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ABSTRACT Polar codes have been proven to achieve the symmetric capacity of memoryless channel.
Compared with a successive cancellation list decoder, list-Fast simplified-successive cancellation generates
more candidate paths, which leads to more resource costs and higher decoding latency. To remedy this
drawback, we present a simplified sorting architecture. AnM∗L ordered candidate pathmatrix is constructed
by preliminary sorter, whereM and L denote the number of candidate path expanded by one constituent code
and the list size of the decoder, respectively. Then, we eliminate the candidate paths that are definitely not in
the L best paths by the proposed lossless pruning algorithm. Finally, a compatible sorting network combining
the advantages of bitonic sorter and odd–even sorter is proposed. Numerical results show that for L = 32
andM = 8, the proposed architecture can reduce 66.7% of candidate paths and save 52.3% of compare and
swap units (CASUs) and 25% of CASU stages compared with the odd–even sorter.

INDEX TERMS List-Fast-SSC, ordered candidate path matrix, pruning algorithm, compatible sorting
network.

I. INTRODUCTION
Polar codes are the first code family that have been proven
to achieve the symmetric capacity on binary-input discrete
memoryless channels [1]. The successive cancellation (SC)
decoding is a low-complexity algorithm for polar codes,
which can achieve the channel capacity when the code length
tends to infinity. The error-correction performance is not
reasonable for polar codes with short and moderate lengths.
The successive cancellation list (SCL) [2], [3] algorithm
provides a better performance, but it must traverse each
node of the binary tree like SC, and lead to high latency.
To lower the block error rate (BLER), the researchers pro-
vided the cyclic redundancy check aided SCL decoding
(CA-SCL) algorithm, which outperforms LDPC and turbo
codes [4]–[7]. Amin Alamdar-Yazdi proposed the simpli-
fied successive cancellation (SSC) decoding algorithm [8],
which divides the leaf nodes into rate-0, rate-1 and rate-r.
To reduce the computational complexity, the estimates of
rate-0 and rate-1 nodes can obtained by hard detections
directly at the root of the sub-tree. Gabi Sarkis and Warren J.
Gross consider the rate-r nodes of SSC algorithm still need
to traverse their corresponding sub-trees. Therefore, they

proposed theML-SSC [9] and Fast-SSC [10] algorithms. The
estimates of repetition (REP) and single-parity check (SPC)
can also be calculated directly like rate-0 and rate-1 nodes
instead of traversing their sub-trees. The deeply pipeline
architecture for Fast-SSC [11] has high throughput. In order
to yield further performance improvements, [12] proposed
the list decoding algorithm based on Fast-SSC decoding
(list-Fast-SSC). But the candidate paths of it are far more
than that of SCL algorithm, which results in more hardware
costs and higher decoding latency. Reference [13] proposed
simplified successive-cancellation list (SSCL) that provides
a good trade-off between error-correction performance and
complexity. But SSCL decoding has some redundant path
forks for rate-1 nodes. So [14] provides a faster decoding
method for rate-1 node in SSCL decoding, which require
fewer number of time-steps than SSCL. Then, [15] and [16]
provide new decoding algorithms called Fast-SSCL and Fast-
SSCL-SPC based on SSCL and SSCL-SPC, which remove
redundant calculations when encountering rate-1 and SPC
nodes, respectively.

