also into consideration the superlinearity of the
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microaggregation algorithms involved, through a number of
mathematical models. In addition, we thoroughly analyze the
impact on data distortion from an empirical perspective.
• Different from microaggregation streaming, our incre-
mental approach proposes two distinct stages, optimized
according to the availability of data over time and the
protection algorithms employed, ultimately striving to
reduce the overall computation time in application sce-
narios that demand it, at the expense of an acceptable
loss in distortion.

• Precisely, the initial motivation of this work is to take
advantage of the time gained, head start, when process-
ing the initial data partition before receiving all data.
This strategy by itself can result in a large amount of time
saved. Additionally, the prevailing methods to perform
k-anonymous microaggregation run in superlinear time,
typically quadratic. Whenever the running time is super-
additive, any sort of partition will yield a faster running
time.

• In practice, these methods are directed towards time-
critical applications, where the time needed to publish
the data is more relevant than a limited degradation
in distortion. We shall demonstrate that publishing an
anonymized version of the results of a survey involving
a significant number of participants can be done in
minutes instead of hours, at the expense of quadratic
distortion increments well under 10%.

• Accordingly, we use two microaggregation algorithms
based on the aforementioned MDAV algorithm: a two-
step MDAV application, and a nearest neighbor strategy,
after an initial application of MDAV. It shall become
apparent that the proposed approach can actually be
adapted to other microaggregation algorithms and pri-
vacy criteria.

• However, our extensive experimental results show that
this method provides better running times while not
introducing high rates of distortion loss, even without
a head start, when used on datasets containing a high
number of attributes and records. As we focus on large-
scale data, a synthetic dataset and an extended version of
‘Census’, popular in the SDC literature, have been used.

From a conceptual perspective, prepartitioning is a well-
established strategy to reduce computation in high-utility,
superadditive algorithms. Traditionally, prepartitioning takes
into consideration demographic similarity to preserve data
utility. For numerical data, (square) distance in the Euclid-
ian space is typically employed. In this work, we take a
first step towards extending this spatial strategy along the
time domain. We shall demonstrate, both theoretically and
empirically, that privacy-preserving algorithms highly benefit
from our mathematically optimized scheduling framework.
The relative value of our proposal with respect to traditional
prepartitioning is summarized in Fig. 3.

The formulation of the problem as a way to exploit prepar-
titioning in the time domain rather than in the space domain,
both incremental microaggregation algorithms proposed and

FIGURE 3. Our work proposes to consider data availability over time in
addition to demographic similarity for substantially faster
microaggregation, due not only to superadditivity, but also to
mathematically optimized scheduling.

their variations, all of the mathematics in our theoretical
analysis, including those in the main text as well as in the
appendix, and the experimental results, are entirely novel
work and thus our own contribution.

E. ASSUMPTIONS AND APPLICABILITY
The potential applicability of this work encompasses infor-
mation systems designed for the collection, analysis, or dis-
semination of large amounts of anonymized data over
extended periods of time in relation to the running time of
a one-step microaggregation method. The ulterior purpose
is permitting the swift release of data for statistical study,
in contexts including, but not limited to, socioeconomics,
healthcare, targeted advertising, personalized content recom-
mendation, social networks, and certain forms of electronic
voting.

Wemust caution that the underlying applicationmust make
part of the data available for anonymization before all of it is
gathered. This may be possible in most forms of electronic
surveys, but may not be applicable to certain electoral pro-
cesses where ballot boxes must remain closed until the end of
the election. A conceptually summarized list of assumptions
and applicability of this work is provided in Fig. 4.

It is important to stress that the use of k-anonymous
microaggregation is not essential to our methodology, which
would be readily applicable to a number of privacy enhance-
ments (at the cost of utility) for offline data release, such as
l-diversity or t-closeness, approaches discussed in §II. The
key assumptions in this work are quite general: the availabil-
ity of data over time, and the nonlinearity of the anonymiza-
tion process; hence its wide applicability.

F. CONTENTS AND ORGANIZATION
The rest of this paper is organized as follows. We briefly
review in §II the current state of the art in k-anonymous
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FIGURE 4. Conceptually summarized list of assumptions and wide applicability of this work.

microaggregation metrics and algorithms. §III formalizes the
problem investigated, and introduces the metrics that charac-
terize the effectiveness and viability of the methods proposed
later. Specific algorithms are detailed and theoretically ana-
lyzed in §IV, whilst §V presents the experimental analysis
and outcomes of these heuristic methods. Finally, conclusions
are drawn in §VI.

II. BRIEF REVIEW OF THE STATE OF THE ART ON
k-ANONYMOUS MICROAGGREGATION
This section provides an overview of the state of the art
on those aspects of the field of statistical disclosure control
more pertinent to this work. We focus on the methods and
algorithms used to perform k-anonymous microaggregation
while mitigating data utility loss. Additionally, we revise sev-
eral attacks against anonymous usingmicroaggregation, from
an engineering perspective, arguing in favor of k-anonymity
when data utility is critical, over alternatives offering stronger
privacy guarantees at a higher cost in terms of information
loss. An extensive survey of legal, socioeconomic aspects on
the field of privacy can be found in [12].

A. k-ANONYMOUS MICROAGGREGATION IN THE
CONTEXT OF STATISTICAL DISCLOSURE CONTROL
The field of SDC has been briefly presented and motivated
in the introductory section. One of the methods initially
proposed in the field of SDC was additive noise, studied
in [4], consisting in adding random noise to the original
dataset. Aside from the strong impact on distortion loss being,
the noise introduced could be statistically dependent on the
confidential attributes, posing a high disclosure risk. Since
then, methods have been proposed from a more systematic
perspective in order to anonymize datasets under certain con-
straints, data utility, privacy risk, and time efficiency.

A few years later, the k-anonymity model was presented
in [39] and [45]. We have explained that this privacy crite-
rion ensures that reidentification based on quasi-identifiers is

unfeasible, as there are, at least, k records sharing the same
tuple of quasi-identifiers. Although there exist newly pro-
posed methods aiming to enhance this privacy criterion [23],
k-anonymity can still be viewed as a baseline criterion with
high data utility. Original computational methods to achieve
k-anonymity were based on the generalization and suppres-
sion of the quasi-identifiers. This was later modified into
the k-anonymization criterion based on a microaggregation
approach [1], [13], [15], [16], [18], used in the early nineties
by the Eurostat agency. This showed that a similar outcome
could be achieved without introducing or suppressing data.
This model offers algorithmic and mathematical tractabil-
ity without incurring in unmanageable computational com-
plexity or prohibitive loss in data utility. Recent work [38]
shows that k-anonymous microaggregation offers excellent
data utility in machine learning applications. Specifically,
it preserves the statistical dependence between demograph-
ics and confidential attributes, as macrotrends inferable by
machine learning algorithms. Widely recognized in the SDC
literature, the concept of k-anonymity through microaggre-
gation is employed in other fields, beyond the publication of
anonymized databases, such as artificial intelligence [17].

Different measures for data utility loss for numerical data
can be found in the SDC literature, mainly relying on some
form of distance, such as Euclidean distance or Minkowski
distance. The nearly universally accepted measure is the sum
of squared errors (SSE) [15], [22], [25], [29], defined as the
sum of the squared distances from a common reconstructing
value, ideally the mean of the points in the microaggregation
cell.

B. A CRITICAL VIEW OF k-ANONYMITY AND
OF ITS VARIANTS
Despite the popularity of k-anonymity as a privacy measure-
ment criterion in the SDC community, this criterion is based
entirely on processing the quasi-identifiers and it is important
to stress that it does not always prevent the disclosure of
confidential attributes.
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In some cases, confidential attributes may be repeated or
too similar. Revisiting the example presented in Fig. 1,
an attacker who may know the age, gender, and ZIP code
of one of the two females belonging to the second cluster
knows that their hourly wage is in the range of $37 and
$41. This inference is known as homogeneity or similarity
attack. The attack is often formulated in qualitative terms as a
privacy deficiency of k-anonymity. Observe however that in
practice, the severity of the attack depends on the prevalence
of the sensitive values of the confidential attributes, and
the microcell size k . For example, the prevalence of type-
2 diabetes in the general population in the U.S. is close to
9%, but for senior citizens 65 years and older that figure may
rise to more than 25%. For k = 10, the risk of homogeneity
attack in a microcell corresponding to aged individuals, with
p = 1

4 , can be coarsely estimated as pk = 1/1, 048, 576, less
than once in a million. For microcells representative of the
average population, with p=9%, the risk is even lower. And
even for high prevalence nearing p = 1

2 in symmetric studies,
pk = 1/1024.

Certain countermeasures, such as p-sensitive k-anon-
ymity [43], [46], have been proposed to mitigate this kind
of attacks. This stronger requirement advocates for at least
p different values for each confidential attribute within each
microcell. Although privacy is improved, it comes at the price
of data utility. A slight generalization of this concept was
introduced in [24] and [28], and termed l-diversity. It requires
at least l ‘‘well-represented’’ confidential attributes. Depend-
ing on the definition of well represented, l-diversity can be
reduced to p-sensitive or be more restrictive, again at the
expense of higher information loss.

Attacks against k-anonymity of a more probabilistic
nature, known as skewness attacks, exploit the discrepancy
between the distribution of confidential attributes of the entire
table, or the population, and the distribution within a given
k-anonymous cell. In the hypothetical example in Fig. 1,
suppose that it is widely known in the country of reference
that 33% of the entire population usually votes for the demo-
cratic party. A privacy attacker looks for a female individual
aged 39 and resident in the area with ZIP code 9213. The
attacker notes that there is a 66% probability that this indi-
vidual is favorable to the democrat party, which is well above
the population’s average. In order to address this risk, the
t-closeness criterion [27] requires that the distribution of a
confidential attribute in a concrete cluster be similar to the
distribution of the overall dataset. Even though differential
privacy [11], [19] was conceived for online querying, and this
work deals exclusively with microdata release for offline use,
the criterion may be implemented as a form of t-closeness,
as described in [42].

Strongly restrictive privacy criteria such as t-closeness, or
differential privacy under the representation in [42], require
that the within-cell probability be similar to that of
the table or the general population. However, unveiling
the absence or low prevalence of a sensitive condition
below the population’s average may pose no privacy risk.

In the above diabetes example, a cell comprising only
healthy individuals may be acceptable from a privacy
perspective.

It is essential to bear in mind the general principle that
stronger privacy criteria come at the expense of a higher price
on data utility. Hence, these restrictive flavors of k-anonymity
must be employed with caution in applications where data
utility is critical, as in certain medical studies directed toward
the diagnosis and treatment of serious ailments, or might
simply be rendered inapplicable.

Finally, the attacker can gain insight if he is equipped with
certain side information. In the synthetic example of Fig. 1,
imagine that the attacker knows that the individual is an
African-American male aged 22 who lives in the area with
ZIP code 94024. Suppose that external demographic studies
pointed out that African-Americans of this age were unlikely
to support the republican party. The attacker could discard
2 out of 3 records and guess the individual’s hourly wage.
This form of statistical inference is known as background
knowledge attack. These kind of attacks are studied in [44],
where the authors propose strategies based on graph theory
and inference paths.

