IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 4, 2018, accepted October 1, 2018, date of publication October 15, 2018, date of current version November 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2875734

Distributed Search Architecture for Object
Tracking in the Internet of Things

HIROFUMI NOGUCHI ', TATSUYA DEMIZU, MISAO KATAOKA,
AND YOJI YAMATO, (Senior Member, IEEE)

NTT Network Service Systems Laboratories, NTT Corporation, Tokyo 180-8585, Japan
Corresponding author: Hirofumi Noguchi (hirofumi.noguchi.rs @hco.ntt.co.jp)

ABSTRACT Internet of Things (IoT) is rapidly expanding, which will enable many devices to be installed
in various environments. However, current IoT services cannot maximally utilize devices because of their
silo model. To solve this problem, we aim to realize Open IoT, in which services share devices. In this
paper, we propose an architecture for an object tracking service, one of the main services of Open [oT. The
architecture uses video data from shared devices, such as surveillance cameras or pedestrians’ smartphones.
An important research task is to discover the most appropriate devices for a service out of a huge number
of devices connected to the Internet. We named real-time data generated by devices “live data” and are
trying to use these data to discover appropriate devices. However, it is difficult to collect and handle
all live data in the cloud because of the network band limit. Therefore, we propose a distributed search
architecture. Generally, distributed architecture uses network and computing resources less efficiently than
cloud architecture. Our proposed architecture overcomes this by deploying a search function dynamically
and copes with arbitrary searches. We developed a system that embodies our proposed architecture and
evaluated its feasibility. An experiment simulating a moving object tracking service with network cameras
is shown that the architecture reduces the communication bandwidth of the core network to 1000th or less
of that when cloud computing is used. In addition, another experiment is shown that the architecture search
speed is sufficient for a walking-person tracking service.

INDEX TERMS Internet of Things, network architecture, distributed information systems, sensors, search.

I. INTRODUCTION

The Internet of Things (IoT) is rapidly expanding. Fifty
billion devices will be connected to the Internet by 2020 [1],
security cameras and temperature sensors will be installed in
various environments such as homes and streets [2], [3], and
portable devices such as smartphones and wearable devices
will be seen everywhere. McKinsey estimates that the poten-
tial economic impact of IoT applications will be US$11.1 tril-
lion per year in 2025 [4]. A large amount of data generated
by IoT devices will be used for various applications, enabling
innovative services to be created for a wide spectrum of
domains [5].

However, current IoT services cannot maximally utilize
those personal devices because of their silo model. In the
silo model, service providers provide an integrated service by
preparing a service application and dedicated devices. There-
fore, many devices are necessary to provide services over a
wide area. However, most service providers can only provide
small-area services such as services in offices or towns.

To solve this problem, we are aiming to realize Open IoT,
which will provide wide-coverage services at low cost by
using various shared devices around us (Fig. 1). In Open IoT,
we will be able to access various owners’ devices connected
to the Internet and use them for various services. For example,
a store’s security camera or a pedestrian’s smartphone camera
will be temporarily used to search for a lost child. In another
example, public warnings will be displayed on digital signage
during a disaster such as an earthquake. In Open IoT, service
providers will not need to prepare dedicated devices. As long
as there is the Internet, anywhere can be a service area.

To realize Open IoT, several requirements must be met.
First are security and privacy, which are also important in
the conventional silo model IoT. Atzori et al. [6] note the
authentication and data integrity of the sensor node as con-
crete requirements of IoT security. Roman et al. [7] note iden-
tity and authentication, access control, protocol, and network
security as specific challenges of IoT security. In addition,
Qiu et al. [8] note that all types of communications may be

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

60152

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5628-2217

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

IEEE Access

FIGURE 1. Silo loT model and Open loT model.

used in heterogeneous device environments such as the Open
IoT environment and insist on the importance of security
communication protocols in a survey.

Privacy protection is another important requirement in [oT.
Many IoT services use a large amount of data generated
from sensors around us, which may include privacy infor-
mation. Therefore, only necessary information for a service
must be extracted from data. For example, Roman et al. [7]
show that as a core idea of privacy protection, distributed
entities control the granularity of data they provide for each
service. As another example, in a camera network for video
surveillance, images of people can be blurred to protect their
privacy [9].