Although the list decoders have better decoding perfor-
mances, they suffer from much more resource consumption.
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What’s more, themetric sorter in the decoder architecture will
be the crucial path while the list size L is large. In recent
literatures, Lin Jun designed a general bitonic sorter (GBS)
for SCL decoder [17], [18], which does not exploit the prop-
erties of the 2L paths. Reference [19] proposed the pruned
bitonic sorter (PBS) and a bubble sorter that can sort the
paths generated by SCL decoder efficiently. PBS exploits part
of the characters of the paths, which removes one stage and
many compare and swap units (CASUs). PBS is not good for
L ≤ 16, while it is a better option when L ≥ 32. Accord-
ing to [19], the bubble sorter and the radix-2L [20]–[22]
can make a good trade-off between speed and area while
L ≤ 16. Reference [23] proposed the simplified odd-even
sorter (SOES) based on odd-even sorter (OES) [24] for SCL,
which separates the odd-indexed and the even-indexed ele-
ments to reduce unnecessary sorting operations and has a
better performance than PBS.Meanwhile, the half-clear (HC)
network in SOES will be eliminated, which reduces the num-
ber of CASUs. Two-Step Metric Sorter reduces hardware
cost and gets better performance in terms of area efficiency
and latency reduction [25]. Recently, full-sorted pairwise
metric sorting (FS-PMS), half-sorted pairwise metric sort-
ing (HS-PMS), and M-bit parallel decoding (M-PMS) archi-
tecture were proposed in [26]. The FS-PMS architecture is
based on the general pairwise metric sorting (PMS) proposed
in [27], which effectively reduces the CASUs by making
best use of the properties of the paths. To further reduce
the latency, HS-PMS combines the PMS architecture and
the HC of GBS, which can save both CASUs and CASU
stages. The M-PMS architecture was presented for the M-bit
parallel decoding [28], [29], the number of CASU stages
declines significantly. The aforementioned sorting networks
are designed for the SCL algorithm except M-PMS, but they
do not take into account the difference of new paths generated
by constituent nodes of the list-Fast-SSC. Thus, they will
cause large hardware complexity if applied to list-Fast-SSC
directly.

To improve the hardware efficiency of sorting networks,
the key is to reduce the number of elements in the metrics
sorter. In this paper, we investigate the characters of the can-
didate paths for REP, rate-0, rate-1 and SPC nodes, and find
that some of them are ordered while others are not. Therefore,
the candidate paths are sorted into an ordered candidate path
matrix (OCPM) based on part of ordered candidate paths
in advance. To avoid redundant sorting operations, a prun-
ing algorithm is developed to remove the candidate paths
grounded on the nature of OCPM. We prove that the pruned
ones are definitely not in the L best paths. The remaining
paths are combined into a newly generated path matrix by
merge sorter between rows, which is proved to be still ordered
and can be also eliminatedwith the pruning algorithm. Hence,
the candidate paths to be sorted in later modules are greatly
reduced. To lower the hardware complexity, we combine the
rows of OCPMby the pruned rear network (PRN) of OES and
adopts HC of GBS to select the L possible paths in the last
stage. Finally, we propose a sorting architecture compatible

with four kinds of constituent nodes to save numbers of
CASUs and CASU stages.

The remainder of this paper is organized as follows.
Section II provides a brief review of the list-Fast-SSC algo-
rithm and analyzes the properties of the candidate paths that
generated by constituent nodes. In Section III, we propose
a simplified sorting network for the four constitute nodes.
A compatible sorting network is presented in Section IV.
Section V shows the performance analysis on different sort-
ing networks. Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES
A. POLAR CODES
Apolar code can be represented byP(N ,K ), whereN denotes
the code length and K/N is the code rate. The polar encoding
can be denoted by x = uF⊗n, where u = {u0, u1, · · · , uN−1}
is the data sequence, and x = {x0, x1, · · · , xN−1} denotes
the encoded sequence. F⊗n is the n-th Kronecker power of

the generator matrix, where F =
[
1 0
1 1

]
. Polar codes select

the K most reliable channels to transmit the information bits,
and the other N -K channels are set to frozen bits. Let A
present the information set, and Ac be the frozen set. As indi-
cated in Fig. 1(a), A = {u7, u9, u10, u11, u12, u13, u14, u15},
Ac = {u0, u1, u2, u3, u4, u5, u6, u8}. The white circles are
frozen bits and the black ones are information bits. The gray
nodes represent the concatenation of the two sub-trees. Soft
messages α and hard estimate β are transmitted along the
edge in the SC decoding tree. Fig. 1(b) shows that the soft
messages αv is passed to node v from its parent node pv, αl
is passed from node v to the left child node vl , while the
hard-decision estimates βl returns to its parent from the left
child. Then, αr of the right child vr can be calculated. When
βr is known, βv can be obtain through combining operations.