Although the methodology proposed in this work is illus-
trated with k-anonymous microaggregation, it is readily
extensible to most of the variants aforementioned.

C. ON THE COMPUTATIONAL COMPLEXITY OF
k-ANONYMITY
A k-partition is said to be optimal when the SSE is mini-
mum, but as shown in [33], attaining optimality is NP-hard.
This fundamental result was later refined in [2], showing
that the problem remains NP-hard even in the substantially
simplified case of a ternary alphabet, k = 3, and length
of the rows unbounded. In order to provide a lower bound,
Bonizzoni et al. [3] showed that the problem is APX-hard
when using a binary alphabet and k = 3. Unsurprisingly,
current methods for microaggregation are heuristic, and strive
to form partitions of k to 2k−1 records per cluster [15], min-
imizing the SSE. The problem of constructing k-anonymous
clusters with low SSE has been widely studied in the
k-anonymity literature. Because they involve record com-
parison in one way or another, many heuristics for low-
distortion k-anonymous microaggregation are quadratic,
which makes dealing with large datasets computationally
challenging.

Several effects affecting the complexity of k-anonymous
microaggregation have been studied. In order to character-
ize the effect of input and output homogeneity, Bredereck
et al. [6] introduce two new parametrizations: tin defines
the number of different input rows and tout the number of
different output rows. It is shown that k-anonymity is fixed-
parameter tractable for tin and that the problem becomes
solvable in polynomial time when there is only one output
row tout for full homogeneity. However, the problem is still
NP-hard and not fixed-parameter tractable for more than one
output row.
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Pattern-guided k-anonymity [5] aims to reduce the running
time by letting the users express the differing importance of
attributes. The complexity of the algorithm is relaxed by sup-
pressing combinations of attributes that contain less informa-
tion. In a demographical study of vote intention that collects
data about the house income and the marital status of the
respondents, the income input could be related to the marital
status since the majority of participants surpassing a certain
amount of earnings are married, defined as a pattern vector.
Therefore, the marital status attribute would be suppressed
and associated to the house income. This approach achieves
a faster running time by reducing the data to process at the
cost of an information loss, for instance, the information on
an individual who is single and earns more than the threshold
amount could be lost.

From a more practical perspective, recent efforts to tackle
the stringent computational requirements of k-anonymous
microaggregation resort to parallelization [31].

D. ALGORITHMS FOR k-ANONYMOUS
MICROAGGREGATION
Different forms of microaggregation have been proposed
in the SDC field, mainly driven by the similarity criterion
used for clustering the records. These can be categorized
into fixed-size and variable-size methods. The maximum
distance (MD) algorithm [15], and its variation, the aforemen-
tioned MDAV algorithm [14], [18], more efficient in terms of
computational complexity, are fixed-size algorithms, which
implies that all groups but one, usually the last, contain k
records. These algorithms are particularly efficient in terms
of data utility for many data distributions, while requiring a
relatively simple implementation.

On the other hand, variable-size methods try to exploit
the possibility that different cell sizes lead to lower distor-
tion, as long as all groups contain at least k records. Some
popular implementations of variable-size algorithms are the
µ-Approx [16], the minimum spanning tree (MST) [26],
the variable MDAV (VMDAV) [40], and the two fixed ref-
erence points (TFRP) [9] algorithms. Attempts to bypass
the complexity of multivariate microaggregation focus on
projections onto one dimension, but are reported to yield a
much higher disclosure risk [32].

Last but not least, we would like to cite two recent exam-
ples of k-anonymous microaggregation algorithms as an
illustration of current research avenues in the field, beyond
the functionality and applicability of the more traditional
approaches aforementioned. One of them [36] explores an
elegant extension of the usual SSE metric that contem-
plates not only the distortion of the quasi-identifiers due
to aggregation, but also the valuable statistical dependence
between quasi-identifiers and confidential attributes, in order
to improve the statistical reliability of demographic studies.
The second extension [37] explores in great detail a proba-
bilistic variant of the k-anonymity criterion to address surveys
with uncertain respondent participation.

E. RELATION WITH OTHER INCREMENTAL APPROACHES
In closer relation with the incremental method proposed in
this paper, unsurprisingly, the basic notion of processing
data as it arrives is by no means new in the field of SDC.
A representative example is the brief yet insightful study on
protection of dynamic databases presented in [7]. The authors
address the challenge of microaggregating a continuously
growing database, in order to release a series of frequently
updated versions. Whilst the specific solution proposed deals
exclusively with l-diversity, it can be immediately modified
to incorporate k-anonymity, just as our own method can be
readily extended to various flavors of anonymity criteria.
There exist, however, great differences with respect to our
approach, reaching even the most fundamental level.
• The incremental microaggregation process in [7] oper-
ates in a continuous stream of data samples, queuing,
at most, l different values for the confidential attributes,
and publishing marginally larger, protected versions of a
dynamic database. Our proposal splits the data coarsely
into two batches, and a single resulting database is pub-
lished. The streaming approach addresses the functional
requirement of frequent publication updates, whereas
our proposal to split the data in batches obeys to a
computational demand.

• Because Byun et al. [7] publish several updates, the pri-
vacy criterion employed, l-diversity, must be satisfied
not only for each individual database, but for the entire
historic sequence of databases accessible by a pri-
vacy attacker with memory, that is, capable of cross-
referencing records among updates. This is not a concern
in our study.

• Yet another difference, this time of less significance,
is the measure of distortion employed. The microag-
gregation algorithm in [7] constructs hyperrectangu-
lar microcells, and accordingly the authors advocate
for a measure of information loss based on the sum
of interval lengths for each dimension, relative to the
dynamic range of each attribute. This measure cannot
distinguish, for example, between data samples uni-
formly distributed along a microinterval, and identical
samples with a single outlier. Our measure of distortion
is effectively a form of statistical variance, character-
izing the dispersion of a distribution on any microcell
shape.

In general, we should stress that despite the rather lax use
of the term incremental in the literature, the specific focus of
this paper is radically different from any existing methods.
We shall see that our proposal resorts to microaggregating
data in two batches, in a manner carefully timed to optimally
advance the end result, as well as to reduce the degradation in
terms of data utility. Further, our method is a mathematically
founded running-time strategy that releases the data only
once, so that no additional privacy risks arise from cross-
referencing several instances of published tables. Taking
into consideration those fundamental differences, to the best
of our knowledge, the specific approach of spatiotemporal
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FIGURE 5. Microaggregation interpreted as a quantization problem on the quasi-identifiers. The
shape of the cells attempts to illustrate how a real microaggregation algorithm would work on an
example with synthetic samples in R2, for k = 5. The algorithm in question is MDAV, cited in §II.
A detailed description is given later on in §IV.

prepartitioning with optimal scheduling put forth in this work
is entirely novel.

III. FORMAL STATEMENT OF THE PROBLEM OF
INCREMENTAL MICROAGGREGATION
This section formally presents the proposed model for
k-anonymous incremental microaggregation, which aims to
reduce the amount of time needed to anonymize a dataset,
having as a reference the traditional alternative for microag-
gregation once all the data is available, following any of the
approaches mentioned in §II.

A. FORMULATION OF MULTIVARIATE
MICROAGGREGATION AS VECTOR QUANTIZATION
We briefly review the formulation of multivariate microag-
gregation as a vector quantization problem previously
described in [34] and [35]. The traditional k-anonymous
microaggregation algorithm partitions a set of quasi-
identifiers into cells of at least k samples. The scope of
our analysis is limited to numerical data, meaning that,
we assume that the quasi-identifiers aggregated are repre-
sented by n points X = x1, . . . , xn placed in the Euclidean
spaceRm of dimensionm. These points are grouped into cells
indexed by q = 1, . . . , Q > n/k . Let xj define the jth record
and x̂q the mean value or centroid of the samples aggregated
in the cell where xj is assigned. The construction of cells,
gathering at least k nearby samples, is represented by the cell-
assignment or quantization function q(j). Before releasing
the dataset, each quasi-identifier tuple xj is replaced by its
perturbed version x̂j, the mean of the corresponding cell q =
q(j). This determines a centroid-assignment or reconstruction
function x̂(q). This process is conceptually depicted in Fig. 5.

B. FORMULATION FOR INCREMENTAL k-ANONYMOUS
MICROAGGREGATION
Consider a fixed number of records n, fixed dimension m,
and a fixed k-anonymity parameter k . Let t represent the time
required to microaggregate the entirety of the data using a
traditional algorithm as MDAV.

Suppose now that we proceed to microaggregate the data
in two portions. A large portion of the data, consisting in

n0 records, is microaggregated first, with a conventional
microaggregation algorithm, which we shall call base algo-
rithm. Next, a smaller portion of n+ records is processed
with an incremental algorithm that aggregates the new data
to the old one, in such a manner that the overall result is
k-anonymous.
Let ν ∈ [0, 1) denote the fraction of the data processed

incrementally, so that ν = n+/n. In practice, ν may be
small not to degrade the overall distortion with respect to
the traditional one-step approach, formally representable with
ν = 0. For convenience, the complement 1 − p of any
expression p is occasionally denoted by p̄. In this notation,
ν̄ = n0/n is the fraction of base data. In our analysis, n0
and n+ are bijectively expressed as n and ν. This notation
is represented in Fig. 6.

1) RUNNING TIMES
For consistency, all times τ are relative to the running time
t of the traditional method. For instance, if t0 represents
the running time of the baseline algorithm, the relative time
is τ0 = t0/t . Following this notation, let τ+ represent the
relative running time of the incremental algorithm on the
incremental portion ν of the data. The head start of the base
algorithm is defined as τ−, also taking the duration t of the
traditional method as time unit.

Assume for simplicity that at least toward the end of the
electronic survey, data arrivals are approximately uniformly
paced. We introduce a head start coefficient ς representing
the amount of time, always in our normalized units, required
for a fraction ν of samples to arrive. Thus, τ− = ςν. Although
such uniformity is really only required by our analysis for a
subrange of ν of interest, extrapolating it to all the data would
give τ− = ς for ν = 1. In this case, the head start coefficient
ς would represent the time required for the entire survey,
in relation to the time required by the traditional microag-
gregation algorithm. For instance, in an eight-hour electronic
survey followed by a traditional algorithm that needs two
hours to run, this coefficient would be ς = 4. Concordantly,
ς � 1 indicates very fast data availability, or slow traditional
microaggregation. The opposite case, ς � 1, for which
the data arrives very slowly in terms of the time required

VOLUME 6, 2018 60023



D. Rebollo-Monedero et al.: Incremental k-Anonymous Microaggregation

FIGURE 6. Notation in the formulation of the incremental microaggregation problem.
τ defines the relative time of each computational process in comparison with the time
needed to run the traditional algorithm. The time saving obeys to two factors. First,
the typical super additivity of the traditional microaggregation algorithms which implies
that τ0 + τ+ 6 τ = 1, and secondly, the head start τ−.

