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ABSTRACT Emergency goods distribution plays an important role in the grid emergency relief command
system. However, the traditional experience-based distribution plan currently in the power grid cannot
meet the increasing demand for the types and quantities of emergency goods, meanwhile, most studies
ignore the uncertainty in distribution parameters and diversification of distribution objectives, which causes
a gap between theoretical research and practical application. Therefore, this paper establishes a model
to guide the logistics design for transferring relief supplies. The model first assesses the importance of
affected areas for determining distribution priority based on the electrical characteristics. To better simulate
reality, the uncertainties in demand, supply, and the costs of procurement and transportation are considered.
Additionally, the model features three objectives: shortening the travel time, reducing the goods shortage,
and saving the total cost of pre- and post-disaster phases. In order to handle the uncertainties, the robust
optimization approach is utilized. The numerical example is solved with ε-constraint exact method, and
this case illustrates the specific process of goods distribution, the relationship between objectives, and the
sensitivity analysis of uncertainties. For the large-size forms, two heuristic algorithms are proposed and the
efficiency of the proposed algorithms is assessed.

INDEX TERMS Emergent phenomena, resource management, Pareto optimization, uncertainty, heuristic
algorithms.

I. INTRODUCTION
In recent years, natural disasters such as earthquakes, floods,
lightning, fires, and etc. have gradually become the main
cause of massive power outages [1]. For example, in Jan-
uary 2008, there was continuous snow weather in southern
China, resulting in a power outage affecting about 110million
people and a direct economic loss of 151.65 billion RMB
yuan. However, destructive effects of disruptions in the power
supply, although inevitable, can be decreased by a proactive
approach and development of appropriate preparation plans.
Therefore, an effective relief approach is necessary, for ensur-
ing the timely supply of grid emergency goods, restoring the
smooth flow of transmission lines and the normal operation
of the power grid as soon as possible.

At present, State Grid Corporation of China (SGCC)
adopts a unified procurement and hierarchical management
strategy, with the principle that the rescue order is from the
near to the distant and the goods are purchased after utilizing

up inventories. However, the total rescue time and the total
cost cannot reach optimal values because the transportation
route is not planned. Meanwhile, compared with the projects
in the main grid and distribution network, the comprehensive
plan for emergency rescue is affected deeply by environment
and weather. Due to the insufficient depth of predictions
about natural disasters, parameters such as goods demand and
transportation cost have strong uncertainties. However, they
are currently estimated based on operational experience.

In addition, in the phase of goods supply for disaster relief,
the lack of effective connection between on-site demand and
goods supply potentially gives rise to panic orders and a
surge in non-tendering orders, resulting in inventory backlog
and slow settlement of suppliers. Consequently, the unified
centralized procurement method and traditional experience-
based distribution plan in SGCC have been unable to handle
the growing types and quantities of grid emergency goods.
In view of the differences in the transportation costs, supply
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environment and goods demand, it is urgent to research the
procurement and distribution strategies of emergency goods.

Accordingly, this paper proposes an optimization model
to address post-disaster transportation and distribution issues
with respect to affected areas (AAs). The unpredictable
stochastic essence of natural disasters, which is the topic
of this study, requires a thorough design for simulating the
real situation after the occurrence. Therefore, we consider
the logistics uncertainties in demand, supply, and the costs
of procurement and transportation.

Meanwhile, a three-level relief chain consisting of suppli-
ers, relief distribution centers (RDCs), and AAs is considered
in our model, with a focus on determining the relief goods
flow and effective information exchange. In order to deliver
relief goods to AAs within the least possible time, the opti-
mum location and capacity of RDCs can be estimated in pre-
disaster phase, such that the necessary goods can be stored
beforehand. To better understand the gap and the contribution
of our paper, a concise literature review is presented in the
following.

