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ABSTRACT Demands for vital sign monitoring are increasing in the field of health care. In particular,
the R-R Interval (RRI) estimation has been studied extensively, since the RRI variation is highly related with
the stress of a subject. Various Doppler sensor-based-heartbeat detection methods have been proposed so
far, thanks to non-contact and non-invasive features of a Doppler sensor. In our previous research, we have
proposed a Doppler sensor-based RRI estimation method by a spectrogram. In this method, the spectra due
to heartbeats are integrated on a spectrogram, and then the RRI is estimated by detecting the peaks of the
integrated spectrum. However, the undesired peaks sometimes appear even in the situation where a subject
sits still. In this paper, as the extended version of our previous method, we propose a Doppler sensor-based
RRI estimation method leveraging the accurate peak detection. In the proposed method, to prevent the
incorrect peak detection, the peaks due to heartbeats are detected using some peaks before and after the
investigated peak. Through the experiments on 10 subjects in the cases where a subject was sitting still,
typing, and speaking, we confirmed that the proposed method improved our previous and state-of-the-art
ones by the root-mean-squared error of the RRI. Furthermore, based on the estimated RRI, we calculated
the stress index low-frequency/high-frequency (LF/HF), which is one of the useful indices to evaluate the
stress of a subject. As a result, our proposed method outperformed the other ones by the relative error of the
LF/HF.

INDEX TERMS Microwaves, Doppler sensor, spectrogram, health care, heartbeat, RRI (R-R Interval).

I. INTRODUCTION
Vital sign monitoring is receiving a lot of attention in the field
of health care. In particular, the heartbeat detection technique
has been developed for many years. Thanks to heartbeat
detection technique, the variation of the RRI (R-R Interval)
can be measured, where the RRI denotes the peak-to-peak
interval of heartbeats. The stress index can be calculated
based on the spectrum analysis of the RRI variation [1]–[4].
In particular, the LF/HF (Low-Frequency/High-Frequency)
assessment is widely used as one of the useful methods to
estimate the balance between the sympathetic nervous and the
parasympathetic nervous [3], [4].

To measure the stress level through the LF/HF assess-
ment, the Doppler sensor-based heartbeat detection has
been studied extensively [5]–[22]. A Doppler sensor can
observe the velocity and direction of a moving tar-
get by transmitting microwaves toward the target and
then analyzing a reflected Doppler-shifted microwaves.

Therefore, the Doppler sensor-based heartbeat detection
method does not require the device attachment, unlike
the method using ECG (Electrocardiograph) and PPG
(Photoplethysmogram). In addition, one of its important
features is that the transmitted microwaves penetrate the
subject’s clothes, meaning that the Doppler sensor-based
method does not require to take off subject’s clothes. How-
ever, the accurate heartbeat detection is challenging, because
the SNR (Signal-to-Noise Ratio) of heartbeat components
over a reflected signal of a Doppler sensor is low, com-
pared with those of respiration and body movements. In gen-
eral, the chest displacement due to heartbeats ranges from
0.2 mm to 0.5 mm, while that due to respiration ranges
from 4 mm to 12 mm [13]. Also, the displacement due
to body movements might be larger than those due to res-
piration and heartbeats, and such body movements might
significantly degrade the accuracy of the heartbeat detec-
tion. To extract the heartbeat components from the signal
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including not only heartbeat components but also non-
heartbeat components, e.g., respiration and body movements,
various Doppler sensor-based heartbeat detection methods
have been proposed so far [5]–[22].

These can be classified into two methods in terms of the
way to estimate the RRI: (i) the indirect [5]–[14] and (ii) the
direct RRI estimation method [15]–[22]. In the indirect RRI
estimation methods, the HR (Heart Rate) is firstly estimated
and the RRI is then calculated based on the estimated HR.
In contrast, the direct RRI estimation methods estimate the
RRI without the HR estimation by extracting each heart-
beat component from the received signal of a Doppler sen-
sor. As one of the direct RRI estimation methods, we have
previously proposed the one based on a spectrogram [23].
Our previous method integrates the spectra corresponding
to heartbeats over a spectrogram, and then estimates the
RRI by detecting peaks of the integrated spectrum. However,
the undesired peaks sometimes appear around the peaks due
to heartbeats. This is mainly because of body movement,
and such undesired peaks may result in the incorrect peak
detection. In particular, more undesired peaks appear in the
situation where a subject moves. Therefore, the peak detec-
tion method needs to be improved.