FIGURE 7. The relative head start time is directly related to the pace with which data arrives and
the incremental data ratio ν. To characterize this dependence in the simplest manner, we introduce
the head start coefficient ς . In this paper we work under the assumption of uniform arrivals,
precisely the leftmost plot of this figure, for which the head start relative time is linearly
approximated by τ− = ςν.

for microaggregation, should allow the greatest gain when
resorting to incremental microaggregation instead. We shall
demonstrate that both caseswill in fact yield a significant time
gain, and that indeed, the case of slow arrivals, will be more
convenient.

Although for mathematical tractability this work is limited
to uniform arrivals, more broadly, we could encounter the
type of arrivals profiled in Fig. 7, in which ς would play
the role of derivative of τ− at ν = 0, offering a linear
approximation to its real trend.

Finally, 1τ characterizes the relative time gain due to
incremental microaggregation with respect to traditional
microaggregation on the entire data. If the base algorithm
were to finish before the available head start period had run
out, that is, if τ0 6 τ−, then 1τ = 1− τ+. Otherwise, if the
head start is insufficiently generous, that is, τ0 > τ−, then,

1τ = τ− + 1− τ0 − τ+.

Consequently,

1τ = min {τ− + τ̄0, 1} − τ+.

We wish to achieve a large relative time gain 1τ , which
will depend on the design of the incremental algorithm,
the portion ν of incremental data chosen, and the head start
τ−, which in turn depends on the arrivals coefficient ς .

2) CRITICAL AND OPTIMAL DATA RATIO
In the conceivable event that τ0 6 τ−, it is intuitively clear
that the time from the end of the base algorithm until the
start of the incremental algorithm is effectively wasted, with
no computation being carried out. In this work, ν− denotes
the critical data ratio for which τ− = τ0, that is, when the
running time of the base algorithm matches the head start
time.

Let ν? denote the optimal data ratio for incremental
microaggregation, defined as the incremental data ratio max-
imizing the time gain:

ν? = argmax
ν

1τ.

As expected, ν? 6 ν−, and consistently, τ0 > τ−. Otherwise,
part of the head start would be time wasted without computa-
tion. This can also be seen by arguing that 1τ is decreasing
for ν > ν−.

3) DATA RATIO FOR A DEADLINE
Aiming to maximize the time gain may not be necessary
if the requirements imposed by the application at hand
are simply expressed by means of a deadline. We shall
see in §V-B.3, that larger data increments ν will gener-
ally have a distortion impact. Suppose that we wish to
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choose the smallest ν possible in order to satisfy the given
deadline.

Let τend = tavailable/ttraditional define the amount of relative
time available and τ ? < τend define the relative time required
using the optimal data ratio ν?, the earliest our method can
finish. Let νend define the data ratio that has to be selected to
fill the span of time available and reduce the negative effect on
data utility. As we argued before, not to waste head start time
without computation, νend 6 ν−, or equivalently, τ0 > τ−.
To meet the deadline exactly, for the smallest possible ν with
the smallest distortion impact, we wish to satisfy

τ0 + τ+ = τend + τ−.

Since νend 6 ν−, we may reuse the previous definition of
the relative time gain before the saturation region,

1τ = τ̄0 + τ− − τ+,

with τend = 1−1τ .

4) DATA UTILITY LOSS
Splitting the data for microaggregation may have an impact
on the distortion incurred, as the two-step process cannot
group samples belonging to different time segments, even if
the quasi-identifiers are spatially close in Euclidean distance.
This motivates the distortion metrics introduced next, and the
empirical analysis in §V-B.3.

Recall that is usual in traditional microaggregation to con-
duct a attribute-wise, unit-variance normalization prior to
any manipulation of the data, inherent to the conventional
definition of distortion error in SDC.

In the SDC literature distortion is conventionally evaluated
as the quotient between the sum of squared errors (SSE) and
the sum of squares total (SST). The SSE is defined as the sum
of squared differences between each sample and its cell mean
(centroid). Similarly, SST is defined as the sum of squared
differences between each sample and the mean of all samples.
Owing to the attribute-wise unit-variance normalization on
the data, the total variance of the data is the number of
dimensions m, and SST = mn. Therefore, the customary
distortion criterion SSE/SST in the SDC literature is identical
to the total variance per sample widely employed in the field
of vector quantization:

D def
=

SSE
SST
=

1
mn

n∑
i=1

∥∥xi − x̂i∥∥2 .
When performing microaggregation as the two-step pro-

cess described, we should carefully average the distortion of
each step to compare fairly with the distortion D on all data
using the traditional algorithm. Let D0 and D+ be the dis-
tortions of the base algorithm and the incremental algorithm,
respectively.We define the total distortionDT , when comput-
ing the k-anonymous microaggregation incrementally, as the
weighted sum of both base and incremental distortion, pre-
cisely,DT

def
= ν̄D0+νD+, which gives us exactly the average

distortion per sample faithful to the original definition.

To facilitate comparisons, the measure considered will be
relative to the traditional algorithm distortion. That is, define
δT

def
= DT /D, and finally, let δ represent the relative distortion

loss measured as

δ
def
=

DT −D
D

, or equivalently, δ = δT − 1.

It is natural to expect that the time partition effectively
carried out by our proposal should have an impact on the
overall distortion, as data points spatially close may end up
split apart in the two time segments. Indeed, this will be the
case, and we shall expect that, in general the relative overhead
δ in quadratic distortion be positive, although hopefully, only
by a small percentage. This extra distortionwill be the price to
pay for the considerable time gains obtained with the optimal
and deadline-based strategies previously outlined.

5) EFFECT OF THE NUMBER OF DIMENSIONS ON THE
OVERALL DISTORTION
This section merely offers an extremely informal argument,
by no means a rigorous proof, which anticipates a some-
what counterintuitive yet extremely convenient experimental
finding regarding the distortion overhead δ just defined. The
argument will also help us understand the real impact of
our proposal and interpret the experimental results from a
better-informed perspective. We have argued that δ should
typically increase with ν, and constitute the price to pay
for achieving substantial time gains. We shall however find
quite fortunately that for datasets with a large number m of
nonredundant quasi-identifiers, the distortion penalty will be
unexpectedly small.

We assume that the reader has certain conceptual
familiarity with the fundamental principles of vector quanti-
zation [21]. Informally, suppose first the simple case of one-
dimensional microaggregation, that is, m = 1. For samples
approximately uniformly distributed, traditional microaggre-
gation will produce a certain distortion D. Suppose further
that the set of samples were split at random into two, cor-
responding to an extreme value of ν = 1

2 , with the proviso
that the arrival times were independent from the demography
of the respondent. Then, on each partition, samples would be
on average twice more distant from each other, the average
quadratic distortion for each part should be roughly four times
higher, and the same would apply to the overall distortionDT
averaging the two parts. In conclusion,

DT /D ≈ 4 for m = 1.

This suggests that for very low-dimensional microaggrega-
tion we should avoid at all costs a large value of ν, or avoid
this approach altogether if time is not of the essence. What
about m → ∞? We claim that in that case, the distortion
overhead would be negligible.

We provide here a justification in terms of m-dimensional
hyperballs roughly representing microcells in the space
of m-dimensional data records. Recall that spherical balls
minimize the moment of inertia (normalized squared
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distortion) of convex polytopes approximately tessellating a
high-dimensional Euclidean space. For this reason, cells in
high-dimensional vector quantization should approach this
ideally shape [21].

Accordingly suppose that k-anonymous microcells con-
taining m-dimensional quasi-identifiers resulting from a
microaggregation algorithm with excellent performance in
terms of low distortion could be suitably approximated by
m-balls, with k points roughly uniformly distributed inside
them. The volume of a ball in m dimensions is

Vm(R) =
π

m
2

0(m2 + 1)
Rm,

where R is the radius of the ball and 0 denotes the Euler
gamma function. In many dimensions, most of the volume
of anm-dimensional ball is concentrated on its crust, because
the volume increases with the mth power of the radius. To see
this, imagine two concentric 10-dimensional balls with radius
R = 0.9 and R′ = 1, respectively, and let Vcrust = V ′ − V
denote the volume of the crust. Then,

V/V ′ = (R/R′)10 = 0.910 ≈ 0.349,

which means that approximately 65% of the volume is con-
centrated in the ball’s crust. If the number of dimensions were
increased further, the amount of volume concentrated in the
balls crust would eventually approach 100%.

But if most of the volume is concentrated in the ball’s crust,
most of the data samples should be close to the surface, and
the difference between each sample and its centroid would by
roughly the radius of the m-dimensional ball:

D =
1
mn

n∑
i=1

∥∥xi − x̂i∥∥2 ≈ 1
m
R2.

Additionally, if we randomly reduce the points in the
dataset from n to n/2 with ν = 1

2 , maintaining a uniform
distribution and keeping k points per cell, the volume of
the m-dimensional ball will double. Strikingly, the effect of
doubling the volume will leave the radius almost unaffected,
since for V ′ = 2V the radius is R′ = m

√
2R, but m

√
2 −−−→

m→∞
1. In the previous example of two ten-dimensional balls,
the effect of doubling the volume increases the radius by a
meager 10√2 ≈ 1.07. And we have seen that the distortion is
a quadratic function of the radius, regardless of the dimension
m. Therefore, if the radius grows only slight, so will the
distortion. Precisely,

DT /D ≈ 2
2
m −−−→

m→∞
1,

as claimed.

6) INERTIAL COEFFICIENT
A goal of our project consists in designing algorithms to
process large datasets in two steps enabling the possibility of
starting the process before receiving the whole dataset. Con-
sider the following incremental microaggregation strategy,
which reuses the cells and centroids constructed by the base

algorithm. For each incremental data point, we simply select
a previously formed nearby cell to which the point could
be adjoined. The simplest approach to adjoin the new point
would consist in choosing the nearest centroid. However,
adding a new sample will alter the cell’s centroid, affecting
the distortion of rest of samples in cell. A slightly better
strategy follows, which contemplates updating the centroid
to minimize the within-group distortion, and the consequent
effect on the other points originally assigned to the corre-
sponding cell.

Consider a set of points x1, . . . , xn ∈ Rd , representing
in this subsection the points of a cell rather than the entire
dataset, despite the reuse of n, and define the random variable
(r.v.) X , uniformly distributed over this set. Their centroid is
the mean µ = EX = 1

n

∑
j xj, and denote the variance by σ

2.
In this notation, the SSE of the set is nσ 2. Let y ∈ Rd be the
new point to be added to the set, resulting in a modified cen-
troid µ′, and a modified SSE′. Without the centroid update,
the resulting error would in general be greater. By iterated
expectation, the new centroid is

µ′ =
n

n+ 1
µ+

1
n+ 1

y.

Directly from its definition, the resulting SSE is

SSE′ = n E ‖X − µ′‖2 + ‖y− µ′‖2,

where

E ‖X − µ′‖2 = σ 2
+ ‖µ− µ′‖2.

But y − µ′ = n
n+1 (y − µ) and µ − µ

′
=

1
n+1 (µ − y).

Consequently,

SSE′ = nσ 2
+

n
(n+ 1)2

‖µ− y‖2 +
(

n
n+ 1

)2

‖y− µ‖2

= SSE+
n

n+ 1
‖y− µ‖2,

giving the SSE increment

1SSE =
n

n+ 1
‖y− µ‖2,

lesser than the increment ‖y − µ‖2 incurred if the centroid
had not been updated, particularly for small cell sizes n.