In OpenloT, services will use shared devices of multiple
owners. Therefore, it is necessary not only to protect from
external attackers and anonymize the data contents but also to
securely connect the service provider and the device owner.
We believe all these requirements can met by networking
functions, which can mediate the service provider and the
device owner. Accessing the devices through the network
intermediation function enables data to be checked, data to be
anonymized, unauthorized access to be prevented, and device
owners to be anonymized. Monitoring the use of data by using
the network intermediation function also enables the device
owner to be provided with an appropriate incentive to allow
his/her device to be used.

Next, another important requirement is to discover the
most appropriate devices for a service out of a huge number
of devices connected to the Internet. In this paper, we will
mainly focus on this requirement and propose architecture
for a tracking service as an example of a wide-coverage
service realized by Open IoT. The tracking service described
in this paper finds tracking targets and constantly acquires and
views images them. It can be used for finding and monitoring
a lost child. In Open IoT, services use output data from
shared devices such as a surveillance camera or pedestrian’s
smartphone in a town center. Unlike general device search,
statically set metadata for the device are not useful to discover
appropriate devices or data because when an object or a
camera moves, the camera that is filming the object changes.
Appropriate devices and data must be selected dynamically.
Therefore, we take the approach of naming output data
generated by a sensor “live data” and using them to dis-
cover devices and data [10]. Live data include position data
and image and environmental information, such as temper-
ature, humidity, and luminance. Live data search must meet

VOLUME 6, 2018

two requirements. One is that it can gather and search data
among a huge amount of live data quickly because live data
become invalid after a certain period. For example, in the
video tracking of moving objects, a camera image of the
moving object is necessary, and an image has no value after
the object passes. The other is that live data search can cope
with arbitrary searches on unstructured data because search
queries differ by service and the live data format also differs
by resource. For example, in the tracking of moving object,
not only image data but also video streaming data are useful.
There are also variations in search queries. Someone may
want to designate a person to be tracked by facial images;
others may want to designate by clothing images.

Furthermore, there is a big problem in handling live data.
As the number of IoT devices will increase in the future,
the data size of live data will become enormous. It is difficult
to collect and handle all live data in the cloud because of the
network band limit. Today’s main Internet exchange mainly
uses 10- or 100-Gbps interfaces, and 400-Gbp Ethernet is
under development. Thus, live data will need to be handled
efficiently.

Therefore, we adopted a distributed search architecture.
Generally, distributed architecture uses network and com-
puting resources less efficiently than cloud architecture. Our
proposed architecture overcomes this by deploying a search
function dynamically and copes with arbitrary searches.

The rest of this paper is organized as follows. Section II
surveys the related work. Section III describes the proposed
architecture for a tracking service. Section IV compares
the proposed architecture with cloud and edge computing.
Section V presents the developed system and experimen-
tal results. Section VI discusses the future tasks. Finally,
Section VII concludes the paper.

Il. RELATED WORK

Leading global companies are giving special attention to and
making significant effort in IoT for their industrial solutions
in order to stay profitable. Most of their IoT solutions adopt
managed resources and create silos. Therefore, standardiza-
tion organizations, such as oneM2M [11], are aiming to inter-
connect these solutions. The basis of such an interconnected
solution is to use managed resources, and a service program
can determine the types, places, and number of resources
beforehand. However, in Open IoT, the service program
will never be able to determine the resources beforehand.
To thus realize Open IoT, a new method and architecture
using unmanaged resources are required.

The “resource directory” is a concept to discover an appro-
priate resource on the basis of the resource’s metadata. The
resource directory collects a resource’s metadata that are
connected in its domain and provides search functionality of
the collected data. Currently, standardization organizations,
such as CoRE [12], [13] are specifying such metadata and
procedures of gathering and querying metadata. AllJoyn [14],
which is one of the open source projects, enables multi-
cast and multicast Domain Name System (DNS)-based [15]

60153

IEEE Access

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

discovery using metadata. The Web search system using
Universal Description, Discovery and Integration (UDDI)
[16] also discovers devices by using metadata. Though these
technologies can discover and identify devices connected to
the network, their purposes are different from ours. Our aim
is to find the devices and data that have the target sensing data
in a constantly changing situation. In other words, we want to
search for contexts, not to find a specific individual device.