FIGURE 1. (a) The decoding tree of a P(16, 8) polar code. (b) Local
decoder.

B. FAST-SSC
Fig. 2 shows the decoding tree of SSC and Fast-SSC
algorithms that are trimmed from SC decoding tree

FIGURE 2. Decoding tree of the SSC and Fast-SSC decoding algorithm.
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(See Fig. 1(a)). When all the leaf nodes are frozen bits,
the constituent node is a rate-0 node. The leaf nodes of
rate-1 are groups of information bits. They can be directly
evaluated at the root of the their sub-trees. The outputs of
rate-0 node are an all-zero vector. Rate-1 node can be esti-
mated by hard decisions as

βv[i] = h(αv[i]) =

{
0 when αv[i] ≥ 0
1 otherwise

(1)

where i denotes the i-th bit of rate-1 node. The REP node is
composed by a single information bit in the rightmost bit of
the subtree. The Fast-SSC algorithm uses a low-complexity
maximum likelihood (ML) algorithm instead of depth-first
traversal of the sub-tree to decode the REP nodes. The
ML-decision for REP is

βv[i] =

{
0 when

∑
j
αv[j] ≥ 0

1 otherwise
(2)

The SPC decoder performs threshold detections firstly
according to (3). Parity of the hard decision is calculated
using addition modulo-two as (4), and the least reliable bit
is selected based on (5).

h(αv[i]) =

{
0 when αv[i] ≥ 0
1 otherwise

(3)

parity =
∑
j

h(αv[i]) (4)

j = argmin
j
|αv[j]| (5)

The outputs of SPC node are calculated as

βv[i] =

{
h(αv[i])⊕ parity when i = j
h(αv[i]) otherwise

(6)

C. LIST-FAST-SSC
Similar to SCL decoding algorithm, list-Fast-SSC decoder
also generates new paths and chooses the L most reliable
ones. But a significant difference with SCL decoder is that
the length of constituent nodes is larger than one, and the
constituent decoder can generate multiple candidates for each
source path. List-Fast-SSC decoding has four types of con-
stituent nodes: rate-0, rate-1, REP and SPC. These nodes
will generate different number of candidate paths, such as
rate-0 does not generate new paths, rate-1 node generates
four candidates, REP node generates two candidates, and
the SPC node generates eight ones [12]. Let M denote the
number of the candidate paths generated by the source path,
and M equals to 1, 2, 4 and 8 for rate-0, REP, rate-1 and
SPC, respectively. There will beM ∗L admissible candidates
with list size L. The key step of list-Fast-SSC decoding is
to choose L most reliable paths from them. Let pls be the
source path metric retained from previous step, where l is the
l-th path and s denotes the source path. Different from SCL,
pls in list-Fast-SSC decoder composed of different candidate
paths. Let pli denote the i-th new path metric generated by

the l-th source path at previous stage. Then, the M ∗ L
new path metrics of each constituent nodes are computed as
follows. Let min1, min2, min3, min4 represent the index of
the minimum, the second, the third and the fourth minimum
of absolute value of αv, respectively.
For REP nodes, the path metrics are computed as

pl1 = pls −
∑
i

|min(αv[i], 0)|,

pl2 = pls −
∑
i

|max(αv[i], 0)| (7)

Rate-1 node generates four candidates as the following.

pl1 = pls,

pl2 = pls − |αv[min1]|,

pl3 = pls − |αv[min2]|,

pl4 = pls − |αv[min1]| − |αv[min2]| (8)

The reliabilities of the candidates in SPC decoder can be
expanded by

pl1 = pls − (1− q)|αv[min1]|,
pl2 = pls − q|αv[min1]| − |αv[min2]|,
pl3 = pls − q|αv[min1]| − |αv[min3]|,
pl4 = pls − q|αv[min1]| − |αv[min4]|,
pl5 = pls − |αv[min2]| − |αv[min3]|,
pl6 = pls − |αv[min2]| − |αv[min4]|,
pl7 = pls − |αv[min3]| − |αv[min4]|,
pl8 = pls − q|αv[min1]| − |αv[min2]| − |αv[min3]|

− |αv[min4]| (9)

Where q is an indicator, q is set to one when the parity
check of SPC is satisfied. Otherwise, q is equal to zero.
It is worth noting that at most two candidates should be

retained when L = 2 for any given source paths. Thus, only
the twomost reliable paths corresponding to pl1 and p

l
2 need to

be evaluated for each source path, regardless of the constitute
node is SPC or rate-1.