In this paper, as the extended version of our previous
method [23], we propose a Doppler sensor-based RRI esti-
mationmethod leveraging an accurate peak detectionmethod.
Unlike our previous method, the peaks due to heartbeats are
detected based on some peaks before and after the investi-
gated peak. More specifically, RRI candidates are generated
based on the peaks within a time window and then the peaks
are detected so that the difference between the generated RRIs
and the previously estimated RRI becomes the smallest. Note
that the time window used in the peak detection is unlike the
widow used in STFT. The time window length is set based
on the previously estimated RRI, which means the window
length varies over time.

To evaluate the performance of the proposed method,
we conducted the experiments on 10 subjects in three
cases where a subject was (i) sitting still, (ii) typing,
and (iii) speaking. We compared the RRI estimation accuracy
of our proposed method with those of our previous and state-
of-the-art methods. The experimental results showed that the
proposed method significantly outperformed the state-of-the-
art ones, and improved the RMSEs of our previous one by
48.8 %, 42.7 %, and 39.1 % in the cases of the sitting still,
typing, and speaking, respectively. Furthermore, we calcu-
lated the stress index LF/HF based on the estimated RRI, and
then we confirmed that our proposed method achieved the
lower RE (Relative Error) than our previous and state-of-the-
art ones did in all the cases.

The rest of this paper is organized as follows. In Section II,
we describe the principle of a Doppler sensor and related
work. In Sections III, we explain our proposed method.
We then describe the conducted experiments and evaluate the
performance of our method in Section IV. Finally, we con-
clude this paper in Section V.

II. PRELIMINARIES
In this section, we firstly describe the principle of a Doppler
sensor. We then explain the related work and the RRI-based
stress evaluation method.

A. THE PRINCIPLE OF A DOPPLER SENSOR
Fig. 1 shows the system model of the Doppler sensor-based
heartbeat detection. In this system, microwaves T (t) =
cos
(
2π ft + 8(t)

)
are transmitted from the transmitter Tx

towards the subject’s chest, where f and 8(t) are the carrier
frequency and the phase noise, respectively. The transmitted
microwaves reflected by the subject’s chest are then received
by the receiver Rx, where the received signal R(t) is repre-
sented as eq. (1).

R(t) = cos
(
2π ft−

4πd0
λ
−
4πx(t)
λ
+8

(
t −

2d0
c

))
, (1)

FIGURE 1. The system model of the Doppler sensor-based heartbeat
detection.

where c is the speed of the electro-magnetic wave, λ is the
wavelength of the carrier and x(t) is the variation of the
distance d0 between a Doppler sensor and the subject’s chest.
The received signal R(t) is down-converted into the baseband
signal B(t).

B(t) = cos
(
θ +

4πx(t)
λ
+18(t)

)
, (2)

where θ is the constant phase shift determined by d0 and f ,
and18(t) is the total residual phase noise including the noise
accumulated in the circuit and along the transmission path.
By applying a quadrature mixer to B(t), the phase of B(t) is
shifted by π/2, which results in two components with a phase
difference of π/2, I (t) and Q(t). The obtained components
I (t) and Q(t) are called in-phase and quadrature components,
respectively. These are expressed as follows.

I (t) = cos
(
θ +

π

4
+

4πx(t)
λ
+18(t)

)
, (3)

Q(t) = cos
(
θ −

π

4
+

4πx(t)
λ
+18(t)

)
. (4)

Subsequently, to eliminate the undesired frequency compo-
nents, BPF (Band Pass Filter) is applied to I (t) and Q(t)
signals. The levels of I (t) and Q(t) signals are amplified by
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OP-AMP (Operational Amplifier). Finally, a Doppler signal
S(t) is calculated using I (t) and Q(t) as eq. (5).

S(t) = I (t)+jQ(t). (5)

S(t) can be also expressed as follows.