II. LITERATURE REVIEW
In the research of grid emergency rescue, scholars utilize
practical experience and establish some technical systems
for disaster alleviation and prevention. Wang et al. [2] and
Arab et al. [3] explored ways to prepare and harden the grid,
and increased the resilience of the power grid under natural
disasters. Liu and Singh [4] built a fuzzy inference system to
assess how adverse weather affects the reliability parameters
of system components. Panteli et al. [5] built a fragility model
of individual components and the whole transmission system
for mapping the real-time impact of severe weather, and
assessed the spatiotemporal impact of a windstorm moving
across a transmission network. Espinoza et al. [6] presented
a multi-phase resilience assessment framework to analyze the
continuous impact on critical infrastructures, then discussed
different strategies to enhance the resilience of the electricity
network. The researches pay more attention to enhancing
resilience and increasing faster restoration of the grid system
by advanced smart grid technologies.

The other direction mainly focuses on facility location,
network flow, and inventory management based on elec-
trical characteristics sometimes. Luo et al. [7] estimated the
degree of blackouts and formulated a differentiated deploy-
ment strategy for important blackout areas. Bian and Fang [8]
proposed a location model of power emergency goods stor-
age considering load rating. Mete and Zabinsky [9] used a
stochastic optimization method to determine the inventory
level of goods. Zhang [10] and Sheu [11] predicted goods
demand for satisfying relief requirements with intelligent
algorithms. In order to assess the electrical characteristics
of different AAs, Doorman et al. [12] developed a compre-
hensive methodology for analyzing grid vulnerability with
respect to the energy shortage, capacity limitations, and other
failures; Fang et al. [13] proposed a maximum flow-based

complex network approach to identify the critical lines in the
power grid.

On the other hand, the uncertainty is an inseparable part of
emergency goods distribution [14]–[16]. For example, when
a disaster occurs, the unknown extent of goods availabil-
ity and the unpredictability of suppliers’ contributions lead
to the uncertainty of supply parameters [17]. The uncer-
tainty in costs originates from the accessibility of trans-
portation routes. The volatility and inaccurate estimation
lead to the uncertainty in demand. Totally speaking, uncer-
tain parameters can significantly increase the complexity
of goods distribution, turning it into an optimization prob-
lem under uncertainty. Thus, Bozorgi et al. [18] proposed
a robust programming model to simulate uncertain vari-
ables in disaster relief through multi-scenario partitioning.
Tofighi et al. [19] presented a two-stage stochastic fuzzy
model for pre-disaster phase and emergency resource dis-
tribution phase. Murali et al. [20] formulated a special case
of the maximal covering location problem and accounted for
demand which is distance-sensitive.

According to the conducting literature review, the uncer-
tainty is mainly handled by stochastic programming.
However, it usually requires advance knowledge about the
probability distributions of uncertain parameters, which is
difficult to accurately identify because of insufficient his-
torical data in many real cases. In this article, we apply
scenario-based robust programming instead, which uses a set
of distinct scenarios to simulate the uncertainties. For the
small-size problems, we solve the problem using an exact
method called the ε-constraint method. For the large-size
instances, for avoiding the computational challenges that may
be introduced due to large number of scenarios, near-optimal
solution approaches such as heuristic algorithms are utilized.

However, there are still some deficiencies in the relevant
literatures on the topic of this article. Firstly, the literatures
about grid relief logistics show that models combining the
time and cost aspects have been explored far less than the
single-objective models. Secondly, the just distribution and
response to demands are also important subjects that have
not been explored in the literatures. Thirdly, most researchers
have assumed that all parameters are certain, which, with
respect to the real world limitations, especially in the field of
grid emergency logistics, are uncertain. Finally, the majority
of researches in this field have concentrated on enhancing
resilience and increasing faster restoration of the power grid.
In terms of goods distribution, further development is needed.

Therefore, this article tackles the grid emergency goods
distribution problem as a multi-objective, mixed-integer
model under uncertainty. The contribution of this paper can
be explained as follows. (1) Considering the importance
of AAs based on electrical characteristics, the concept of
distribution priority is proposed and considered as one of
the constraints in the multi-objective optimization model.
(2) Considering the real scenario of grid emergency res-
cue, the model takes the minimum total time as the core
objective, and considers the minimum goods shortage, the
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minimum total cost as the secondary objectives. To the best
of our knowledge, simultaneous combination of them is not
reported yet. (3) This article analyzes the impact of uncertain
parameters (demand/supply/cost) on the above three objec-
tives and makes a sensitivity analysis on different degrees of
uncertainty. (4) To solve the multi-objective model, an exact
method (ε-constraint method) and two heuristic algorithms
(MOPSO/NSGA-II) are proposed and some comparisons are
made.