The above reasoning leads to the following strategy to
adjoin a new point y to an anonymized microdata set, through
selection of the optimal (quantization) cell q? among all
possible cells, indexed by q, of size nq, with centroid x̂q:

q? = argmin
q

nq
nq + 1

‖y− x̂q‖2.

Note that the squared distance to the nearest centroid is
weighted by a coefficient that increases with the cell size,
to account for the effect of the centroid update on other points
in the cell. The centroid update will produce a final SSE
smaller than if the centroid were left unchanged. Evidently,
for this latter, suboptimal strategy, the best choice would
have been the naïve one, namely, to select the closest cen-
troid without regard for the size of the corresponding cell,
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TABLE 1. Incremental algorithms.

that is, argminq ‖y − x̂q‖2. The naïve strategy would also
be approximately optimal in the case of macroaggregation,
where nq > k � 1 and nq

nq+1
≈ 1.

In either case, the computation required is negligible with
respect to the alternative of microaggregating the n + 1
points from scratch, at least for static algorithms such as
MDAV. Finally, because we have assumed that the centroids
are stored for this type of procedures, we point out that
computing and storing the updated centroid x̂ ′q is a trivial task.
It suffices to reuse the iterated-expectation equation in the
above reasoning,

x̂ ′q =
n

n+ 1
x̂q +

1
n+ 1

y,

a mere convex combination of the old centroid with the new
point.

The presumably small amount of points that can be
adjoined in this fashion, before a fresh microaggregation
would significantly improve the overall distortion, remains
to be assessed experimentally. Evidently, cells of sizes
2k or larger created by adjoining points could be split to lower
the distortion.

IV. THEORETICAL ELEMENTS AND ALGORITHMIC
PROPOSALS
While the essential aspect of our contribution is the reduc-
tion of computational cost, a high distortion loss must also
be avoided. We shall seek the best compromise between
time efficiency and minimum statistical change of the data
when anonymizing. Bearing this in mind, two incremental
microaggregation algorithms are devised here and evaluated
experimentally later on.

Our analysis and comparisons will be based on the use
of MDAV [14], [18], as both traditional and base algorithm,
one of themost widely acceptedmicroaggregation algorithms
in the SDC literature. The specification of MDAV used in
this paper is the one provided as [18, Algorithm 5.1], named
‘‘MDAV-generic’’:

1) Find the centroid C of the n records, find the furthest
point P from the centroid C , and find the furthest point
Q from P.

2) Group the k−1 nearest points to P into a group and the
do the same with the k − 1 nearest points to Q.

3) Repeat steps 1 and 2 on the remaining points until there
are less than 2k points.

4) If there are k to 2k − 1 points left, form a group with
those and finish. Else, if there are 1 to k − 1 points,
adjoin them to the last (hopefully nearest) group.

It is routine to show that the running time of MDAV in terms
of the anonymity parameter k and the number of records n is
approximately n2/k , for n� k .

In the following, we study a series of incremental meth-
ods and the tools employed in their conception. We preface
our presentation with Table 1, summarizing the incremental
algorithms and variations proposed in this theoretical section.
In short, the first approach, termed 2MDAV, resorts to using
MDAV on each of the two partitions of the data. The second
approach employs MDAV once on the base partition, and
considers variations of the strategy for adjoining new points
to previously formed cells outlined in §III-B.6. Cells resulting
in 2k records or more can always be split for a distortion
reduction.

A. MDAV AS INCREMENTAL ALGORITHM
The simplest strategy, which will serve as reference, is simply
two perform the traditional algorithm on each individual time
partition. Here, we run MDAV in two consecutives steps,
directly on the two portions of the data, and concatenate them
for publication:

1) Wait until a portion ν̄ of the data is available, that is,
wait for the n0 base records.

2) Run MDAV on the n0 base records.
3) Once MDAV has finished and when the remaining

portion ν of the data is available, proceed to runMDAV
on the new n+ incremental records.

4) Join the two resulting partitions directly.

According to the formulation introduced in §III,
the approximate running time n2/k of MDAV enables us to
immediately determine the base running time τ0 in terms of
the incremental data ratio ν. Recall that ν̄ def

= 1− ν, and that
ν ∈ [0, 1). Precisely,

τ0 =
t0
t
=

(ν̄n)2/k
n2/k

= ν̄2.
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Even though, in general, running times depend on n, ν and k ,
the advantage of the normalization in traduced in §III is that
leads to simpler expressions that do not explicitly depend on
k or n, or the specific machine the algorithms are executed
on. If MDAV is also used as an incremental algorithm, then a
similar argument shows that τ+ = ν2. Therefore, the running
time of microaggregating data in two portions using MDAV
is 1

2 6 ν̄2 + ν2 6 1, where the lower bound expresses the
full power of subadditivity for ν = 1

2 , but disregards the
head start effect, and might have too strong an impact on
distortion. Due to subadditivity alone, running MDAV in two
steps will always be more efficient than a single run on the
whole dataset.

B. OPTIMAL DATA RATIO
Recall that we defined the critical data ratio ν− as that satis-
fying τ0 = τ−, that is, the data ratio for which the running
time of the base algorithm is equal to the available head start.
Recall also that we aim to achieve τ− > τ0 so there is no time
loss when collecting data. Under the uniformity assumption
made in §III-B.2, expressed by means of τ− = ςν, where ς
is the time for all the data to become available, relative to the
running time of the traditional microaggregation algorithm.
Using MDAV as a base algorithm, or any other quadratic
method, the relative computational cost of the base algorithm
is τ0 = ν̄2. It is routine to verify that the value ν− for which
τ0 = τ− is

ν− =
2+ ς −

√
ς (4+ ς )

2
,

whenever τ0 = ν̄2 and τ− = ςν, that is, whenever the base
algorithm is quadratic and the arrivals uniform. The negative
square root is consistent with the constraint ν− ∈ (0, 1]. Note
also that viewing the square root as a geometric mean, it must
be greater than the minimum but lesser than the arithmetic
mean, in keeping with the range of the solution. We proceed
to explore approximations to the critical data ratio ν− for
increasing values of the arrival time coefficient ς , that is, for
slow arrivals.

To that end, we make a brief digression and introduce the
concept of strong approximation, which will enable us to
rewrite some of the results in this work in a more intuitive
form, yet remarkably accurate. These approximations will
exhibit trends in the particularly interesting case of slow
arrivals, for which the entirety of the data is available over
a period of time far greater than the running time of the
traditional algorithm, case characterized by ς → ∞. For
readability, the basic concepts regarding this strong approx-
imation are introduced below, but the derivation of results is
relegated to the Appendix.

Let f and g be real-valued functions of a common
real-valued argument, and consider their limit as the argu-
ment approaches a given value, or infinity. We write
limx→x0 f (x) = l for some x0, possibly infinity, more com-
pactly as f → l. We seek an approximation stronger than the

FIGURE 8. Comparison of the critical data ratio ν− with its strong
approximation, suitable for large values of ς .

approximation in absolute error

f ' g
def
⇔ f − g→ 0,

and the approximation in relative error

f ∼ q
def
⇔ f /g→ 1 ⇔

f − g
g
→ 0.

An adequate definition for our purposes follows.We shall say
that f is a strong approximation for g, or vice versa, when the
following two conditions are satisfied:

f '̇ g
def
⇔

{
f − g→ 0

1/f − 1/g→ 0
.

We show in the Appendix that the approximation employed
in this work is stronger than both the absolute and relative
approximations holding simultaneously. In the event that
f → a for some constant a 6= 0,∞, then clearly f '̇ a.

Back to our analysis on incremental microaggregation,
we apply the results described in the Appendix to the previous
expression for ν−, obtaining an accurate approximation for
slow arrival times in terms of a more intuitive expression:

ν− =
2+ ς −

√
ς (4+ ς )

2
'̇

1
2+ ς

as ς →∞.

Both the exact values and the approximation are shown
in Fig. 8.

As previously defined, 1τ characterizes the relative
amount of time gained using the incremental method. In order
to select the optimal data ratio, we aim to maximize

1τ = min {τ̄0 + τ−, 1} − ν2,

where a quadratic base algorithm gives

τ̄0 = 1− (1− ν)2 = ν(2− ν),

and uniform arrivals imply

τ̄0 + τ− = ν(2+ ς − ν).

As 1τ is non increasing past the critical data ratio, without
loss of generality the maximization is restricted to ν 6 ν−,
where 1τ = (2 + ς − 2ν)ν. From this, we can deduce that
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FIGURE 9. Representation of the optimal data ratio ν? under the
assumption of uniform arrivals and using MDAV as both base and
incremental algorithm. Observe that once we surpass the saturation
point, ν? = ν−.

the value of the optimal data ratio is ν? = (2 + ς )/4 for
small values of ς . In order to completely determine ν? we
shall verify the constraint ν? 6 ν−, and findwhen ν_matches
this preliminary maximum, that is,

2+ ς −
√
ς (4+ ς )

2
=

2+ ς
4

,

which gives the solution

ς− = 2(2/
√
3− 1) ≈ 0.309,

and which we shall refer to as critical head start coefficient.
We may finally completely specify the optimal data ratio

under the above assumptions, namely quadratic base algo-
rithm, quadratic incremental algorithm, and uniform arrivals,
as

ν? =



2+ ς
4
6 ν_ , ς 6 ς− = 2

(
2
√
3
− 1

)
2+ ς −

√
ς (4+ ς )

2
= ν_ '̇

1
2+ ς

,

ς > ς− = 2
(

2
√
3
− 1

)
,

where the approximation is for slow arrivals ς →∞. At the
threshold ς− = 2(2/

√
3 − 1), ν? = 1/

√
3. The solution is

plotted in Fig. 9.
We already established that, for efficiency, the head start

should be entirely consumed in the computation of the
microaggregation of the base data, that is, τ0 > τ−, and
we argued that consistently, ν? 6 ν−. For the special case
of 2MDAV and uniform arrivals, our conclusions can bemade
more precise. The above analysis shows that the critical data
ratio ν− becomes the optimal data ratio ν? for sufficiently
slow arrivals timed according with ς > ς−, so that τ0 = τ−.
Fig. 10 illustrates this coincidence. On the other hand, fast
arrivals determined by ς < ς− require ν? < ν−, that is,
1τ attains its maximum before the saturation point ν−, and
accordingly, the running time of the base algorithm τ0 will
exceed the head start τ−.

FIGURE 10. Effect of ς on the critical data ratio ν? and the relative time
gain 1τ . The relative time gain reaches its maximum where τ0 + τ− = 1,
saturation region, for values bigger than ς = ς−. However, when using
values of ς smaller than the threshold the maximum, and optimal data
ratio, is reached before the saturation point.

The corresponding optimal relative time gain, still under
the assumptions of uniform arrivals and quadratic microag-
gregation in both incremental stages,

1τ ? = (2+ ς − 2ν∗)ν?