From the above, we believe that live data search is effective
as a new method to discover IoT resources. For live data
search, Elahi ef al. [17] focused on predicting current live data
of resources. Their prediction model helps us to find sensors
matching a user query; however, it is not always accurate and
can be applied only to devices that show periodic patterns.
Perera et al. [18] focused on the context-property-based sen-
sor search; however, the properties were predefined, which
does not allow services to meet arbitrary search requirements.

Furthermore, network bandwidth to cope with live data
must be considered. Because of the data transfer volume, it is
difficult for live data search to adopt web search engine archi-
tecture, which crawls web page information at datacenters.
There are various types of live data: some are strings, some
are images, and some are streams. Therefore, the transfer of
live data may cause a huge amount of network traffic. Web
search engine architecture crawls the content of web pages
at datacenters and creates a huge index using the collected
data [19]-[22]. This means that the architecture collects all
live data into a centralized datacenter and creates an index,
which may cause communication congestion.

Ill. PROPOSED ARCHITECTURE

We designed distributed search architecture for a tracking
service. To realize live-data-based search, we propose two
new concepts: a live data buffer and a resource resolver. The
live data buffer gathers the live data of every device, and
the resource resolver resolves the appropriate resource and
data for a service at a certain moment. Fig. 2 gives a general
overview of the architecture. Live data buffers are network
nodes distributed in a wide-area network, and they gather a
resource’s live data belonging to the same network. When a
service queries the resource resolver about the appropriate
resources that meet the service requirements, the resource
resolver then queries the local live data buffer about the con-
dition, and then the local live data buffer checks the current
live data of the resources. If there are appropriate resources,
the local buffer returns the resource information to the service
through the resource resolver.

To deal with arbitrary searches for unstructured live data,
the live data buffer must have various data analysis functions,
such as face recognition and color recognition. However, it is
inefficient to have all functions in all live data buffers. Only
the necessary function should be deployed in accordance
with the query from a service. Therefore, the architecture
dynamically distributes the search function named a query
filter, which is software that analyzes live data and finds data
corresponding to the query. When a user or service sends the

60154

FIGURE 2. Overview of distributed search architecture.

FIGURE 3. Structure of live data buffers.

query to the resource resolver, the query translator creates a
query filter. When a new query filter is set to the live data
buffer, the query filter starts to analyze live data. A query filter
can be created from multiple search algorithms. Moreover,
a query translator can distribute a query filter to live data
buffers in a local network as a download application, virtual
machine (VM) image file, or Linux Container. In addition,
to narrow down the search area, a query translator determines
the distributed destination live data buffer on the basis of the
metadata. Metadata are static information of live data buffer
and devices that include location, owner, etc.

Fig. 3 illustrates the details of live data buffers. A live data
buffer is the gathering point of the live data of resources. Each
resource pushes the live data to the nearest or a specified live
data buffer, or the live data buffer actively pulls the resources’
live data. Then the live data buffer collects each resource’s
live data in a period. It forms a certain time window, t_i to
t_(i+n), (t is time), and the expired t_(i-1) data are discarded
or transferred for other uses. The range of “n” should be
set to reflect the dynamism of a resource’s live data char-
acteristics. Frequent queries permanently set corresponding
filters to live data buffers. To search live data quickly, our
architecture limits the time window to make the targeted data
smaller. We will also explain how to implement the architec-
ture on a commercial network. Edge computing [23] and fog

VOLUME 6, 2018

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

IEEE Access

TABLE 1. Comparison of Architectures

Cloud Edge Distributed search
Computing Computing architecture
Network Bad Good Good
traffic
Query Good Bad Good
variation
Performance Sufficient Sufficient Difficult
guarantee for
multiple (Has (Can estimate (Uses shared and
processing plentiful the maximum limited computer
computing load) resources)
resources)
Performance Sufficient Sufficient Difficult
guarantee for
hardware (Special (Common (Common
dependent computer) computer) computer)
processing
Other concern Nothing Nothing Processing time and
network traffic of
query filter
distribution

computing [24] are models that perform calculation process-
ing at the network edge instead of cloud concentration.