The remainder of this article is organized as follows.
In Section 3, the priority of emergency logistics is determined
according to the electrical importance of AAs. In section 4,
the robust optimization approach to describe uncertain
parameters, the mathematical model to distribute goods,
and the algorithms to solve the multi-objective optimiza-
tion problem are presented. Section 5 provides a numerical
example, illustrating the effect of uncertain parameters and
the comparisons of different intelligent algorithms. Finally,
the conclusions and future research directions are expressed
in Section 6.

III. DISTRIBUTION PRIORITY FOR AAS
According to the complex network theory [21], the power grid
can be regarded as a complex network composed of nodes V
(power plants, substations, and loads) and connecting lines E
(transmission lines and transformer branches) between nodes.
We classify a node and the 1/2 range of each connecting line
as a network node. If a network node exists power equipment,
roads, and other resources that are damaged by natural disas-
ters, then the network node is defined as an AA.

In order to determine the rescue sequence to AAs, it is nec-
essary to assess the importance of AAs. Therefore, we utilize
the network condensation degree to characterize the impor-
tance of the network node and its associated lines, and adopt
the power betweenness [22], [23] to characterize the electrical
performance of generators and loads in the network node,
aiming at assessing the importance comprehensively.

A. NETWORK CONDENSATION DEGREE
Network contraction is to contract all nodes connecting to a
node and condense into a new node. The contraction process
is shown in Figure 1.

The network condensation degree A after contraction is
shown in (1). 

A = 1/nl
l =

∑
i 6=j∈V

Eij/n (n− 1) (1)

FIGURE 1. Demonstration of node contraction.

where, n is the node number in the entire network system,
Eij is the transmission betweenness between nodes i and j,
l is the average of the shortest lengths between two nodes.
Meanwhile, Eij is defined as the average of the sum of the
line betweenness Bij and the total transfer capacity Pttcij,
i.e.Eij =

(
Bij + Pttcij

)
/2, and Eij can describe the physical

and electrical characteristics of transmission lines.
The line betweenness B indicates the degree of interme-

diary function that a line takes on in the network, and it is
defined as (2).

Bk.ij =
∑
i 6=j∈V

Nij (k)/
∑
i 6=j∈V

Nij

Bij =
∑
k∈K

Bk.ij
(2)

where, Bk.ij is the betweenness of the transmission line k
between nodes i and j; V is a set of all nodes;

∑
i 6=j∈V

Nij (k)

is the frequency that line k is considered as the shortest route;∑
i 6=j∈V

Nij is the frequency that all lines between nodes i and

j are considered as the shortest route, K is a set of all routes
between nodes i and j.

The total transfer capacity Pttcij is the maximum power that
the transmission line between nodes i and j can withstand
under normal working conditions. Generally, it is controlled
by the power dispatching department.

B. THE POWER BETWEENNESS OF NODES
The importance assessment of AAs should not only con-
sider the network node and its associated transmission lines,
but also analyze the electrical performance of generators
and loads. The performance can be expressed by the power
betweenness Di, which is:

Di = Wi

(
ωG ·

nG
n
·

nG∑
k=1

PGik + ωL ·
nL
n
·

nL∑
k=1

PLik

)
(3)

where,Di is the power betweenness of node i; n is the number
of nodes; ωG and ωL are the weight coefficients of generators
and loads in node i, respectively; nG and nL are the number of
generators and loads contained in node i, respectively; PGik
and PLik are the active power of the k th generator and the
k th load in node i, respectively;Wi is the transmission power
coefficient of node i.