S(t) = I (t)+ jQ(t),

= exp {j[∓
4πvt
λ
+8(t)]}, (6)

where v is the motion speed of a target. In this equation,
the minus and the plus symbols mean the motion direction of
a target. When a target moves away from a Doppler sensor,
the minus symbol is adapted, and vice versa. The amount of
the frequency shift due to a target motion, fshift , is given as

fshift =
4πvt
λ
×

1
2π t
=

2v
λ
. (7)

B. RELATED WORK
In terms of the way to estimate the RRI, the Doppler
sensor-based RRI estimation methods can be classified into
two methods: (i) the indirect [5]–[14] and (ii) the direct
RRI estimation methods [15]–[22]. In the indirect RRI esti-
mation methods, the HR (Heart Rate) is firstly estimated
and the RRI are then calculated based on the estimated HR.
The conventional methods estimate the HR leveraging the
time-frequency analysis, e.g. (i) FFT (Fast Fourier Trans-
form) [5]–[8], (ii) MUSIC (MUltiple SIgnal Classifica-
tion) [9], [10], and (ii) WT (Wavelet Transform) [11]–[14].
In general, the normal respiration rate varies between 0.1 Hz
and 0.3 Hz [13], while the normal HR does between 0.5 Hz
and 2 Hz [24]. Therefore, by applying FFT to the received
signal of a Doppler sensor, it is possible to extract the fre-
quency components from the received signal including the
respiration components [5]–[8]. Also, to accurately esti-
mate the HR over the received signal including the noise
due to not only respiration, but also body movements, the
MUSIC-based HR estimation methods have been investi-
gated so far [9], [10]. MUSIC is an algorithm widely
used in the field of the DOA (Direction of Arrival) esti-
mation and the frequency estimation. The MUSIC-based
method has been shown to be accurate compared with the
FFT-based one [9], [10]. However, both the FFT-based
and the MUSIC-based HR estimation methods require a time
window that includes some heartbeats. In particular, most of
such methods use time windows longer than 10 s to achieve
a high frequency resolution [5]–[7]. The HR varies within a
time window, meaning that the RRI does as well. Therefore,
for the achievement of the accurate stress evaluation, it is
necessary to analyze the received signal of a Doppler sensor
with a higher time resolution. To realize this, the WT-based
HR estimation methods have been proposed [11]–[14]. WT
is a tool to analyze a signal with a higher time-frequency
resolution than FFT (Fast Fourier Transform) by using the
prototype signal called mother wavelet. In WT, the frequency
of the analyzed signal can be estimated by scaling and shift-
ing the prototype signal. There exist many choices of the

prototype signal, and a suitable selection of the prototype
signal results in the high accuracy of HR estimation. In related
work [11], [12], the HR is estimated by detecting the peak
due to heartbeats over the spectrum calculated based on the
selected suitable prototype signal. Sekine and Maeno [13]
has proposed the HR estimation method based on the period-
icity analysis of the time-domain signal obtained throughWT.
Also, Li and Lin [14] has proposed the fast HR estimation
method with a short time window, i.e., from 3 s to 5 s.
Through the experiments against a sitting still subject, these
methods have been shown to perform the accurate HR esti-
mation, compared with the FFT-based methods [11]–[14].
However, in the situation where a subject moves, the wave-
form of a heartbeat might change over time due to bodymove-
ments, which results in the degradation of the HR estimation
accuracy.

In contrast, the direct RRI estimation methods estimate the
RRI without the HR estimation by extracting each heartbeat
component from the received signal of a Doppler sensor.
The direct RRI estimation methods can be further classi-
fied into (i) the template matching-based one [15]–[17]
and (ii) the feature-based one [18]–[22]. The template
matching-based methods prepare a template waveform of a
heartbeat in advance and then detect heartbeats by compar-
ing the received signal with the prepared template wave-
form [15]–[17]. However, the waveform of a heartbeat might
change over time, which makes it difficult to prepare vari-
ous ideal template waveforms. In the feature-based method,
heartbeats are detected based on the features of the signal due
to a heartbeat. Most of the conventional methods use a peak of
the waveform as a feature [18], [19]. Sakamoto et al. [20]
have proposed the feature-based correlation method by not
only a peak but also extreme points and inflection points
of the received signal. However, the SNR of the received
signal which is a time-domain signal is highly susceptible
of the range between a Doppler sensor and a target, and the
waveform of the received signal is likely to be deformed
depending on the range. In addition, the waveform might be
deformed due to even slight body movements. Hu et al. [21]
have proposed the method that estimates the RRI based on
zero crossing of the time-domain signal obtained through
various signal processing, e.g., WT and EEMD (Ensemble
Empirical Mode Decomposition). EEMD can decompose the
analyzed signal to some components called IMF (Intrinsic
Mode Function). The conventional method [21] performs
the signal reconstruction based on some IMFs. However,
in the conventional method, selecting optimum IMFs used
in the signal reconstruction over all IMFs is challenging.
Furthermore, unlike the ECG-based RRI measurement, this
method estimates the RRI by the zero crossing detection
of the analyzed signal, which causes some errors. Also,
the direct RRI estimation method based on continuous WT
has been proposed [22]. This method estimates the RRI
through two steps: (i) learning and (ii) test ones. In the
learning step, the scale factor corresponding to the HR is
estimated. In the test step, continuous WT with the selected
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scale factor is applied to the analyzed signal, which results
in the time-domain signal called the wavelet coefficient. The
RRI is then estimated by the peak detection of the obtained
wavelet coefficient. This method has achieved a better RRI
estimation accuracy than the other existing methods in the
situation where a subject moves. However, the estimation
accuracy of the scale factor corresponding to the HR depends
on the center frequency of the prototype signal. In addition,
the waveform deformation of the analyzed signal due to body
movements might degrade the estimation accuracy of the
scale factor corresponding to the HR, which might result
in the incorrect peak detection. As can be seen from the
above discussion, it is necessary to develop a more accurate
RRI estimation method so that the accurate RRI-based stress
evaluation such as the LF/HF assessment can be performed.