These models are highly adaptable to the live data buffer.
One way to implement the distributed search architecture is
to deploy the query translator in the core network and utilize
the edge server in the local network as the live data buffer.
Edge side communication equipment, such as a radio base
station that passes live data of IoT devices, is a candidate for
the equipment on which to install the live data buffer. There is
a model called Dew computing [25] that uses a device closer
to the user than the network edge. It is also adaptable to the
live data buffer. In fact, we are planning to implement the
data analysis function of the live data buffer on abundant local
computers.

IV. COMARISON OF ARCHITECTURES

We compared the network function deployment model of the
proposed distributed search architecture with cloud comput-
ing and edge computing. Table 1 shows the comparison. First,
the proposed architecture has smaller network traffic for dis-
covering data and devices than cloud computing, as intended.
The proposed architecture has the same network traffic as
edge computing using local machine resources. In addition,
the proposed architecture can handle many more kinds of
requests than the simple edge computing, in which a specific
program is installed and used beforehand in a local limited
computing resource. Cloud computing with abundant com-
puting resources can handle as many kinds of requests as the
proposed architecture. However, there are several tradeoffs
between features in the proposed architecture.

The first feature is that the proposed architecture does not
use dedicated computers but shared computers in the local
network as live data buffers. Computers are not occupied
by one query filter. The live data buffer simultaneously exe-
cutes various query filtering processes in accordance with

VOLUME 6, 2018

the search query. Therefore, it is difficult to design appropri-
ate computing resources by verifying the processing load in
advance. This is different from both edge and cloud comput-
ing. In contrast, simple edge computing executes only prein-
stalled applications, so the maximum load can be estimated in
advance. Cloud computing is originally suitable for utilizing
shared computing resources. All data from multiple locations
are efficiently processed by plentiful computing resources in
the cloud. To solve this potential problem of the proposed
architecture, we are planning to apply resource management
tools such as OpenStack [26] to the system. For example,
OpenStack can specify the size of central processing unit
(CPU) cores and memory used by the VM by the catalog
called flavor. In addition, OpenStack can be linked to the CPU
pinning function of KVM (Kernel Virtual Machine) [27],
which allocates the VM to the specific CPU core. When there
are no free resources, these functions can detect and notify
that. Thus, the system will be able to handle multiple query
filter executions while guaranteeing the performance.

The second feature is that the proposed architecture does
not use special computers but common computers. Since the
live data buffer must handle various live data and query filters,
preparing tuned computers for specific applications is not
suitable. Therefore, the performance may be lower than when
using special computers. For example, a graphics processing
unit (GPU) is generally suitable for video data analysis and
processing. As described above, in cloud computing, it is only
necessary to prepare a certain number of GPU servers in the
cloud. However, in the proposed architecture and simple edge
computing, preparing the GPU servers in all local environ-
ments is inefficient. In the future, we are planning to prepare
multiple types of computer resources that include GPU and
large storage at the appropriate network aggregation points
and dynamically allocate corresponding query filters.

The third feature is the distribution cost of the query filter.
In the proposed architecture, since the query filters have to be
distributed after receiving the search request, the total search
time is longer than in the case of merely executing a prein-
stalled application. In addition, there is communication traffic
for query filter distribution. Only the proposed architecture
presents this concern. We will show experimental results on
the degree of these costs in the next section.

V. IMPLEMENTATION AND EXPERIMENTATION

We evaluated the feasibility of the proposed architecture in
experiments. We evaluated the effect of reducing network
traffic on searches by analyzing live data locally. This is
the main purpose of the architecture. In addition, we also
evaluated the search speed because distributing the query
filter affects response time.

For the experiment, we developed a distributed search
system and application software that embodies the proposed
architecture [28]. Fig. 4 shows the system configuration,
and Fig. 5 shows a picture of the experiment environment.
It simulates a tracking service across two networks. Smart-
phone cameras are arranged as shared devices. Within the

60155

IEEE Access

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

\ —— 1000BASE-T

- TEEE802.11n

=0

[omna]

Camera B ‘ Camera C | Camera F |

K Network #1 Network #2 /

FIGURE 4. System configuration for experiments.

FIGURE 5. Experiment environment.

viewing range of the smartphone camera, movable objects
are arranged that have several features of appearance. The
resource resolver and service portal are in different networks
from the devices.