D. SORTING NETWORKS
Reference [17] proposed GBSwhich is optimal if the number
of inputs is a power of two. As shown in Fig. 3(a), it is
a 16-input GBS. The CASU compares the two inputs, and
outputs the smaller one to the upper line and the larger one to
the lower line. The numbers on the top of the sorter in Fig. 3(a)
are the stage index. The CASUs in each stage can work in
parallel. Let cGBS2L and sGBS2L denote the number of CASUs and
CASU stages of 2L-input sorter, respectively. They can be
calculated via

cGBS2L = =
L
2
(logL + 1)(logL + 2) (10)

sGBS2L =
1
2
(logL + 1)(logL + 2) (11)

m2l ≤ m2(l+1), where 0 ≤ l < L − 1 (12)

m2l ≤ m2l+1, where 0 ≤ l ≤ L − 1 (13)
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FIGURE 3. (a) Bitonic sort network for 2L = 16, (b) Odd-even sort network for 2L = 16.

The paths generated by SCL decoding are satisfied
with (12) and (13), where m2l and m2l+1 denote the
even-indexed and odd-indexed pathmetrics, respectively. The
first stage of GBS in SCL can be removed based on (13).
Moreover,m0 is the smallest path that must be in the L small-
est ones, and m2L−1 is the largest path that is never among
the L smallest ones, then all CASUs involving m0 and m2L−1
can be removed. And the L/2 CASUs of the final stages can
be deleted since they are irrelevant to the results. Thus, PBS
can reduce one stage and many CASUs. The CASUs in red
can be removed according to PBS in Fig. 3(a). The number
of CASUs and CASU stages in PBS can be evaluated by

sPBS2L =
1
2
(logL + 1)(logL + 2)− 1 (14)

cPBS2L = (
L
2
− 1)(logL)(logL + 2)+ 1 (15)

Fig. 3(b) illustrates an odd-even sorter for 2L-input pro-
posed in [24]. Compared to GBS, it costs fewer CASUs. The
number of CASUs and CASU stages in OES can be

cOES2L = ((log 2L)2 − log 2L + 4)2log 2L−2 − 1 (16)

sOES2L =
1
2
(logL + 1)(logL + 2) (17)

SOES separates the odd-indexed and even-indexed ele-
ments to avoid performing redundant sorting operations
for the elements that are already sorted according to (12)
and (13). The number of CASUs and CASU stages in SOES
can be calculated by (18) and (19), respectively.

cSOES2L = cOES2L − {c
OES
L + H2L + RL + R L

2
+ (log 2L − 1)}

(18)

sSOES2L =
1
2
(logL + 1)(logL + 2)− 1 (19)

Where R2L =
∑log 2L

i=2 (i − 2)2i−2 for L ≥ 2 and R2 = 0.
H2L = L for L ≥ 2 with H2 = 0.

III. PROPOSED SORTING NETWORK
The proposed sorting network for list-Fast-SSC decoder
includes preliminary sorter(PS), pruning module (PM) and

merge sort between rows module (MSR). We sort the paths
preliminarily, and obtain an OCPM. PM minimizes the ele-
ments to be sorted. Then MSR chooses the L best paths from
the remaining candidate paths.
Remark 1: Because the path metrics are all non-positive

real numbers, in order to save hardware resources, the sorter
only needs to compare the absolute values of corresponding
metrics. Let mij = |p

i
j|.

Lemma 1: The four paths generated by rate-1 decoder hold:
ml1 ≤ m

l
2 ≤ m

l
3 ≤ m

l
4, where 1 ≤ l ≤ L.