=



(2+ ς )2

8
, ς 6 ς−=2

(
2
√
3
−1
)

√
ς (4+ ς ) (2+ ς −

√
ς (4+ ς ) )

2
'̇ 1,

ς > ς−=2
(

2
√
3
−1
)
.

It is routine to check that at the threshold ς = ς−, we have
1τ ? = 2/3.

For extremely fast arrivals, in the limit of the head start
coefficient ς = 0, ν? = 1/2 = 1τ ?. Each of the two steps
anonymizes half of the data and thus runs in 1/4 of the time
corresponding to the traditional approach. The overall time
gain comes only from the superadditivity of the quadratic
algorithm, as the head start τ− = ςν? → 0 becomes
irrelevant. This is the best we could do with two-stage spatial
prepartitioning when all data is available at the same time
instant. On the other hand, in the limit of ς → ∞ for
extremely slow arrivals, we have ν? → 0, but interestingly
1τ ? → 1 (thus 1τ ? '̇ 1), which is not immediately
obvious. Our approach clearly excels in this case. In general,
the relative gain 1τ ? monotonically increases with the rela-
tive arrival coefficient ς , in other words, slower arrivals yield
better time gains, owing not only to superadditivity but also to
head starts, as onewould expect. In all cases,1τ ? > 1/2 > 0,
which indicates that this formalism is applicable to a wide
range of arrival profiles. The above optimality analysis is
summarized in Fig. 11.
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FIGURE 11. Quick summary of the optimality part of our theoretical analysis on incremental microaggregation for electronic surveys,
formulated in §III-B.2 and presented in §IV-B.

C. DATA RATIO FOR A DEADLINE
The previous analysis of the optimal data ratio aims to maxi-
mize the time gained by selecting the appropriate amount of
incremental data. However, as already outlined in §III-B.3,
certain applications may have a more lenient time constraint.
We have mentioned that using this time to enlarge the span
of time taken to run the incremental approach has a positive
effect on the data utility loss. In that regard, we further
study the relative time measure proposed in §III-B.3 for the
particular case of MDAV as an incremental algorithm and
under the assumption of uniformly distributed arrivals.

Recall that we wish to finish the overall anonymization
process right at the deadline τend = 1−1τ . To avoid wasting
time for computation, we first consider the maximum relative

time gain before the saturation region, which is the earliest
our method can finish, precisely 1τmax = ν

?(2 + ς − 2ν∗).
We reasonably assume the upper bound τend < 1; otherwise,
the traditional approach would be perfectly suitable. Also
quite naturally, the deadline cannot be more restrictive than
the optimal, which gives the lower bound

1 > τend > τend min =


1−

1
8
(2+ ς )2, ς 6 ς−

(2+ ς −
√
ς (4+ ς ))2

4
, ς > ς−

,

represented in Fig. 12.
We need to find the appropriate data ratio νend to meet

exactly the deadline τend. Not to waste valuable time for
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FIGURE 12. In order to establish a lower bound for the relative deadline
τend we define it assuming the maximum relative time gain, concretely
the relative time gain obtained using the optimal data ratio ν?.

computation, νend must satisfy τ0 + τ+ = τend + τ−. Under
the constraints of uniform arrivals and quadratic base and
incremental algorithm, we shall solve

(1− νend)2 + ν2end = τend + ςνend.

Routine manipulation leads to the solution

νend =
2+ ς −

√
(2+ ς )2 − 8(1− τend)

4
'̇

1− τend
2+ ς

,

where the approximation for slow arrivals ς → ∞ follows
from the direct application of the results in the Appendix.

Note that the discriminant (2 + ς )2 − 8(1 − τend) is
nonnegative, thus the solution is well defined under the
aforementioned range for τend. Since τend changes with the
transition point ς−, so does νend. As for the selection of the
positive or negative options for the solution to the quadratic
equation, observe that the positive solution increases while
the negative one decreases when ς grows. Since νend is by
definition smaller than one and we aim to minimize the
data ratio processed incrementally to reduce data utility loss,
we may safely select the negative solution as the valid one.
As confirmed in Fig. 13, the discriminant is zero for values
smaller than the threshold ς− and grows past this point.
Accordingly, we may bound the incremental data ratio as

1 > νend > νend min

=


ν∗ =

2+ ς
4

, ς 6 ς−

2+ ς −
√
(2+ ς )2 − 8(1− τend min)

4
, ς > ς−.

D. NEAREST-NEIGHBOR METHOD
Two implementations of this algorithm are proposed. The
first approach consists in simply assigning the incremental
data to the centroids found by the base algorithm, in our case
MDAV, precisely:

1) Wait until a portion ν̄ of the data is available and then
proceed to run MDAV on the base data.

FIGURE 13. The discriminant (2+ ς)2 − 8(1− τend min) of the data ratio
needed to end at the deadline is zero before reaching saturation point
ς = ς− and grows past it.

2) Once MDAV has finished and the remaining portion ν
of the data is available, assign the incremental records
to the nearest centroids of those found running MDAV.

3) Update the centroids of the enlarged cells.

In terms of time efficiency this algorithm should be fast. Its
running time would be proportional to the product of the
number of centroids ν̄n/k , and the number of incremental
points νn, so that the relative time complexity would be τ+ =
αν̄ν for some constant α depending on the implementation.

However, this algorithm is not meant to be used with large
ν, as it would reduce the number of centroids found by
the base algorithm creating bigger cells. This would lead to
an increase of the SSE, described in §III-B.4, resulting in
unmanageable distortion. Expecting an improvement in the
data utility of the anonymized release, the algorithm is mod-
ified introducing the concept of cell splitting. As commented
on the lines above, bigger cells lead to worse performance in
terms of distortion, which points to the creation of new cells
when adding points as the key to reduce the distortion loss.
In this contribution,MDAV is used to introduce new centroids
ran on cells havingmore than 2k−1 samples. Two approaches
are proposed. First, split cells while adding points:

1) Wait until a portion ν̄ of the data is available and then
proceed to run MDAV on it.

2) Once MDAV has finished and the remaining portion of
the data ν is available, assign the incremental records
to the nearest centroids of those found running MDAV.
While there still are incremental points to be assigned,

3) assign points to the nearest centroid of those found
running MDAV, and

4) if the cell where the point was assigned reaches 2k
records, then

5) split the cell into smaller cells with at least k records by
running MDAV inside this cell.

6) Update the centroids of the modified cells.

And secondly, split cells at the end:

1) Wait until a portion ν̄ of the data is available and then
proceed to run MDAV on it.
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2) Once MDAV has finished and the remaining portion of
the data ν is available, assign incremental records to
nearest centroids of those found running MDAV.

3) Once all incremental records have been assigned, un
MDAV locally on each cell that contains 2k sam-
ples or more, and aggregate the results.

4) Update the centroids of the modified cells.

Running MDAV on 2k points while adding them, segre-
gates the cell into two of size k which will result in more
available centroids when adding the remaining incremental
points, however there might be points that have not been
assigned to the nearest cell at the end since the closest cen-
troid had not been created when the point was added. On the
other hand, splitting cells bigger than 2k−1 at the end avoids
cell overlapping but increases the MDAV running time when
splitting since its computational complexity depends on the
number of samples that are microaggregated. Note that this
last variation will behave as two-step MDAV when the base
data is smaller than 3k − 1 but bigger than 2k − 1 leading to
similar outcomes for high values of ν.

E. ON ASYMPTOTIC RUNNING TIMES
For the main algorithm for incremental microaggregation
studied here, 2MDAV, which employs MDAV for both the
base records and the incremental portion, the theoretical anal-
ysis presented in this section already provides an accurate
characterization of the relative time gain 1τ attained with
respect to conventional microaggregation in a single MDAV
run.We derive here an immediate consequence on asymptotic
equivalence in the limit of the number n of records.

Denote the reference running time of traditional microag-
gregation as tref, that is, the time required for the traditional
microaggregation algorithm to run on all data, starting as soon
as all records are made available, in any suitable absolute
time unit. Denote by tinc the finishing time of the incremental
procedure in two stages, in the same time units, alsomeasured
from the instant all data is available, thereby subtracting
the head start. We have stressed that both subadditivity and
the head start contribute to the reduction of tinc. We may
immediately express the absolute finishing time tinc of the
incremental strategy in terms of the relative time gain1τ , as

tinc = (1−1τ )tref (equivalently, 1τ = (tref − tinc) /tref).

Under the assumption of uniform arrivals, recall that the
relative head start τ− = ςν is proportional to the incremental
data ratio ν, that is, the fraction of records processed in the
second, incremental stage. In §III-B.1, we interpreted the
arrivals coefficient ς as the head start τ− in the extreme
case when ν = 1, that is, ς represents the relative duration
of the entire process of data arrivals or survey, always with
respect to tref. For the optimal data ratio ν? obtained in §IV-B
we obtain the corresponding optimal relative time gain 1τ ?,
completely characterized by the arrivals coefficient ς . Hence,
the optimal finishing time of the incremental algorithm is
simply t?inc = (1−1τ ?)tref.

Suppose further that the microaggregation algorithm
employed in the conventional, single-stage process, and in
each of the two stages of the incremental approach is the
same, and that its running time is quadratic in the number
of records, or more specifically, proportional to n2/k , where
n is the number of records and k the anonymity parame-
ter or cluster size. For notational compactness, we may do
away with the proportionality constant simply by choosing
an appropriate time unit, and simply write tref = n2/k . Recall
that this is an excellent characterization of the running time
of MDAV, at least for n� k .

As customary, the statement f (n) ∼ g(n) denotes asymp-
totic equality between two positive sequences f (n) and g(n),
often read as ‘‘f (n) is of the order of g(n)’’, and defined by
the condition

lim
n→∞

f (n)/g(n) = 1.

Recall that asymptotic equality implies asymptotic bounding
from above and below, in the usual big theta notation f (n) =
2(g(n)), which is in turn more informative than asymptotic
bounding merely from above, written in big-O notation as
f (n) = O(g(n)).
Finally, in order to retrieve the asymptotic behavior of the

absolute running time t?inc of the incremental algorithm with
optimized scheduling, we consider an arbitrarily large num-
ber n of records, but a fixed absolute time tdat allotted for the
survey, during which all data records taken into consideration
must arrive. Therefore,

tref −−−→
n→∞

∞ implies ς =
tdat
tref
=
ktdat
n2
−−−→
n→∞

0,

which is precisely the case of extremely fast arrivals analyzed
at the end of §IV-B (where ς 6 ς−). Consequently,

1τ ? = (2+ ς )2/8 =
(
2+

ktdat
n2

)2

/8 −−−→
n→∞

1/2,

leading to the asymptotic equivalence

t?inc =

(
1−

(
2+

ktdat
n2

)2

/8

)
tref ∼

tref
2
=

n2

2k
= 2(n2).

This means that the complexities of the incremental and the
traditional approach are both quadratic; the difference lies in
the coefficient t?inc/tref = 1−1τ ? = 1/2.