Fig. 6 shows the service portal’s screen that accepts search
queries from users. The query through the search portal is
notified to the resource resolver. Then, a corresponding query
filter application is selected by the query translator and dis-
tributed to the live data buffer on the two local networks.
Application software for face recognition, color recognition,
character recognition, and shape recognition are implemented
as the query filter, and total file size is 115 MB. The live data
buffer acquires the captured image (file size is 9.4 kByte) at a
fixed cycle (200 ms) from smartphones of the same network
domain. The live data buffer analyzes the video data, finds
the video data matching the query, and reports the data source
device and the score of the analysis to the resource resolver.

Video data of the search result are output to the service
portal. When multiple cameras are displaying the object,
the clearest one (i.e., has the highest algorithmic score for the
query filter) is selected from the analysis result. The search
process is always performed until the user makes a termi-
nation request, and the search result dynamically changes in

60156

FIGURE 6. Service portal’s screen.

TABLE 2. Machine specifications

Module . CPU . . Memory .
(Virtual Machine) (Virtual Machine)

Web portal Intel Core 15-6200U (2GB)
CPU @2.30GHz x 2
(1 core)

Resource resolver Intel Core 17-6700 (12 GB)
@3.40GHz x 8
(2 core)

Query translator Intel Core 17-6700 (4 GB)
@3.40GHz x 8
(1 core)

Live Query Intel Xeon CPU E5-2620 | 32GB

data filter v3 @2.40GHz x 12

buffer Other Intel Core i7-6700 CPU 16 GB
@3.40GHz x 8

accordance with the movement of the object. That is, video of
tracking targets is always present in the service portal’s screen
as a result of the search. The specifications of each functional
part and details of the query filter are shown in Table 2.
In the experiment, we use two computers for a live data
buffer: one for executing query filtering, and the other for the
other processing. Functions other than the live data buffer are
implemented as VMs.

A. NETWORK TRAFFIC MEASUREMENT

We measured the network traffic between the devices and
live data buffer and between the live data buffer and resource
resolver. In this environment, the live data buffer acquired
9.4 kByte of video data at a cycle of 200 ms per device, that
is, network traffic on average between the devices and live
data buffer is 47 kByte / s. If we aggregate and analyze all the
image data in the cloud, this amount of network traffic will
go through the core network. On the other hand, the network
traffic between the live data buffer and resource resolver is
7.6 Byte / s on average. In the proposed system, only this
amount of traffic will go through the core network. By using
our architecture, the communication bandwidth of the core
network can be reduced to 1000th or less of that when using
the cloud model.

VOLUME 6, 2018

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

IEEE Access

o0

~

o

(=)

]

N

TABLE 3. Results for processing time in each sequence

Network traffic (M Byte)

—

<

1 2 3 4 s
The number of sensors

FIGURE 7. Integration of resource resolver notification data size with
respect to number of sensors.

2
S

g

- architecture

—_
@
S

iy

_____ ——Proposed
L architecture

@
S

e

o

0 500 1000 1500 2000 2500 3000 3500 4000

Network traffic (M Byte)
2

Time s

FIGURE 8. Time buildup of traffic volume of core network for cloud
architecture and proposed architecture.

In addition, our query filter aggregates data analysis results
for multiple sensors and notifies the resource resolver of
them, so even if the number of sensors increases, the traffic
volume between a resource resolver and live data buffers does
not simply double. Fig. 7 shows the integration of the resource
resolver notification data size with respect to the number of
sensors. The data in this figure show the integrated value of
communication when data of the device are processed for
three minutes with two live data buffers. As the number of
sensors increases, the amount of information to be reported
increases but only very slightly.

Finally, we also measured the effect of distributing a
query filter as an application file because it may increase
network traffic temporarily. Fig. 8 shows the time buildup
of the traffic volume of the core network in cases of the
cloud architecture and the proposed architecture for a single
smartphone camera. As a result of the experiment, in the
case of one camera, the total traffic volume was smaller in
the proposed architecture than in the cloud intensive model
if the analysis request lasted over 40 minutes (2400 s).
Also, in the case of two cameras, the traffic volume of the
cloud architecture doubles, but as shown in Fig. 7, the traf-
fic volume of the proposed architecture only increases very
slightly.

Therefore, boundaries of service duration where the pro-
posed architecture is beneficial are about 20 minutes for
2 cameras. The boundaries of service duration become
smaller in direct proportion to the number of cameras.