C. THE INDICATOR FOR COMPREHENSIVE ASSESSMENT
Due to the different magnitude of each indicator, making the
data more difficult to handle. Therefore, it is necessary to
normalize different indicators. The normalization method is
shown in (4).

A∗ = (A− Amin)/(Amax − Amin)

B∗ = (B− Bmin)/(Bmax − Bmin)

P∗ = (Pmax − P)/(Pmax − Pmin)

D∗ = (D− Dmin)/(Dmax − Dmin) (4)
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Combining the commonality of complex networks with the
characteristics of electrical networks, the importance assess-
ment indicator U can be defined as (5). With the value of U
increasing, the importance of AAs becomes higher; and vice
versa.

U =
(
A∗ + D∗

)
/2 (5)

IV. MODEL DESCRIPTION
Due to the unpredictability of natural disasters, the demand,
supply, and cost of emergency goods are all considered as
uncertain parameters in our approach. Therefore, this paper
captures uncertainty based on robust optimization, in which
uncertainty is represented by a set of discrete scenarios
[24], [25], and we presents a multi-objective, mixed-integer,
nonlinear programming model.

The premise of our multi-objective optimization model is
that emergency goods must be given priority to the AA with
the highest valueUmax. Meanwhile, themodel considers three
objectives: the first objective function Obj1 is to minimize
total time, and this is the core objective; the second objective
function Obj2 is to minimize goods shortage; the third objec-
tive function Obj3 is to minimize total cost, Obj2 and Obj3
are considered as the secondary objectives.

A. OBJECTIVE FUNCTIONS
The relief distribution process is shown in Figure 2. RDCs
are hubs that connect suppliers and AAs, and are respon-
sible for collecting and allocating emergency goods. When
constructing an emergency response network, the location
of RDCs needs to be completed. The selection factors are
(1), the storage capacity of RDCs; (2), the distance to AAs.
In order to reduce transportation costs and distribute more
efficiently, RDCs can be positioned close to both suppliers
and AAs. Meanwhile, the approach consists of two basic
phases. The first phase (i.e. pre-disaster phase) determines
the optimal location of RDCs and the inventory of relief
goods stored by suppliers; the second phase (i.e. post-disaster
phase) determines the quantity of relief goods transferred
from supplies to RDCs, and from RDCs to AAs.

FIGURE 2. The relief distribution process.

In order to define Obj1-Obj3, we introduce some parame-
ters shown in Table 1.

TABLE 1. Parameters and their signification.

In Table 1, demand, supply and the costs of procurement
and transportation are uncertain and related to a specific
scenario p. Here, the scenario p can be considered as a ran-
dom event. Based on the robust optimization led by Mulevy
et al. [26], we uses a set of distinct scenarios to simulate the
uncertainties, consequently the objective function under the
scenario p is:

min
∑
p∈P

ppξp + λ
∑
p∈P

pp

ξp −∑
p′∈P

pp′ξp′

+ 2θp


+ γ

∑
p∈P

ppδp (6)

s.t. ξp −
∑
p∈P

ppξp + θp ≥ 0 (7)

where, ξ is a custom function; error vector δp indicates the
infeasibility under scenario p because of uncertain parame-
ters; γ is the infeasibility penalty coefficient; λ is the vari-
ability weight (i.e. uncertainty degree); pp is the occurrence
probability of scenario p; variable θ can be interpreted as the
amount by which ξp >

∑
p∈P

ppξp, then θp = 0, while as the

amount by which ξp <
∑
p∈P

ppξp, then θp =
∑
p∈P

ppξp − ξp.
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Therefore, the first objective function Obj1 that minimizes
total time is formulated as (8):

minObj1

=

∑
p∈P

pp ·

∑
i∈I

∑
j∈J

Tpij +
∑
k∈K

∑
j∈J

Tpjk



+λ1 ·
∑
p∈P

pp·



∑
i∈I

∑
j∈J

Tpij+
∑
k∈K

∑
j∈J

Tpjk

−∑
p′∈P

pp′

·

∑
i∈I

∑
j∈J

Tp′ij+
∑
k∈K

∑
j∈J

Tp′jk

+2θ1p


(8)