III. PROPOSED METHOD
In this section, as the extended version of our previous
feature-based direct RRI estimation method [23], we pro-
pose a Doppler sensor-based RRI estimation method by the
accurate peak detection. In our method, the spectra that are
related with heartbeats are integrated not within [0.5, 2] Hz
but within the higher frequency range which is not related
with respiration and slight body movements, since the spec-
trum distribution of respiration and slight body movements is
also related with that of heartbeats, e.g., [0.5, 2] Hz, which
may degrade the RRI estimation accuracy. Unlike our previ-
ous method, the peaks due to heartbeats are detected using
some peaks before and after the investigated peak so that the
peaks due to non-heartbeats are not detected. In what follows,
we explain the algorithm of the proposed method.

FIGURE 2. The flowchart of the proposed method.

Fig. 2 shows the flowchart of the proposed method. Our
method mainly consists of three steps: (i) pre-processing,
(ii) spectrum extraction, and (iii) RRI estimation. In the

FIGURE 3. An example of in-phase and quadrature components.

FIGURE 4. The spectrogram calculated from the filtered S(t).
(i) The spectrum due to a heartbeat. (ii) The spectrum associated with the
heart diastole. (iii) The spectrum associated with the heart systole.

pre-processing step, BPF with the cut-off frequencies
fL and fU is firstly applied to the Doppler signal S(t)
to roughly eliminate the frequency components of non-
heartbeats, e.g., respiration and slight body movements.
STFT with Hamming window is then applied to the filtered
signal and a spectrogram is calculated. To extract the spectra
due to heartbeats from the spectrogram, the time window
used in STFT needs to be less than RRI so that it includes
only one heartbeat. In our method, the time window and the
overlap are set as 512 ms and 5 ms corresponding to 512 sam-
ples and 5 samples, respectively. Fig. 3 shows an example
of in-phase and quadrature components, and Fig. 4 shows
the spectrogram calculated from the in-phase and quadrature
components shown in Fig. 3. From Fig. 4, it can be seen
that the spectra due to heartbeats are distributed in both of
the positive and negative frequency domains on the spec-
trogram. The spectrum in the positive frequency domain is
associated with the heart diastole. In contrast, the spectrum
in the negative frequency domain is associated with the heart
systole. The frequency range is [8, 50] Hz and [−50,−8] Hz
in the positive and negative frequency domains, respectively.
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FIGURE 5. An example of the integrated spectrum. The dotted line
denotes the actual timings of heartbeats.

Based on this fact, the cut-off frequencies of BPF, fL and fU,
are set as 8 Hz and 50 Hz, respectively, and these parameters
are common for all subjects. In the second step, i.e., spec-
trum extraction step, the spectra within [fL, fU] Hz and
[−fU,−fL] Hz are integrated. Fig. 5 shows the integrated
spectrum. In this figure, the dotted lines denote the actual
timings of heartbeats. In the RRI estimation step, the RRI is
estimated by detecting the peaks of the integrated spectrum.
However, the undesired peaks sometimes appear around the
ones due to heartbeats as shown in Fig. 5. In our method,
the peaks due to heartbeats are detected in what follows.