VOLUME 6, 2018

Time (s)
sequence 1 live data buffer 2 live data buffers
Receive query and
distribute query filter 3317 6357
3 — Execute query filter 1.044 1.044
Returns the address
of the device 0463 0463
Total 6.824 7.864

TABLE 4. Time of query filter distribution.

Time (s)
Sequence Download Pre-download
1 buffer 2 buffers 1 buffer 2 buffers
Receive query
and distribute 5317 6.357 0.923 1.046
query filter

B. SEARCH SPEED MEASUREMENT

We measured the time from when the resource resolver
received the service request to when it returned the IP address
and video data of the device. We have two experiment condi-
tions: one network and two networks. In this experiment, each
network has one live data buffer and one smartphone camera.
We obtained the median value of the time by carrying out the
test five times under the same conditions. Table 3 shows the
results.

The maximum response time is 7.864 seconds when there
are two live data buffers. If the average walking speed of a
person is 80 m / min. (1.333 m/ s), a person will move 10 m
during the search. Although it depends on the viewing angle
of the camera, this search speed is sufficiently fast for a
walking-person tracking service. Also, the time taken to
deliver the query filter is about 80% of the total time. This
time can be expected to be shortened by optimizing the
application size to be distributed.

The difference in response time due to the number of
live data buffers appears in the delivery time of the query
filter. To determine whether this difference is due to network
load, we conducted experiments in which the query filter was
delivered to the live data buffer beforehand. Table 4 shows
the results. Even without delivery, the time is slightly longer
when there are two live data buffers but is still much shorter
than when there is a download. From the above, the reason
that the time becomes longer when there are two live data
buffers is that the network load is increased by the distri-
bution amount of query filters. We also want to mention
that subsequent requests that use the same query filter take
pre-download time in Table 4. The total time required for
discovering the same data and device is greatly shortened.
When there are two live data buffers, the time is about
2.553 seconds. In this case, it is possible to track runners
and cyclists estimated to be about three times as fast as
pedestrians.

60157

IEEE Access

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

VI. DISCUSSION

In this paper, we described the distributed search architecture
for a tracking service using shared devices and evaluated its
effectiveness, but further examination is required.

First, query filter application software needs to be dis-
tributed more efficiently. When applied to networks with
a large number of network domains such as the Internet,
distributing a personal query filter to all live data buffers gen-
erates a large download cost. The live data buffer’s computing
cost is also greatly wasted. The distribution-destination live
data buffer of the query filter needs to be narrowed down
beforehand. For one approach, we believe that static metadata
can be effectively used. For example, for a service that tracks
a specific individual, the country or region to be searched
may be narrowed down in advance. By registering existing
areas as static metadata of the device and providing an index-
based search like a pre-existing web service as a pre-filter,
devices for live data search can be narrowed down. However,
it is necessary to consider what should be managed as static
metadata together with the service. Also, another approach
is to improve query filters. By handling common queries
collectively, the processing of the local live data buffer will
be able to be made more efficient. For example, there is
a concept of a gradual query filter. Initially, a filter that
detects moving objects is distributed and commonly used, and
only the personal conditions such as the identification of the
face of a specific person are distributed later. This reduces
the distribution cost and computation cost of query filters
and also reduces search time by using preinstalled common
filters.

Furthermore, to use various shared devices, it is necessary
to abstract unique interface types and access protocols for
each device. With Open IoT targeting indefinite devices, it is
not realistic for a service program to implement multiple
control logic for various resources in advance. To promote
Open IoT, we plan to develop a mediation function for the
architecture. It will enable service programs to easily use
various resources made by different manufacturers.

Finally, security and privacy are important for Open IoT.
The proposed architecture can also apply security and pri-
vacy measures. For example, the experiment system prohibits
direct access to the device, so that it can acquire the data of
the device only through the resource resolver. In addition,
security applications such as data anonymization, encryption,
and malware detection can be delivered to the appropriate live
data buffers using query filters. One of the great merits of the
proposed architecture is it delivers the security and privacy
protection application suitable for each type of device and
service.