We must hasten to remind the reader that extremely fast
arrivals, represented by the limiting case ς → 0, yield the
worst optimal time gain performance1τ ?→ 1/2. The over-
all time gain comes from the superadditivity of the quadratic
algorithm with optimal data ratio ν? = 1/2 and vanishing
head start τ− = ςν? → 0. However, as argued also in §IV-
B, extremely slow arrivals, in the limit of ς → ∞, yield
arbitrarily large time gains, mathematically corresponding to
1τ ? → 1. In other words, even in the worst case, 2MDAV
will half the running time of the conventional approach, but
we should expect far better performance in practical cases
with slower arrivals. In the quantitative remarks of §VI-B,
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we show a numerical example where traditional microaggre-
gation requires 2 hours, but our incremental strategy finishes
roughly 2 minutes and 33 seconds after the survey is closed
and all data is available. In that case, data arrives over a period
of 10 hours, and thus, ς = 5.

This addresses the incremental algorithm 2MDAV, for the
special case of optimal data ratio for the fastest incremental
running time. The case of a deadline, analyzed in §IV-C, has
by definition a limited running time. As our contribution is
necessarily limited, the case of the nearest-neighbor algo-
rithm NN is left for future investigation. We already men-
tioned that τ+ = αν̄ν (quadratic), but without further inspec-
tion, we may merely claim that tinc = O(n2), on account of
the practical constraint tinc 6 tref.

V. EXPERIMENTAL RESULTS
The essential aspect of our contribution relies in the empiri-
cal investigation of the formalism presented in the previous
sections. In experimental section, we aim to confirm the
algorithmic efficiency of our approach in terms of time gain,
and the consequent price in distortion, in comparison with
traditional methods. Bear in mind that the leading object of
this work is to propose a general method rather than a specific
algorithm, and the use of MDAV is merely illustrative in §IV.

A. EXPERIMENTAL SETUP
The algorithms for traditional, base, and incremental
microaggregation were detailed in §IV. The values of the
k-anonymity parameter considered, k = 10 and 100, are
roughly representative of the lower and upper end of the
values typically selected in the literature. As for the datasets
considered, since this contribution aims to reduce the com-
putational complexity of microaggregating large volumes of
data, many small datasets commonly used in SDC literature,
merely in the thousands of records or even under a thousand,
were immediately discarded. Our experiments were targeted
toward 50 000 records, a value deemed high enough to ade-
quately illustrate the time gain that our incremental approach
offers, and to retrieve reliable measurements of time and
distortion. Recall from §IV that the relative time efficiency
1τ of the incremental algorithms tested does not depend
explicitly on the number n of samples processed or on the
k-anonymity parameter, although the absolute running times
most certainly do.

We first synthesize 50 000 of 15-dimensional Gaussian
data with independent, zero-mean and unit-variance compo-
nents, taken as quasi-identifiers. Gaussian datasets typically
represent a challenge for microaggregation algorithms, due
to the profile of dispersion of the data. In order to assess the
effect of the dimension m, three versions of the synthetized
dataset are used, one containing only the first five dimensions,
considered as quasi-identifiers, another one containing the
first ten dimensions, and the last one containing all fifteen
dimensions, also taken as quasi-identifiers.

Secondly, we incorporate a standardized dataset, known
as ‘‘(Very) Large Census’’, previously documented and used

in [14] and [41].1 This dataset was chosen to adhere to
the de facto convention in the area, for fairer comparison
and reference to previous work on microaggregation. It con-
tains 149 642 records with 13 numerical attributes, regarded
here as quasi-identifiers. In our experiments, we subsample
50 000 records of this dataset at random, consistently with the
synthetic dataset. The corresponding three viewswith varying
dimensionality contain the first three dimensions, the first six
dimensions, and all thirteen dimensions. We adhere to the
common practice of normalizing each column of the dataset
for unit variance.

All of the experiments described here were implemented
in Matlab, explicitly disabling any form of multithread-
ing or parallelization for appropriate reporting of absolute and
relative running times.

With the objective ofmaking the graphsmore readable, and
also as a reminder, we offer in Table 2 a summary of all the
variables used, most of them presented in §III-B and Fig. 6,
in order to characterize data amounts, running times, and loss
in data utility.

B. EXPERIMENTAL FINDINGS
As stated above, the number n of records and the k-anonymity
parameter do not explicitly affect the relative time measure-
ments τ , however we use datasets large enough to be able
to provide accurate time measurements and two values of
k different enough to demonstrate this effect. The absolute
running time of the traditional algorithm used in this work
will certainly vary depending on both n and k , as well as on
the computer employed.

Not to delve into second-order implementation aspects,
most of our experiments are in terms of running times relative
to the traditional, single-stage use of MDAV. Absolute times
can be easily retrieved from the normalizing values in Table 3.

1) MDAV AS AN INCREMENTAL ALGORITHM
The first set of plots, in Fig. 14, show the relative running
time of the algorithm proposed in §IV-A, which consists in
runningMDAV in two consecutive steps.We confirmed that k
affects both the traditional and the base algorithm in the same
way since the normalized times τ do not depend explicitly on
it. We measure τ0 + τ+ in order to verify the superadditivity
property and the theoretical characterization of running times
under the quadratic approximation for MDAV. These first
plots do not yet incorporate the head start τ−, which would
further increase the relative time gain. Due to superadditivity
alone, the incremental algorithm outperforms, as expected,
traditional MDAV, confirming the bounds 1

2 6 τ0 + τ+ 6 1.
It can also be readily verify that the highest time reduc-

1The ‘‘(Very) Large Census’’ dataset is, strictly speaking, a synthetic
dataset, generated with the procedure described in [30], but maintaining the
same covariance matrix of the smaller dataset ‘‘Census’’, used in CASC [8],
a well-known project in the SDC arena, within the FP5 European program.
The latter dataset, however, contains real census data, obtained in 2000 via
the Data Extraction System of the U.S. Census Bureau. We are most thankful
to Jordi Nin, one of the authors of [41], for kindly providing us with the data
file, back in 2015.
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TABLE 2. Summary of symbols.

TABLE 3. Reference times required by the traditional MDAV algorithm, without applying our incremental approach.

tion, considering only the superadditivity effect, is obtained,
as predicted, for ν = 1/2.

To further study the expected behavior of τ+ in §IV-A,
two more plots are presented for both the synthetic and the
standardized datasets, using k = 10 and 100. It can be seen
in Fig. 15 that the relative time gain does not depend on
k and that the assumption of τ+ = ν2 is satisfied. Since
we require 1 + τ− > τ0 + τ+ to actually have a gain in

time efficiency, we establish the boundary τ̄0 + τ− > τ+
as a reference to illustrate the advantage of the incremental
algorithm. According to the definition provided in §III-B.2
we assume a head start coefficient ς = 1, which results in
τ− = ν.
Next, we study the effects on distortion introduced

by incremental microaggregation Fig. 16. Surprisingly,
we observe a relative distortion reduction markedly
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FIGURE 14. Relative time gain of MDAV as an incremental algorithm versus traditional MDAV due to
superadditivity alone, without a head start. (a) Gaussian data with 50 000 samples and 15 dimensions.
(b) 50 000 samples randomly subsampled from ‘‘Large Census’’.

FIGURE 15. Evaluation of τ+ as a function of ν using MDAV as an incremental algorithm in comparison with
the expected outcome ν2 and the boundary τ̄0 + τ− > τ+. (a) Gaussian data with 50 000 samples and
15 dimensions. (b) 50 000 samples randomly subsampled from ‘‘Large Census’’.

decreasing with the number m of dimensions. A plausible
explanation for this striking, extremely advantageous finding
was given in §III-B.5. Observe that the effect of augmenting
the number of dimensions has less influence when process-
ing ‘‘Large Census’’; this owes to the fact that the quasi-
identifiers in the database are statistically dependent and have
a minor effective dimension that that of the synthetic data.

2) NEAREST-NEIGHBOR ALGORITHM
We initially implemented this algorithm simply adjoining
each incremental point to its nearest centroid, of those found
when running the base algorithm. Despite the good perfor-
mance of this naïve approach in terms of computational cost,
it is shown in Fig. 17 that it introduces a significant relative
distortion in comparison with the traditional MDAV algo-
rithm. As the incremental data ratio ν tends to 1, the number
of centroids found, when running the base algorithm MDAV,
decreases up to the point where maximum distortion loss is
introduced. Precisely, when all the incremental records n+ are
assigned to the same centroid when dn20/ke = 1 for certain
values of k and n0.

In order to address the unmanageable behavior in terms of
relative distortion loss, we introduce the concept of cell split-
ting, as detailed in §IV-D. As previously shown, two variants
have been proposed for cell splitting, split cells while adding
incremental points, Split mid in the figures, and split cells
once all the records have been added to the nearest centroid,
Split end in the figures. Obviously, the huge improvement in
terms of data utility shown in Fig. 18 introduces a slightly
higher computational cost which is displayed in Fig. 20. Note
that splitting cells at the end has a slightly better performance
in terms of distortion for high values of ν ∈ [0, 1).

Another approach proposed to reduce distortion loss is
the use of the inertial coefficient in §III-B.6 when adding
incremental points, but is shown in Fig. 19 that due to the
high amount of records, the relative distortion loss does not
effectively improve, and in some cases worsens, in compari-
son with only cell splitting. Therefore, the algorithm finally
employed to measure time and distortion will be split cells
without the inertial coefficient.

For the method previously analyzed, employing MDAV as
incremental algorithm, the k-anonymity parameter does not
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FIGURE 16. Relative distortion loss of MDAV as an incremental algorithm versus traditional MDAV
using k = 10. It can be seen that the relative distortion loss decreases as the number of dimensions
increases. (a) Gaussian data with 50 000 samples and 15 dimensions. (b) 50 000 samples randomly
subsampled from ‘‘Large Census’’.

FIGURE 17. Relative distortion loss of Find Nearest-Neighbors as an incremental algorithm versus traditional
MDAV using k = 10 and 100. The performance of this approach in distortion is merely displayed as a
comparison with the improved version, which uses cell splitting, but it is not a practical method. (a) Gaussian
data with 50 000 samples and 15 dimensions. (b) 50 000 samples randomly subsampled from ‘‘Large Census’’.

FIGURE 18. Relative distortion loss of Find Nearest-Neighbors, with cell splitting using MDAV, as an
incremental algorithm versus traditional MDAV using k = 10. (a) Gaussian data with 50 000 samples and
15 dimensions. (b) 50 000 samples randomly subsampled from ‘‘Large Census’’.

affect the relative time gain since it affects both the traditional
and the incremental approaches in the same way. In this
implementation, increasing k reduces the running time of
the traditional and base MDAV algorithms but also reduces

the amount of distances that need to be computed by the
incremental algorithm. Indeed, there will be less centroids
supplied by the base algorithm, and less time required to
perform cell splitting, which is computed using MDAV. This
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FIGURE 19. Relative distortion loss of Find Nearest-Neighbors, with cell splitting using MDAV and with and
without the inertial coefficient being considered, as an incremental algorithm versus traditional MDAV using
k = 10. (a) Gaussian data with 50 000 samples and 15 dimensions. (b) 50 000 samples randomly subsampled
from ‘‘Large Census’’.