Algorithm 1 RRI Estimation Algorithm By the Peak
Detection
Require: p3 > p2 > p1
Input: Spec(t): the integrated spectrum
1: function RRI_estimator(Spec(t), W , prevRRI , fL2, fU2)
2: Apply BPF with its cut-off frequencies fL2 and fU2 to
spec(t)

3: Generate some pairs of the RRI candidates within the
time window with its size W

4: Find three peaks, p1, p2 and p3, so that the difference
among two RRI candidates paired and RRIprev is the
smallest.

5: Estimate RRI based on p1 and p2
6: prevRRI ⇐ RRI
7: PARAMETWR_TUNER(RRIprev, 1);
8: end function
9: function Parameter_tuner(RRIprev, 1)
10: W ⇐ 2RRIprev + 31
11: overlap⇐ RRIprev
12: fL2 ⇐ 1

RRIprev+1

13: fU2 ⇐ 1
RRIprev−1

14: end function

Algorithm 1 shows the RRI estimation algorithm by the
peak detection. In our peak detection, BPF is firstly applied to

FIGURE 6. A concept of the proposed peak detection algorithm.

the integrated spectrum to reduce the effect of the undesired
peaks. The way to set its cut-off frequencies fL2 and fU2 is
explained later. After filtering, the peaks due to heartbeats are
detected using some peaks before and after the investigated
peak. Fig. 6 shows a concept of the proposed peak detection
algorithm. In what follows, we explain how our peak detec-
tion algorithm works with this figure. Although eight peaks
are observed in total within a time window in Fig. 6, some
of them are related with heartbeats while others are due to
noise. So it is necessary to choose only heartbeat peaks. Three
peaks, p1, p2 and p3 (p1 < p2 < p3) are out of the peaks 1,
2, . . . , and 8 so that the difference among the previously
estimated RRI RRIprev and two pairs of RRI candidates is
the smallest. This is because the RRI does not largely vary
between the adjacent RRIs in general. Here, we denote RRIi,j
as the RRI in between peaks i and j, where 1 ≤ i ≤ 8 and 1 ≤
j ≤ 8. In Fig. 6, assuming that RRIprev is estimated correctly,
the peak 1 is chosen as p1. The pairs of RRI1,k (2 < k < 8)
and RRIk,m (k < m < 8) are then generated, e.g., RRI1,2 and
RRI2,5. As p1, p2 and p3 that meet the condition where the
difference among RRIprev, RRI1,k and RRIk,m is the smallest,
the peaks 1, 3, and 5 are finally chosen. Based on the fact that
the RRI does not largely vary between the adjacent RRIs in
general, a time window is set using the previously estimated
RRI RRIprev. Now, let1 be the maximum difference between
the current and previous RRI.WhenRRI increases by1 twice
in a row, the current RRI RRIcurr is equal to RRIprev +1 and
then the next RRI is equal to RRIcurr +1, i.e., RRIprev + 21
as shown in Fig. 6. Therefore, the length of a time window
W is set as eq. (8) so that the window includes just three
heartbeats.

W = 2RRIprev + 31, (8)

where 1 is set as 150 ms in our method. In the initial
observation where RRIprev is not still estimated, the peaks
due to heartbeats are detected by a simple peak detection
for several seconds including two or three heartbeats. On the
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other hand, when RRI decreases by1 twice in a row, the time
window calculated as eq. (6) includes three or four heartbeats
depending on RRIprev. For each window set in this way, only
one RRI is estimated based on the peaks pks1 and pks2 in our
method. RRIprev is updated to the estimated RRI, i.e., RRI1,3.
The time window with the length W steps by RRIprev. The
overlap of a time window is then set as RRIprev. Furthermore,
since the maximum difference between the current and pre-
vious RRI is determined as 1, the cut-off frequencies fL2
and fU2 are set using RRIprev and 1 as eqs. (9) and (10),
respectively, which results in the reduction of the number of
the peaks due to non-heartbeats.

fL2 =
1

RRIprev +1
, (9)

fU2 =
1

RRIprev −1
. (10)

In the initial observation, fL2 and fU2 are initialized to be
0.5 Hz and 2 Hz corresponding to 30 bpm and 120 bpm,
respectively.