Proof: Assume that x is an arbitrary non-positive real
number and b ≥ a ≥ 0. Then |x−b| ≥ |x−a|. It is easy to see
that 0 ≤ |αv[min1]| ≤ |αv[min2]| ≤ |αv[min1]| + |αv[min2]|,
thus there exist ml1 ≤ m

l
2 ≤ m

l
3 ≤ m

l
4 based on (8).

According to Lemma 1 and the nature of list-Fast-SSC,
we can get the following properties.

1) Rate-0 nodes only generate one candidate path, ml1.
2) The candidate paths generated by rate-1 nodes satisfy

ml1 ≤ m
l
2 ≤ m

l
3 ≤ m

l
4.

3) There is no obvious relationship between ml1 and ml2
generated by REP nodes.

4) The candidates generated by SPC nodes satisfy ml1 ≤
ml2 ≤ ml3 ≤ ml4 and m

l
5 ≤ ml6 ≤ ml7 ≤ ml8, where m

l
3 ≤ ml5,

ml4 ≤ m
l
6.

According to the above discussion, it shows that
rate-0 nodes can retain the paths to the next step directly,
the rate-1 decoder needs a 4L-to-L sorter, REP decoder needs
a 2L-to-L sorter, and SPC nodes need an 8L-to-L sorter to
select the L best paths from the generated paths.

A. PRELIMINARY SORTER
The matrix, composed of candidate paths satisfying (20)
and (21), is referred to an ordered candidate path matrix. For
instance, Fig. 4(c) shows an OCPM for L = 8 and M = 8.

mli ≤ mli+1, where 1 ≤ l ≤ L, 1 ≤ i ≤ M − 1 (20)

mli ≤ ml+1i , where 1 ≤ l ≤ L − 1, 1 ≤ i ≤ M (21)

For the properties of the generated paths, we can
design a simplified sorting network. But if the paths
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FIGURE 4. Ordered candidate path matrix for (a) L = 8, M = 2, (b) L = 8, M = 4, (c) L = 8, M = 8.

satisfy (20) and (21), the sorter will be more efficient, and
save more redundant CASUs. To meet the above require-
ments, the following is performed.

1) RATE-1 NODES
The paths generated by rate-1 nodes are already sat-
isfied with (20). An L-input OES is adopted to sort
{m1

i ,m
2
i , · · · ,m

L
i }, where 1 ≤ i ≤ 4, and the outputs act as

the i-th row of the OCPM in Fig. 4(b).

2) REP NODES
The paths generated by REP nodes neither satisfy (20)
nor (21). It can be easily selected with a 2L-to-L sorter
directly. In order to save hardware resources and make bet-
ter use of the compatible sorter proposed in next section.
Firstly, sort {ml1,m

l
2} to satisfy (20) and obtain an ordered

sequence {ml
′

1 ,m
l′
2 }. Then sort {m1′

i ,m
2′
i , · · · ,m

L ′
i } by OES

to satisfy (21), where i = 1, 2. The remaining paths can be
written as Fig. 4(a).

3) SPC NODES
We sort {ml4,m

l
5} firstly, the paths will satisfy (20), and obtain

the ordered sequence {ml
′

4 ,m
l′
5 }. Then sort {m

1
i ,m

2
i , · · · ,m

L
i }

and {m1′
i ,m

2′
i , · · · ,m

L ′
i }, where i=1, 2, 3, 6, 7, 8 and i=4, 5,

respectively. After the two sorting operations, the sorted paths
can be formulated as Fig. 4(c).

B. PRUNING MODULE
This module aims to eliminate some candidate paths on the
basis of the properties of OCPM. To begin with, we prove
that candidate paths of the ordered candidate path matrix
definitely not in the L best paths can be pruned.
Lemma 2: If there are at least L paths smaller thanmji in the

M ∗ L OCPM, mji will not be in the final L candidate paths
and can be pruned, where 1 ≤ i ≤ M , 1 ≤ j ≤ L.