FIGURE 20. Relative time gain of Find Nearest-Neighbors, with cell splitting using MDAV, as an incremental
algorithm versus traditional MDAV without a head start. This plot compares the time efficiency of the two
approaches proposed, split cells while adding records and split cells at the end. (a) Gaussian data with
50 000 samples and 15 dimensions. (b) 50 000 samples randomly subsampled from ‘‘Large Census’’.

FIGURE 21. Evaluation of τ+ as a function of ν using Find Nearest-Neighbors, with cell splitting using
MDAV, as an incremental algorithm in comparison with the expected MDAV outcome ν2 and the
boundary τ̄0 + τ− > τ+. (a) Gaussian data with 50 000 samples and 15 dimensions. (b) 50 000 samples
randomly subsampled from ‘‘Large Census’’.

effect, despite the 1/k factor in the absolute running time
of MDAV, makes the sum of relative time gains τ0 + τ+
slightly worse for bigger k-anonymity parameters, as shown
in Fig. 20. Once more, thus far, these experiments merely

assess the superadditive effect in isolation, without exploiting
the head start.

Next, as previously detailed in §V-B.1, Fig. 21 plots τ+
in relation to the boundary τ̄0 + τ− > τ+ and the theoretical
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FIGURE 22. Comparison of our two incremental microaggregation
algorithms for the Gaussian dataset, in terms of running time and
distortion, in a chart with double Y axis. Specifically, we compare MDAV
as an incremental algorithm (2MDAV) with Find Nearest-Neighbor with
cell splitting at the end (NN-SE), on a dataset consisting of 50 000 records
of 15-dimensional Gaussian data, and for an anonymity parameter
k = 10. The horizontal axis shows the incremental data ratio ν, that is,
the number of records processed incrementally in a second step, as a
fraction of the total number of records to be anonymized. The double
vertical axis measures the relative running times τ+ of the incremental
algorithms on the left, in blue, and the relative distortion loss δ
introduced on the right, in red, always with respect to the traditional
MDAV algorithm running in a single pass on all data.

τ+ = ν
2 of MDAV as an incremental algorithm. As expected,

due to MDAV having a quadratic running time, Find Nearest-
Neighbors outperforms MDAV for high values of ν but has
worse performance for small incremental data ratios. We can
also note that splitting cells at the end presents better behavior
for high values of ν. This, considering also that presents better
performance in data utility, makes splitting cells at the end the
better choice.

3) INCREMENTAL ALGORITHMS COMPARISON
Because Find Nearest-Neighbors with cell splitting at the
end (NN-SE) presents the best performance in running time
and distortion among both variants proposed, it will be the
candidate to compete against the two-step MDAV (2MDAV)
approach. Since the base algorithm in both approaches is
MDAV, τ0 is identical. Hence, we only need to compare
τ+, the relative running time of the incremental algorithm,
to measure computational time efficiency, and the relative
quadratic distortion overhead δ to measure performance in
terms of data utility. As shown in Fig. 22 and Fig. 23, and
as could be expected from the fact that the running time of
MDAV is quadratic, 2MDAV is faster than NN-SE for low
values of ν. However, as ν increases, so does the running time
of 2MDAV, but as ν2, while NN-SE does not surpass the 10%
in terms of relative running time τ+. On the flip side, NN-SE
introduces lower relative distortion loss for low values of ν.
In the first plot, Fig. 22, using 50 000 records of 15 dimen-

sional Gaussian data and k = 10, from approximately ν ≈
30% to ν ≈ 50% there is a range where NN-SE outperforms

FIGURE 23. Comparison of our two incremental microaggregation
algorithms for the ‘‘Large Census’’ dataset, in terms of running time and
distortion, in a chart with double Y axis. Specifically, we compare MDAV
as an incremental algorithm (2MDAV) with Find Nearest-Neighbor with
cell splitting at the end (NN-SE), on a dataset consisting
of 50 000 randomly subsampled records of ‘‘Large Census’’, and for an
anonymity parameter k = 10. The horizontal axis shows the incremental
data ratio ν, that is, the number of records processed incrementally in
a second step, as a fraction of the total number of records to be
anonymized. The double vertical axis measures the relative running times
τ+ of the incremental algorithms on the left, in blue, and the relative
distortion loss δ introduced on the right, in red, always with respect to the
traditional MDAV algorithm running in a single pass on all data.

2MDAV both in time and distortion performance, however
this is a consistent behavior for different values of k and
both datasets, obviously with changing ν ranges. Finally, for
high values of ν NN-SE presents better relative time gain
than 2MDAV at the cost of slightly higher distortion loss.
Therefore, NN-SE would be the better choice for values of
ν where NN-SE outperforms 2MDAV in time, in this case
ν ≈ 30% and upwards. For values of ν lower below this
point, we would select 2MDAV when pressed for running
time, or NN-SE if distortion constitutes a higher concern.

VI. CONCLUSION
New capabilities in the areas of computation and storage
enable the possibility of amassing vast quantities of poten-
tially sensitive information. Many of today’s modern infor-
mation systems incorporate processes that may be construed
as electronic surveys, in the sense that they entail the col-
lection, analysis and dissemination of data combining demo-
graphic and confidential attributes, with the ulterior purpose
of statistical study.

While one cannot object to the appealing potential of such
technologies, the inclusion of rich quantities of sensitive data
poses privacy risks that cannot simply remain overlooked.
This raises the need for statistical disclosure control, specif-
ically through the anonymization of datasets, in a manner
protective of the data utility contained in the original copy,
in order to allow demographic studies of diverse nature.

SDC through k-anonymous microaggregation continues
to be a baseline procedure in confidential attribute release
with high-utility preservation. This is applicable to systems

60038 VOLUME 6, 2018



D. Rebollo-Monedero et al.: Incremental k-Anonymous Microaggregation

where data accuracy is critical, or where utility may be sac-
rificed for stricter privacy criteria, but said criteria are but
built upon the underlying substratum of k-anonymity, such as
l-diversity, t-closeness (or differential privacy for microdata
release implemented through t-closeness).

A. QUALITATIVE REMARKS
Prepartitioning is a well-established strategy to reduce com-
putation in high-utility, superadditive algorithms. Tradition-
ally, prepartitioning takes into consideration demographic
similarity to preserve data utility. For numerical data, (square)
distance in the Euclidian space is typically employed, whilst
ontological distances may be preferred for categorical vari-
ables.

In this work, we take a first step towards extending this
spatial strategy along the time domain. Regardless of the
specific anonymization algorithm, inessential to our method-
ology, this work is concerned with sophisticated mechanisms
striving to attain the optimal privacy-utility trade-off, which
generally require superlinear computational complexity in the
number of records of potentially large datasets. We demon-
strate, both theoretically and empirically, that complex, high-
utility privacy-preserving algorithms would highly benefit
from our mathematically optimized scheduling framework.

The method for database anonymization introduced in this
work exploits the fact that in electronic surveys, the data is
often available over a substantial period of time. Our work
considers breaking down the anonymization process in two
algorithmic steps on two portions of the data. The first algo-
rithm, called base algorithm, would start before all the data is
available, say one hour before finishing the data collection
process. Subsequently, the second anonymization process,
called incremental algorithm, would start once all the data
has been collected. On the one hand, certainly starting earlier
helps. On the other, the superadditivity of the anonymization
algorithm benefits from the proposed partition.

This double-edged strategy of ‘‘divide and conquer’’ is
analyzed in thorough mathematical detail. In particular,
we characterize the relationship between the data partition
point and the overall time gain due to the head start and
the superadditivity of the algorithms involved. We find the
mathematically optimal partition point for the fastest possi-
ble anonymization. Finally yet importantly, we analyze the
problem of finishing before a given deadline.

The direct applicability of this work was summarized
in Fig. 4. But the real applicability of the ideas proposed here
reach beyond the specific algorithms analyzed, which should
be seen as merely illustrative of a general methodology that
could be employed on a variety of superlinear computation-
ally demanding processes.

The synergic advantage provided by the head start and
the superadditivity of the algorithms analyzed translates
into remarkable time gains, allowing in some cases the
anonymization of large-scale datasets in minutes instead of
hours. Nevertheless, this improved performance in running
time also comes at a price in data utility, just as stricter privacy

would. The compromise between computation and distortion
is also the object of this work, this time from an empirical
perspective.

An additional factor playing to our advantage stems from
the distortion phenomenon in high-dimensional microaggre-
gation informally described in §III-B.5, and later rigorously
verified in our experiments. As the number m of statistically
independent quasi-identifiers grows, the distortion overhead
δ tends to diminish. This means that for large databases, not
only in terms of the number of records, but also in terms of
the number of quasi-identifiers, our proposal is particularly
beneficial.

B. QUANTITATIVE REMARKS
Having summarized the main conclusions extracted from our
investigation in a conceptual manner, we proceed to remark in
greater detail on a few numerical results on the example that
served as motivation in the introductory section, illustrated
in Fig. 2. These results are presented in this section as addi-
tional conclusions of a quantitative nature, in terms of time
gain and distortion, rather than as a discussion subsection.
We believe these numbers validate and speak highly of the
ideas introduced in this paper.

Recall that the introductory example shown in Fig. 2
employed an incremental data ratio of approximately ν ≈
10%, merely for motivation purposes. Particularizing for a
15-dimensional Gaussian dataset with 50 000 records, the rel-
ative quadratic distortion increase using MDAV as an incre-
mental algorithm is found to be δ ≈ 5%. On the other hand,
Find Nearest-Neighbors presents a lower increase in relative
distortion δ ≈ 2% at the cost of a slightly higher running
time.

We revisit the example of Fig. 2, assuming a 10-hour
electronic survey with 2MDAV versus traditional MDAV, for
a head start of 1 hour. A slow, approximately uniform rate
of data arrivals over 10 hours, relative to a duration of 2
hours for the traditional algorithm, corresponds to an arrivals
coefficient ς = 5. Rather than employing the arbitrary
data ratio ν ≈ 10% originally chosen, we consider the
optimal data ratio ν? ≈ 14.6% introduced in §III-B.2 and
derived in §IV-B. The result, nothing short of impressive,
is reported in Fig. 24. The base algorithm, with a head start
of 1 hour and 27 minutes, finishes exactly at the end of
the head start, when the deadline for the electronic survey
expires. The incremental algorithm, operating now on only
a fraction ν? of the data, ends in just 153 seconds once all the
data has been received, well before the 2 hours required by
the traditional method. Evidently, due to the nonlinearity of
running times, the time required is smaller than the fraction of
data processed, advantage that ourmathematical optimization
certainly exploits. Furthermore, this enormous time gain,
from hours to minutes, comes at the expense of a relative
quadratic distortion increment of only δ ≈ 6% for the dataset
aforementioned.

The idea behind all this is somewhat counterintu-
itive because running times are quadratic, not additive.
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FIGURE 24. Example of incremental microaggregation using 2MDAV where the optimal data ratio
ν? ≈ 14.6% is used. This allows the entire process to finish in just 2 min 33 s instead of 2 hours,
as required by the traditional method. This is also better than simply using ν = 0.5 to exploit
superadditivity alone. This time-optimal process introduces a relative increment of δ ≈ 6% in
quadratic distortion.