VII. CONCLUSION

The Internet of Things (IoT) is rapidly expanding, and we
are aiming to realize a wide service coverage and low cost
service by Open IoT, where multiple services share devices
in an environment. One of the main services of Open IoT
will be a tracking service that will use real-time information

60158

generated by devices such as video data and detected values.
We named such data “live data” and use them to search for
appropriate devices for the service. This requirement is not in
conventional resource search technologies using static data;
it is a new requirement for realizing Open IoT that utilizes a
variety of shared devices. However, there is a big problem in
handling live data: as the number of IoT devices increases in
the future, the data size of live data will become enormous.
It is difficult to collect and handle all live data in the cloud
because of the network band limit. Live data must thus be
handled efficiently.

In this paper, we proposed a distributed search architecture
for a tracking service in Open IoT. The architecture forms
pairs of search queries and data analysis applications and dis-
tributes applications dynamically in accordance with search
requests. It is a new method that extends edge computing.
It solves the problem of network band for real-time and flex-
ible device search and also has extensibility to accommodate
various devices and service requirements.

We also developed a system that embodies the proposed
architecture and evaluated its feasibility. An experiment
showed that the architecture reduces the communication
bandwidth of the core network to 1000th or less of that
when using the cloud model. In addition, another experiment
showed the search speed of the architecture is sufficiently fast
for a walking-person tracking service. The resource discovery
is a common function as the core of the Open IoT platform,
and it is a technology that will greatly enhance the advance-
ment, flexibility, and scale of Open IoT services. In the future,
we plan to extend the architecture to make it applicable to
various devices and services.

REFERENCES

[1] D. Evans, “The Internet of Things—How the next evolution of the Internet
is changing everything,” Cisco Internet Business Solutions Group,
San Jose, CA, USA, White Paper, Apr. 2011. [Online]. Available:
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_
0411FINAL.pdf

[2] G. Chong, L. Zhihao, and Y. Yifeng, “The research and implement
of smart home system based on Internet of Things,” in Proc. Int.
Conf. Electron. Commun. Control (ICECC), Ningbo, China, Sep. 2011,
pp. 2944-2947.

[3] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architec-
ture and its applications based on IoT,” Procedia Comput. Sci., vol. 52,
pp. 1089-1094, Jan. 2015.

[4] J. Manyika et al., “The Internet of Things: Mapping the value beyond
the hype,” McKinsey Global Inst., San Francisco, CA, USA, Tech. Rep.,
Jun. 2015.

[5] E. Siow, T. Tiropanis, and W. Hall, ““Analytics for the Internet of Things:
A survey,” ACM Comput. Surv., vol. 51, no. 4, p. 74, 2018.

[6] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

[7]1 R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed Internet of Things,” Comput. Netw.,
vol. 57, no. 10, pp. 2266-2279, 2013.

[8] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can
heterogeneous Internet of Things build our future: A survey,” IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 2011-2027, 3rd Quart.,
2018.

[9] J. Wickramasuriya, M. Datt, S. Mehrotra, and N. Venkatasubramanian,
“Privacy protecting data collection in media spaces,” in Proc. ACM Int.
Conf. Multimedia, New York, NY, USA, Oct. 2004, pp. 48-55.

VOLUME 6, 2018

H. Noguchi et al.: Distributed Search Architecture for Object Tracking in the loT

IEEE Access

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

T. Ikebe, H. Noguchi, and N. Hoshikawa, “Distributed live data search
architecture for resource discovery on Internet of Things,” in Proc.
IEEE World Forum Internet Things, Reston, VA, USA, Dec. 2016,
pp. 591-596.

OneM2M. Accessed: Oct. 15, 2018. [Online]. Available: http:/
www.onem2m.org/

Z. Shelby, Constrained RESTful Environments (CoRE) Link Format,
document RFC 6690, Aug. 2012.

Z. Shelby, M. Koster, C. Bormann, and P. van der Stok, CoRE Resource
Directory, document draft-ietf-core-resource-directory-09, Internet-Draft,
Oct. 2016.

AllJoyn. Accessed: Oct. 15, 2018. [Online]. Available: https://events.
static.linuxfound.org/sites/events/files/slides/ AllJoynThinLibraryTarget
Porting_PeterKrystad_MathewMartineau.pdf

S. Cheshire and M. Krochmal, Multicast DNS, document RFC 6762,
Feb. 2013.

K. Tamilarasi and M. Ramakrishnan, “Design of an intelligent search
engine-based UDDI for Web service discovery,” in Proc. Int. Conf. IEEE
Recent Trends Inf. Technol. (ICRTIT), Apr. 2012, pp. 520-525.