IV. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed method, we con-
ducted the experiments in three cases where a subject was (i)
sitting still, (ii) typing, and (iii) speaking. We then com-
pared the RRI estimation accuracy of our method with
those of novel and state-of-the-art methods, i.e., the wavelet-
based [22], the EEMD-based [21], and the MUSIC-based
methods [10]. The wavelet-based method achieves a bet-
ter RRI estimation accuracy than the other existing direct
RRI estimation methods against a subject with body move-
ments [22]. The EEMD-based method leverages the com-
bination of some advanced signal processing techniques,
e.g., the WT-based filter and EEMD [21]. This method
has been shown to be accurate, and it is used for the
LF/HF estimation as well as our proposed method. Also,
the MUSIC-based method has been shown to be accu-
rate even in the situation where a subject drives [10].
As the performance metric, the RSME between the estimated
RRI and the ground truth value of the RRI is calculated
as eq. (11).

RMSE =

√√√√ 1
N

N∑
n=1

|RRIest(tn)− RRIref(tn)|2, (11)

where N denotes the number of the RRIs observed in one
observation. tn also denotes the time when the n th peak
appears, and RRIest and RRIref denote the estimated RRI and
the ground truth value of the RRI, respectively. Furthermore,
the stress index LF/HF is calculated based on the estimated
RRIs. The LF/HF value can be calculated based on the spec-
trum analysis of the RRI variation [3], [4]. Specifically,
the index is a ratio of the power spectrum density within the
low frequency range, LF, to the one within the high frequency

range, HF, where the low and the high frequency ranges
are [0.04, 0.15] Hz and [0.15, 0.4] Hz, respectively. The
LF reflects both sympathetic and parasympathetic activities,
while the HF mainly reflects the parasympathetic activity.
To evaluate the estimation accuracy of the LF/HF, the RE
(Relative Error) between the estimated LF/HF and the ground
truth value of the LF/HF is calculated as eq. (12).

RE =
|x − r|
r
× 100, (12)

where x and r denote the estimated LF/HF and the ground
truth value of the LF/HF, respectively.

FIGURE 7. 24 GHz Doppler sensor.

TABLE 1. The specification of a Doppler sensor.

Fig. 7 shows the Doppler sensor used in the experiments
and the specification of the Doppler sensor is listed in
TABLE 1. The carrier frequency and the transmission power
of the Doppler sensor were 24 GHz and 1 mW, respectively,
and the sampling frequency was set as 1000 Hz. The param-
eters used in the experiments are also listed in TABLE 2.

TABLE 2. The specification of the experiment.
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FIGURE 8. Examples of the RRI variation estimated by our proposed and previous methods in three cases of (i) sitting still, (ii) typing, and (iii) speaking.

In the experiments, the distance between the Doppler sensor
and subject’s chest, d0, was 80 cm in the case of sitting still
and it was 30 cm in the other cases, i.e., typing and speaking.
The observation was made on 10 subjects. The observation
duration was 2 minutes for each case and the observation
was repeated 2 times. The ground truth value of the RRI is
calculated based on the data observed by ECG.

A. RRI ESTIMATION RESULT
The data of 10 subjects is listed in TABLE 3. Fig. 8 shows
examples of the RRI variation estimated by our proposed

TABLE 3. Data of 10 subjects.

FIGURE 9. An example of the RRIs estimated by our proposed method
and other existing methods in the case of sitting still.

and previous methods in three cases of (i) sitting still,
(ii) typing, and (iii) speaking. Also, Fig. 9 shows an
example of the RRIs estimated by our proposed method
and the other existing methods, i.e., wavelet-based [22],
EEMD-based [21], and MUSIC-based methods [10], in the
case of sitting still. As can be seen from Fig. 8, our proposed
method estimates the RRI more accurately than our previous
one does. Furthermore, from Fig. 9, it can be seen that our
method performs most accurate RRI estimation among all
the methods. TABLE 4 shows the comparison of the average
RMSE achieved by various RRI estimation methods. As a
result, our proposed method outperforms the other existing
methods [10], [21], [22] by the average RMSE in all the
cases of sitting still, typing, and speaking. Also, our pro-
posed method achieves the small RMSE, compared with our
previous method. In particular, in the cases of typing and
speaking, the estimation accuracy achieved by our previ-
ous method gets degraded compared with the one achieved
by the proposed method. This is because more peaks due
to body movements appear over the integrated spectrum in
the cases of typing and speaking as shown in Fig 10, and
then our previous method detects more peaks due to such
non-heartbeats. In contrast, the proposed method reduces
the number of the incorrect peak detection by detecting the
peaks due to heartbeats based on some peaks before and after
the investigated peak. As a result, our method improves the
average RMSEs achieved by our previous one by 48.8 %,
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TABLE 4. Comparison of the average RMSEs achieved by our proposed and other existing methods.