FIGURE 25. Example of incremental microaggregation using 2MDAV, where the data ratio is
adjusted to finish right at the one-hour deadline. In this case, νend = 7.2%, below the more
aggressive partition point ν? = 14.6% for maximum time gain. As expected, by using the allotted
time rather than the bare minimum, data utility is better preserved. Indeed, this process incurs only
a mere δ ≈ 3% distortion increment.

With ν? ≈ 14.6%, the majority of the data, precisely 1−ν? ≈
85.4%, is microaggregated first during the head start of 1 hour
and 27 minutes, while the rest of the data comes in. And the
small incremental portion ν? requires a relative time ν?2 ≈
2.1% quadratically small to run in about 2 and a half minutes
instead of 2 hours. Because the majority of the data was
microaggregated traditionally, the impact in distortion is of
only δ ≈ 6%, more than reasonable for such impressive time
gain. The exact ν? is chosen via mathematical optimization,
from the data arrival coefficient ς , and the running time for
microaggregation of the base data may or may not exceed the
head start.

Regarding the price in distortion of time-based partitioning
of the data, we verified in §V-B.1 the very intuitive fact
that lower incremental data ratios yield lower distortion.
We consider introducing a time constraint of one hour on the
running example presented of Fig. 2. In that regard, we use the
deadline data ratio νend, formulated in §III-B.3 and derived
in §IV-C, to adjust it to the time constraint. Striving only to
comply with the deadline but not for optimal time gain, data
utility should be better preserved. Indeed, while the optimal
approach yielded a relative increase in quadratic distortion
of δ ≈ 6%, the deadline method presents a lower negative
impact, of δ ≈ 3%, while halving the waiting time required
by traditional microaggregation. The running example using
the deadline approach is illustrated in Fig. 25.

Both incremental algorithms are suitable alternatives to
traditional microaggregation. On the one hand, MDAV as an

incremental algorithm presents better relative running time
for low values of ν and less degradation in relative distortion
loss for high values of the incremental data ratio. On the other
hand, there is a certain middle range of ν values where Find
Nearest-Neighbors as an incremental algorithm consistently
provides better performance in both relative running time
and relative data utility loss. We illustrate this comparison
in Fig. 26.

C. FINAL CONSIDERATIONS
We may thus conclude that the incremental method proposed
in this work offers a most valuable alternative to traditional
microaggregation when dealing with large-scale electronic
surveys where data is available over an extended period of
time, but anonymization must be conducted under reason-
able time constraints. To better preserve utility, low values
of the data ratio ν should be employed, whenever possible.
The choice of an incremental algorithmic procedure, be it
2MDAV or Find Nearest Neighbor, depends on the con-
straints on running time and data utility.

We view the main contribution of this work as the gen-
eral methodology of optimized incremental anonymization,
above the proposal and evaluation of specific algorithms.
Striving for applicability, our design criteria encompass both
maximum time gain and meeting a given deadline, but
resort to mathematical formalisms for optimal performance,
of which Fig. 11 constitutes a brief, partial recapitulation.
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FIGURE 26. Comparison of the performance in terms of running time and distortion loss
introduced by the proposed incremental algorithms, as a function of the values of ν.

Despite the significant length and detail of this document,
we must acknowledge that it merely constitutes a preliminary
analysis of a particularly complex problem with a number
of intricate aspects requiring further study. Most assuredly,
additional experimentation with real large-scale survey data
should prove extremely useful, particularly with regard to
data arrivals and distortion impact, in future work refining
our research results or oriented toward development. Our
method is certainly open to future investigation along a
number of research avenues, including but not limited to addi-
tional partition steps, alternative incremental microaggrega-
tion algorithms, non-quadratic asymptotic time complexities,
a theoretical rather than experimental analysis of the distor-
tion incurred, and its application to related problems of time-
consuming data processing.

APPENDIX
BRIEF NOTE ON APPROXIMATIONS BEYOND THE
ACCURACY OF VANISHING ABSOLUTE AND RELATIVE
ERRORS
Let f and g be real-valued functions of a common real-
valued argument x. For certain ratios to be well defined,
we shall require that f (x), g(x) 6= 0 for all x. We consider
the limiting trends of these functions as the argument x
approaches a given value, or infinity. As mentioned earlier,
we write limx→x0 f (x) = l for some x0, possibly infinity,
more compactly as f → l. We denote the approximation in
absolute error by

f ' g
def
⇔ f − g→ 0 ⇔ g ' f ⇔

⇔ g− f → 0 ⇔ f = g+ o(1),

and the approximation in relative error by

f ∼ g
def
⇔ f /g→ 1 ⇔ g ∼ f ⇔ g/f → 1 ⇔

⇔
f − g
g
→ 0 ⇔ f = g+ o(g).

Clearly, either type of approximation induces an equivalence
relation, satisfying reflexivity, symmetry, and transitivity.

For instance, as x → ∞, certainly x + 1 ∼ x holds, but
it is not true that x + 1 ' x. The function x does succeed
in approximating x + 1/x both absolutely and relatively.
If f , g → ∞, then f ' g would entail f ∼ g. But when
f , g→ 0, the statement f ' g holds trivially, and only f ∼ g
remains informative. For example, 2/x ' 1/x, but the relative

approximation fails to hold. Consider now the inverses of the
first example, f (x) = 1/(x + 1) and g(x) = 1/x. Both the
absolute and the relative approximation criteria are satisfied.
However, it is not true that 1/f ' 1/g. When f , g → 0,
the criterion 1/f − 1/g → 0 is stronger than f ∼ g,
the latter equivalent to 1/f ∼ 1/g. In the following, we pro-
pose a criterion stronger than the simultaneous occurrence of
both the absolute and relative approximations. Further, when
f , g→ 0, the new criterion will offer better accuracy than the
relative approximation.

This approximation criterion has been specifically devised
for this work, but should prove useful in other arenas.We shall
say that f is a strong approximation for g, or vice versa, when

f '̇ g
def
⇔

{
f − g→ 0

1/f − 1/g→ 0
def
⇔

{
f ' g

1/f ' 1/g
.

The first defining component makes this approximation triv-
ially stronger than the absolute version. The second condition,
1/f − 1/g → 0, is equivalent to f = g + o(fg). In the
special case when f > g, the conditions on the inverses would
be implied by f = g + o(g2). The second statement in the
next proposition reaches beyond our observation that when
f , g → 0, the condition 1/f ' 1/g is stronger than f ∼ g,
as the example with 1/(x + 1) and 1/x illustrated.
Proposition 1: For any f , g such that f (x), g(x) 6= 0 for

all x, (i) if lim inf |f | > 0 or lim inf |g| > 0, then f ' g
implies f ∼ g, (ii) if lim sup |f | < ∞ or lim sup |g| < ∞,
then 1/f ' 1/g implies f ∼ g.
Proof: (i) By symmetry, it suffices to assume either

condition on the limit inferior. Suppose for instance that
lim inf |g| = l > 0. The statement follows directly from the
epsilon characterization of the limit inferior (|g| is eventually
above l/2), and the limit implicit in the absolute approxima-
tion (|f − g| is eventually below εl/2). Bound |f − g|/|g|
(eventually below ε). (ii) is simply an application of (i) to the
inverse functions. �
The next proposition holds yet more generally; unlike

the previous one, no assumptions are made on the infe-
rior or superior limits. However, both approximations defin-
ing the strong criterion are employed simultaneously.
Proposition 2: For any f , g such that f (x), g(x) 6= 0 for all

x, the strong approximation f '̇ g implies both the absolute
approximation f ' g and the relative counterpart f ∼ g.
Proof: The proof employs the epsilon characterization of

the two limits in the definition of the strong approximation,
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writing 1/f − 1/g = g−f
fg (|f − g| is eventually below ε,

and |f−g|
|f ||g| is eventually below ε/(1 + ε)). Consider the two

cases |g(x)| > 1 and |g(x)| 6 1 (for which |f (x)| < 1 + ε)
separately, bounding |f − g|/|g| (eventually below ε). �
The following statements will prove particularly useful to

the work developed here, which assumes quadratic running
times for the microaggregation algorithms. The difference
between an arithmetic mean and a geometric mean arises in
the solution

−b±
√
b2 − 4ac
2a

of the quadratic equation ax2 + bx + c = 0, since

−b =
1
2
((−b+ 2

√
ac)+ (−b− 2

√
ac)),√

b2 − 4ac =
√
(−b+ 2

√
ac)(−b− 2

√
ac).

More specifically, our next proposition analyzes the differ-
ence

φ
def
=

f + g
2
−
√
fg,

as the functions involved increase, and the quality of the
approximation

ψ
def
=

1
8 (f − g)

2

f+g
2

.

Notice that φ > 0 by the arithmetic-mean geometric-mean
inequality on f and g, by Young’s inequality on

√
f and

√
g, or simply from the fact2 that φ = 1

2 (
√
f −
√
g)2. Finally,

we should point out that the very last statement on o(ψ2) is
stronger than the limit result on the difference of the inverses,
equivalent to φ = ψ + o(φψ), since ψ 6 φ.
Proposition 3: For any f , g > 0, suppose that f , g → ∞

and

(f − g)2

f + g
→ 0.

We may then conclude that the nonnegative difference φ
between the arithmetic and the geometric mean vanishes in
the limit, that is,

φ
def
=

f + g
2
−
√
fg→ 0,

and that this difference can be strongly approximated accord-
ing to

φ
def
=

f + g
2
−
√
fg '̇ ψ

def
=

1
8 (f − g)

2

f+g
2

,

for which the right-hand side constitutes a lower bound,
i.e., φ > ψ . Further,

φ = ψ + o(ψ2).

2Incidentally, the form φ = 1
2 (
√
f −
√
g)2 is the Bregman divergence

associated with Fenchel’s inequality, of which Young’s is a special case.
Precisely, it is the divergence induced by the self-conjugate function t 7→
1
2 t

2, between the arguments
√
f and

√
g.

Proof: The proof is mainly routine algebraic manipulation,
once we realize that

f + g
2
−
√
fg =

(
f−g
2

)2
f+g
2 +

√
fg
.

The bounds follow from the arithmetic mean-geometric mean
inequality, but also from the explicit computation of the dif-
ferences involved. �
The following corollary readily applies the previous propo-

sition to f (x) = x + a and g(x) = x + b, the functional forms
encountered in the main text.
Corollary 4: For any a, b ∈ R, as x →∞,

x +
a+ b
2
−

√
(x + a)(x + b)→ 0,

x +
a+ b
2
−

√
(x + a)(x + b) '̇

(a−b)2
8

x + a+b
2

,

x +
a+ b
2
−

√
(x + a)(x + b) =

(a−b)2
8

x + a+b
2

+ o(1/x2).

The last formula asserts that the error in the approximation
to the arithmetic mean-geometric mean difference in terms of
the simpler rational fraction vanishes faster than x−2 as x →
∞, that is, faster than the asymptotic square of the functions
approximated. Taking b = −a gives our last immediate
corollary.
Corollary 5: For any a ∈ R, as x →∞,

x −
√
x2 − a2→ 0,

x −
√
x2 − a2 '̇

a2

2x
,

x −
√
x2 − a2 =

a2

2x
+ o(1/x2).
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