B. M. Elahi, K. Romer, B. Ostermaier, M. Fahrmair, and W. Kellerer,
“Sensor ranking: A primitive for efficient content-based sensor search,”
in Proc. IPSN, San Francisco, CA, USA, 2009, pp. 217-228.

C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and
D. Georgakopoulos, “Sensor search techniques for sensing as a service
architecture for the Internet of Things,” IEEE Sensors J., vol. 4, no. 2,
pp. 406420, Feb. 2014.

J. Dean and S. Ghemawat, ‘“MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
2008.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. 6th Conf. Symp. Oper. Syst. Design Implement.,
San Francisco, CA, USA, Dec. 2004, pp. 137-150.

S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” in
Proc. 19th ACM Symp. Oper. Syst. Principles, Bolton Landing, NY, USA,
Oct. 2003, pp. 29-43.

A. Toshniwal et al., “Storm@twitter,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Snowbird, UT, USA, Jun. 2014, pp. 147-156.

Y. Jaraweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, “The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing,” in Proc. 23rd Int. Conf. Telecom-
mun. (ICT), Thessaloniki, Greece, May 2016, pp. 1-5.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of Things,” in Proc. Ist Ed. MCC
Workshop Mobile Cloud Comput., Helsinki, Finland, Aug. 2012,
pp. 13-16.

P. P. Ray, “An introduction to dew computing: Definition, concept and
implications,” IEEE Access, vol. 6, pp. 723-737, 2017.

OpenStak. Accessed: Oct. 15, 2018. [Online]. Available:
https://www.openstack.org/

KVM. Accessed: Oct. 15, 2018. [Online]. Available: https://www.linux-
kvm.org/page/Main_Page

M. Kataoka, N. Hosikawa, H. Noguchi, T. Demizu, and Y. Yamato,
“Tacit computing and its application for open IoT era,” in Proc. IEEE
Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, Jan. 2018,
pp. 12-16.

VOLUME 6, 2018

HIROFUMI NOGUCHI received the B.S. and
M.S. degrees in mechanical engineering from
Waseda University, Japan, in 2010 and 2012,
respectively. He joined NTT Corporation, Japan,
in 2012, where he has been involved in the devel-
opmental research of server virtualization and
Internet of Things. He is currently a Researcher
with NTT Network Service Systems Laboratories.

TATSUYA DEMIZU was born in Osaka, Japan,
in 1988. He received the B.S. degree in engineer-
ing from Osaka University, Japan, in 2011, and
the M.S. degree in engineering from The Univer-
sity of Tokyo, Japan, in 2013. In 2013, he joined
NTT Corporation, Japan, where he is currently a
Researcher with NTT Network Service Systems
Laboratories. His research interests include net-
work architecture of a career network accepting
multiple service providers with various require-

ments and global communication mechanisms for Internet of Things devices.
He is a member of IEICE.

MISAO KATAOKA received the B.S. and M.S.
degrees in informatics from the University of
Kyoto, Japan, in 2012 and 2014, respectively.
She joined NTT East in 2014, where she was
involved in simplifying networks. Since 2016, she
has been involved in the developmental research
of distributed processing platforms and Internet
of Things platforms at NTT Laboratories. She is
currently a Research Engineer with NTT Network
Service Systems Laboratories.

YOJI YAMATO (SM’16) received the B.S. and
M.S. degrees in physics and the Ph.D. degree in
general systems studies from The University of
Tokyo, Japan, in 2000, 2002, and 2009, respec-
tively. He joined NTT Corporation, Japan, in 2002,
where he has been involved in the developmen-
tal research of cloud computing platform, peer-
to-peer computing, and Internet of Things. He is
currently a Senior Research Engineer with NTT
Network Service Systems Laboratories. He is a

Senior Member of IEICE and a member of IPSJ.

60159

	INTRODUCTION
	RELATED WORK
	PROPOSED ARCHITECTURE
	COMARISON OF ARCHITECTURES
	IMPLEMENTATION AND EXPERIMENTATION
	NETWORK TRAFFIC MEASUREMENT
	SEARCH SPEED MEASUREMENT

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	HIROFUMI NOGUCHI
	TATSUYA DEMIZU
	MISAO KATAOKA
	YOJI YAMATO