The second objective function Obj2 that minimizes goods
shortage is formulated as (9):

minObj2 =
∑
p∈P

pp ·

(∑
s∈S

max
k∈K

{
spsk

})

+ λ2 ·
∑
p∈P

pp·

[(∑
s∈S

max
k∈K

{
spsk

}
−

∑
p′∈P

pp′

·

∑
s∈S

max
k∈K

{
sp′sk

})
+ 2θ2p

]
(9)

where, spsk is the shortage ratio of goods s at AA k under

scenario p, spsk/

(∑
j∈J

ypsjk + zpsk

)
.

The third objective function Obj3 that minimizes total cost
is formulated as (10):

minObj3
= SC + PC +

∑
p∈P

pp
(
TC1p + TC2p + PCp + QCp

)
+ λ3

·

∑
p∈P

pp

 (TC1p + TC2p + PCp + QCp
)
−

∑
p′∈P

pp′
(
TC1p′ + TC2p′ + PCp′ + QCp′

)
+ 2θ3p


+ γ

∑
j∈J

∑
s∈S

∑
p∈P

ppδjsp (10)

where, SC is the setup costs of RDCs; PC is the procurement
cost in pre-disaster phase; TC1p is the transportation cost
from suppliers to RDCs in post-disaster phase; TC2p is the
transportation cost from RDCs to AAs in post-disaster phase;
PCp is the shortage cost in AAs;QCp is the inventory holding
cost in AAs. Their expressions are as (11).

SC =
∑
j∈J

FjXj

PC =
∑
i∈I

∑
j∈J

∑
s∈S

bsixsij

TC1p =
∑
i∈I

∑
j∈J

∑
s∈S

tpsijxpsij

TC2p =
∑
j∈J

∑
k∈K

∑
s∈S

tpsjkypsjk

PCp =
∑
k∈K

∑
s∈S

pskzpsk

QCp =
∑
k∈K

∑
s∈S

qskrpsk (11)

The constraints can be expressed as (12)-(22).∑
j∈J

xsij ≤ Csi∀s ∈ S, i ∈ I (12)

∑
i∈I

∑
s∈S

vsxsij ≤ VjXj ∀j ∈ J (13)∑
k∈K

∑
p∈P

∑
s∈S

vs · ypsjk ≤ Vj · Xj ∀j ∈ J (14)

∑
p∈P

∑
k∈K

ypsjk ≤
∑
i∈I

xsij ∀s ∈ S, ∀j ∈ J (15)

∑
i∈I

xpsij +
∑
i∈I

xsij +

 ∑
k 6=j∈J

ypsjk

(Xj − 1
)

= δjsp ∀j ∈ J , s ∈ S, p ∈ P (16)∑
j∈J

ypsjk + zpsk − rpsk = dpsk + δpsk ∀s ∈ S, ∀k ∈ K

(17)∑
i∈I

∑
j∈J

Tpij +
∑
k∈K

∑
j∈J

Tpjk


−

∑
p′∈P

pp′ ·

∑
i∈I

∑
j∈J

Tp′ij +
∑
k∈K

∑
j∈J

Tp′jk


+ θ1p ≥ 0 ∀p ∈ P (18)∑

s∈S

max
k∈K

{
spsk

}
−

∑
p′∈P

pp′

·

∑
s∈S

max
k∈K

{
sp′sk

}
+ θ2p ≥ 0 ∀p ∈ P (19)(

TC1p + TC2p + PCp + QCp
)

−

∑
p′∈P

pp′ ·
(
TC1p′ + TC2p′ + PCp′ + QCp′

)
+ θ3p ≥ 0 ∀p ∈ P (20)

sps1 > sps2 > · · · > spsk ∀k ∈ K ,U1 < U2 < · · · < Uk
(21)

Xj ∈ {0, 1} xsij, xpsij, ypsjk ,

dpsk , zpsk , rpsk , δjsp, θ1p, θ2p, θ3p ≥ 0 (22)

where, (12) is the total distribution goods constraint of sup-
pliers; (13) and (14) are the distribution goods capacity con-
straints of RDCs; (15) is the total distribution goods constraint
of RDCs; (16) is the total goods demand constraint of RDCs;
(17) is the total goods demand constraint of AAs; (18), (19),
and (20) are auxiliary constraints for linearization defined in
(8); (21) is the condition that emergency goods must be given
priority to AAs depending on the importance indicator U .
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(22) is an integer constraint and a non-negative constraint of
parameters.