FIGURE 10. An example of the filtered integrated spectrum in the case
of (i) sitting still and (ii) typing. The dotted line denotes the actual timings
of heartbeats.

42.7 %, and 39.1 % in the cases of the sitting still, typing,
and speaking, respectively. The reason why the RRI esti-
mated by our method is not accurate completely is related
with not only the noise due to respiration and slight body
movements, but also the clutter and the interference in the
background.

To better show the benefit of our proposed peak detection,
we compare the proposed method with the one without BPF
used in the peak detection. Fig. 11 shows the estimated RRI
variation estimated by the proposed method and the one
without BPF used in the peak detection in the case of sitting
still As can be seen from this figure, our proposed method
estimates the more accurate RRI than the one without BPF
used in the peak detection does. As a result, our method
improves the average RMSEs achieved by the one without

FIGURE 11. An example of the RRI variation estimated by the proposed
method and the one without BPF used in the peak detection in the case
of sitting still.

BPF used in the peak detection by 14.3 %, 25.4 %, and
21.7 %, respectively. This is because the application of BPF
with the cut-off frequencies determined based on the previ-
ously estimated RRI reduces the number of the peaks due to
non-heartbeats.

B. LF/HF ESTIMATION RESULT
Figs. 12, 13, and 14 show examples of the LF/HF estimated
by ECG, our previous and proposed methods in three cases
of (i) sitting still, (ii) typing, and (iii) speaking, respectively.
From these figures, it can be seen that our method estimates
the LF/HF accurately, compared with our previous one does.
Fig. 15 also shows the box plots for the REs of the LF/HF
achieved by various RRI estimation methods. As can be seen
from this figure, our proposed method outperforms the other
methods by the average RE of the LF/HF in all the cases. This
result is very positive to conclude that our method is superior
to the state-of-the-art methods. Also, the experimental result
shows that our method improves the average REs achieved by
our previous one by 41 %, 53.9 %, and 14.2 % in the cases
of sitting still, typing, and speaking, respectively. However,
as can be seen from Fig. 15, the average REs achieved by our
proposed method get degraded in the cases where a subject
moves, i.e., typing and speaking, compared with the case
of sitting still. This is mainly due to the degradation of the
RMSE. To prevent the significant degradation of the LF/HF
estimation accuracy, it might be better not to use the data that
significantly degrades the RMSE in the real application.
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FIGURE 12. Examples of the LF/HF estimated by ECG, our previous and proposed methods in the case of sitting still.

FIGURE 13. Examples of the LF/HF estimated by ECG, our previous and proposed methods in the case of typing.

FIGURE 14. Examples of the LF/HF estimated by ECG, our previous and proposed methods in the case of speaking.

FIGURE 15. The box plots of the REs of the LF/HF achieved by our proposed and other existing methods in the cases of (i) sitting still,
(ii) typing, and (iii) speaking.

V. CONCLUSION
In this paper, we proposed a Doppler sensor-based RRI
estimation method by the accurate peak detection. In the
proposed method, the spectra within the frequency range

corresponding to heartbeats on a spectrogram are integrated.
Some pairs of the RRI candidates are then generated based
on the peaks within a time window, and three peaks are
detected so that the difference among two RRI candidates
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paired and the previously estimated RRI is the smallest. The
time window length is updated over time based on the pre-
viously estimated RRI and the maximum difference between
the current and previous RRI. We conducted the experiments
on 10 subjects in the cases where a subject was sitting still,
typing, and speaking. The experimental results showed that
our proposed method outperformed the conventional and our
previous ones by the RMSE and the estimation accuracy of
the LF/HF. In particular, our proposed method improved the
RMSE of our previous one by 48.8 %, 42.7 %, and 39.1 %
in the cases of the sitting still, typing, and speaking, respec-
tively. In our future work, for the sake of the accurate stress
evaluation, it is necessary to develop the algorithm to detect
the time when the RMSE of the estimated RRI significantly
gets degraded.
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