Proof:Assume that all candidate paths of the OCPM are
sorted ascendingly, let k + 1 denote the index of mji. It is easy
to see that k candidate paths are less than or equal to mji.
If k ≥ L, then mji is not in the smallest L candidate paths,
so we can prune mji.
In Fig. 4(c), since m1

1 to m5
1 and m1

2 to m4
2 are less

than or equal to m5
2 according to (20) and (21), we can delete

m5
2 by Lemma 2. For m5

2 is the smallest candidate path in
region i, thus all the others in region i can be removed.
Similarly, m3

3 and m2
5 are the smallest candidate paths in

region ii and iii, respectively. Accordingly, paths in regions
ii and iii can be eliminated according to Lemma 2. Now,
we eliminate the redundant paths at each row. Let Ai be
the number of retained paths in the i-th row. When the list
size is a power of two, PM prunes candidate paths according
to Alg. 1 losslessly, and assure that it does not affect the
error-correcting performance. The shaded part in Fig. 4 can
be removed according to Alg. 1.

Algorithm 1 The Lossless Pruning Algorithm
Step 1:
If(M ≥ 2) then
Elements of the first row are all retained, and A1 = L.
The second row retains the L

2 smallest elements, and
A2 =

L
2 . goto step 2.

else stop.
Step 2:
If(M ≥ 4) then

The third row retains the
∑b 12 log2 Lc
λ=1

L
22λ

smallest elements.
The fourth row only retains the L

4 smallest elements. goto
step 3.
else stop.
Step 3:
If(M == 8) then

The fifth row only retain the smallest
∑b 14 log2 L−3c
λ=0 ( L

24λ+3

+b
L

24λ+4
c) elements. And the sixth, seventh and eighth

rows retain
∑b 14 log2 L−3c
λ=0 ( L

24λ+3
+b

L
24λ+5
c),
∑b 13 log2 Lc
λ=1

L
23λ

and L
8 smallest elements, respectively.

else stop.

C. MERGE SORT BETWEEN ROWS
MSR sorts the remaining paths, and finally outputs the L best
paths. Let merge-stage denote the operation that mergesorts
the 2i-th and (2i-1)-th rows of the matrix and outputs Ai
smallest paths, where i is smaller than or equal to half of the
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FIGURE 5. (a) Merge sorter for 2L-inputs, (b) PRN for A3 and A4, (c) PRN for
A5 and A6 when L = 32, (d) HC network for L = 8, (e) Compare the m-th and
(m+1)-th paths generated by previous step, where 1 < m < M.

number of rows in thematrix. Hence,MSR consists of log2M
merge-stages, and the outputs of eachmerge sorter are viewed
as the i-th row of a new generated path matrix. By Lemma 3,
the newly generated path matrix is still ordered. Therefore,
we can eliminate some paths according to Alg. 1.
Lemma 3: If the original matrix is an OCPM, then the

newly generated matrix after the j-th merge-stage is still an
OCPM, where j = 1, 2, · · · , log2M .

Proof: Let {xs} and {yt } present the sequence in i-th and
(i+1)-th row of the newly generated path matrix respectively,
where s and t denote the length of sequence. Because the
outputs of the merge sorters are in ascending order, thus {xs}
and {yt } satisfy (21). For any l = 1, 2, 3, · · · ,min(s, t), there
exists l elements in {yt } which are smaller than or equal to
yl . According to the definition of the original matrix, each of
these l elements in {yt } has at least one corresponding element
in {xs} is smaller than or equal to itself. It guarantees that at
least l elements in {xs} are smaller than or equal to yl . Let k
denote the index of the largest one that smaller than or equal to
yl among {xs}, and hence k ≥ l. Therefore, xl ≤ xk ≤ yl , and
the newly generated matrix is an OCPM after merge-stage.

To illuminate Lemma 3, we give an example as follows.
Let B = {b1, b2, b3, b4}, C = {c1, c2, c3}, D = {d1, d2},
and E = {e1, e2} denote the first, second, third, and fourth
rows in the pruned OCPM, respectively. We combine B and
C , D and E , and obtain B∗ = {b1, b2, c1, c2, b3, c3, b4},
D∗ = {d1, e1, d2, e2}. Since the two new rows are the outputs
of sorters, they satisfy (21). It is known that B, C , D, and E
satisfy (20). By the definition of OCPM, we can infer that
b1 ≤ d1, b2 ≤ c1 ≤ e1, c1 ≤ e1 ≤ d2, c2 ≤ e2, then B∗ and
D∗ satisfy (20) and they can also construct an OCPM.
To sort the remaining paths more efficiently, we pro-

pose a merge sorter based on SOES and GBS. The first to
(log2M -1)-th merge-stages use the PRN of SOES. The last
merge-stage uses HC network of GBS, which can separate
the L smaller elements from the two ordered inputs. As shown
in Fig. 5(a), PRN is evolved from the general 2L-input merge

sorter, in which the HC network can be pruned according to
the property of the OCPM, and the CASUs at RN that are not
associated with the outputs can be pruned as well. The pruned
CASUs are indicated by dotted lines.

IV. COMPATIBLE SORTING NETWORK
This section presents a sorting network compatible with
rate-0, rate-1, REP and SPC nodes. Fig. 6 shows that the
architecture comprises PS, PM and MSR modules. The first
stage of PS contains two 2L-input sorting networks. One is for
REP to sort {ml1,m

l
2} and another is for SPC to sort {ml4,m

l
5}

as indicated in Fig. 5(e), where 1 ≤ l ≤ L. Then the paths
are imputed into an 8L-input OES. After the PM, we can get
the pruned OCPM. MSR is composed of two parts. The first
one is a PRN that outputs 3L/2 smallest candidate paths. The
other is a 3L/2-input HC network, after which we can obtain
the L smallest paths. The proposed compatible architecture
is devised for L ≥ 8. When L = 2, 4, the sorter can be
simplified based on the proposed architecture and it does not
need to sort all candidate paths according to section III-A.
The costs of each part are evaluated as follows.

A. PS MODULE
The 8L-input OES in this part is actually composed of eight
L-input OESs. The number of CASUs used by L-input OES
can be calculated as

NCL = [(log2 L)
2
− log2 L + 4]2log2 L−2 − 1 (22)

The 2L-input sorter is one stage composed of L CASUs.
The number of CASUs used by PS can be given by

NCP = 8NCL + 2L (23)

The number of retained candidate paths is

Nre =

M∑
i=1

Ai (24)
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FIGURE 6. Compatible sorting architecture.

B. MSR MODULE
In this module, PRN has two merge-stages. Each of them can
be divided into the following cases.

(a) input A1 and A2 paths, output the L smallest ordered
elements, where A1 = L, A2 = L/2;
(b) inputA3 andA4 paths, output the L/2 smallest ordered

elements, where L/4 ≤ A3 ≤ L/2, A4 = L/4;
(c) input A5 and A6 paths, output the A3 smallest ordered

elements, where L/8 ≤ A5 < L/4, L/8 ≤ A6 < L/4;
(d) inputA7 andA8 paths, output the L/4 smallest ordered

elements, where L/8 ≤ A7 < L/4, A8 = L/8.
WhenA2i−1 = A2i, we can use a PRN shown in Fig. 5(a).

max-val is the maximum value of the sorting network and
indicated by red lines in Fig. 5. If A2i−1 ≤ 2A2i, we can
construct a 3A2i-input PRNwhich needs to add 2A2i−A2i−1
max-vals to the top part. ForA3 = 5 andA4 = 4, we should
add three max-vals to the top for constructing an 12-input
PRN as depicted in Fig. 5(b). In particular, if A5 and A6
are not a power of two, we will add L/4 − A5 max-vals to
construct a PRN as shown in Fig. 5(c). In Fig. 5(d), the third
merge-stage is a 3L/2-input HC network, which outputs the L
smallest elements. It needs one CASU stage and L/2 CASUs.

Let SC be the total number of CASUs used by the proposed
sorting network, where NC(i,j) denotes the CASUs used by
the PRN for A2i−1 and A2i in the j-th merge-stage of MSR.

SC = NCP +

2∑
j=1

8/2j∑
i=1

NC(i,j) +
L
2

(25)

The CASU stages of the sorting network is given by

NCSP =
1
2
(log2 L)(log2 L + 1)+ 1 (26)

NCSM = 2 log2 L + 1 (27)

Where NCSP and NCSM present the number of CASU
stages of PS and MSR, respectively.

V. PERFORMANCE ANALYSIS
Assume a (1024, 512) polar code is transmitted over the
binary-input additive white Gaussian noise channel with
binary phase shift keying (BPSK) modulation. Fig. 7 and
Fig. 8 illustrate the bit error rate (BER) and BLER perfor-
mance among List-Fast-SSC, SCL and the proposed, respec-
tively. It can be seen that the decoding performance of the

FIGURE 7. The comparison of BER performance among sorters.

FIGURE 8. The comparison of BLER performance among sorters.

proposed is identical to that of list-Fast-SSC. When the code
length of SPC node is limited to 4, the error-correcting per-
formance of list-Fast-SSC is slightly degraded comparedwith
SCL algorithm.

We analyze the number of candidate paths in different
search widths and different node types. Let ‘‘Origin’’ repre-
sent the original candidate paths and ‘‘Pruned’’ denote the
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TABLE 1. The number of candidate paths.

TABLE 2. The number of CASUs and CASU stages.

candidate paths after PS. As illustrated in Table 1, compared
to original candidate path, the number of candidate paths after
pruning can be reduced greatly. For L = 8 and M = 8,
31% of the candidate paths is retained. When L = 32 and
M = 8, 66.7% of original candidate paths can be eliminated.
Particularly, when L = 2, at most two candidate paths need to
be evaluated for any given source paths, thus two paths should
be selected from the four candidate ones, so the reduction rate
is still 25% regardless of M . For PM deletes the more paths,
less resources will be consumed at the following stages.

Table 2 summarizes the number of CASUs and CASU
stages for various sorting networks with different L while
M = 8. The GBS and OES sorting networks are implemented
by an 8L-input sorter, thus the number of CASUs and CASU
stages is larger than other sorters. Since the OCPM outputs
from PS in this paper satisfy the input condition of SOES.
Therefore, the SOES in Table 2 is based on the PS without
pruning the candidate paths. For L = 8, M = 8, the SOES
in Table 2 uses eight CASUs to make the paths satisfy (20)
firstly, then uses eight OES sorters to satisfy (21). Secondly,
it uses seven 2L-to-L pruned rear networks in SOES to select
the L most reliable paths. Similar to the SOES, the PBS is
also processed by PS firstly, then uses the PBS to obtain the
L smallest elements. These sorting methods do not eliminate
the paths after PS. But the proposed architecture prunes many
candidates after PS, and employs PRN of SOES and HC
of GBS in the last stage. Table 1 shows that the number
of paths is greatly reduced after PS for different list sizes.
Although PS module occupy a large portion resources of the
entire sorting architecture, pruning module can separate the
unnecessary candidate paths in advance with its help. Hence
proposed architecture uses less resources than other sorters.
For L = 2, there are four candidate paths need to be sorted
and to select the two smallest ones, the traditional OES is
same as the SOES sorter, the PBS prunes one CASU in the
last stage based on GBS, the proposed sorter uses traditional
OES or SOES method. However, when L > 2, the proposed

sorter consumes least CASUs and CASU stages. It shows
that, when M = 8, L = 32, the proposed sorter reduces
52.3% of CASUs and 25% of CASU stages than the OES,
60.2% of CASUs and 25% of CASU stages compared with
the GBS. Since the proposed architecture costs less resources
and CASU stages compared to other sorters, it can obtain
lower latency. When the list size is large, the sorting network
may be in the crucial path of the decoder, which will bring
in a large delay. We can pipeline the sorter to improve the
working frequency.

VI. CONCLUSION
In this work, an efficient sorting architecture for list-Fast-SSC
decoder is presented. We sort the candidate paths to construct
an ordered candidate path matrix. To avoid redundant sorting
operations, we develop a lossless pruning algorithm to elimi-
nate for the elements that are definitely not in the L best paths,
so the number of candidate paths to be sorted can be reduced
efficiently. The compatible architecture combines advantages
of SOES and GBS, and saves a lot of resources. Numerical
results show that the proposed sorting network reduces the
number of CASUs and CASU stages compared with other
sorters.
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