B. SOLUTION APPROACH
Multi-objective optimization is the process that optimizes
three conflicting objectives while taking a series of con-
straints into account. Thus the model of this paper can be
described as (23).{

min F (x) = {f1 (x) , f2 (x) , f3 (x)}
s.t. h (x) = 0, g (x) ≤ 0

(23)

where, f (x) is the objective function; h(x) is the equality
constraint function; g(x) is the inequality constraint function.

1) ε-CONSTRAINT EXACT METHOD
Due to the conflict existing among three objectives, no single
solution can be found that optimizes all objectives. Therefore,
the concept of non-dominant solutions or Pareto solutions
is brought up. In low dimension problems, there are sev-
eral common methods converting several objectives into one
objective and obtaining exact solutions, such as: weighted
sum, ε-constraint method, and min-max approach. Currently,
the weighted sum is the most commonly used approach [27].
However, the method can only generate extreme efficient
solutions, and it is highly dependent on the assigned weights,
which is difficult to calculate accurately. In contrast, ε-
constraint method is able to generate non-extreme efficient
solutions, and it can control the number of generated solu-
tions by adjusting the preferred break-points [28]. There-
fore, we handle the multi-objective problem by ε-constraint
method.

Asmentioned before, the first objective is considered as the
core objective and the rest are secondary objectives. There-
fore the formulation is as in (24), Obj1 is optimized while
Obj2 and Obj3 are added to constraints.{

min Obj1
s.t. Obj2 ≤ ε2,Obj3 ≤ ε3

(24)

2) HEURISTIC ALGORITHM
In low dimension problem, an exact method called
ε-constraint above is utilized. However, exact methods are
not proper for large-size problems. Therefore, heuristic
algorithms have been gradually applied to multi-objective
large-size optimization problems.

The non-dominated sorting genetic algorithm (NSGA-II)
[29] is one of the most commonly used optimization algo-
rithms in the multi-objective optimization problems [30] and
has been used as a base to test the performance of other algo-
rithms [31]. Meanwhile, the multi-objective particle swarm
optimization (MOPSO) algorithm is widely used [32]. Thus,
NSGA-II andMOPSO are utilized in this article. The specific
analysis is in Section 5.4.

Figures 3–4 explain the solution process of MOPSO and
NSGA-II, considering a case with five suppliers (I ), four
candidate RDCs (J ), and six AAs (K ).

FIGURE 3. The original and revised chromosomes of AAs and RDCs.

FIGURE 4. Offspring chromosomes after crossover and mutation.

In the chromosome in Figure 3(a), numbers 1 to 6 indicate
AAs and numbers 7 to 10 indicate candidate RDCs. There-
fore, 1 AA to the first RDC, 0 AA to the second RDC, 2 AAs
to the third RDC, 3 AAs to the fourth RDC, are allocated.
Not allocating an AA to a RDC means that the RDC is
not set up. However, it is necessary to confirm the capacity
constraint of RDCs. In any case, if the allocated quantities
from a RDC exceed its capacity, the last AA allocated to its
RDC is transferred to the next RDC. For example, the total
demand quantities of AAs 1, 2, and 3 exceed the capacity
of the fourth RDC 10. Therefore, AA 1 need to be allocated
to the first RDC 7, shown in Figure 3(b). Supplier and RDC
chromosomes are defined similarly.

Figure 4 is the offspring chromosomes after crossover and
mutation process. Supposing crossover probability Pc=0.6,
thus the crossover chromosomes=9; mutation probabil-
ity Pm=0.1, thus the mutation chromosomes=3. Numbers
1 to 15 represent all suppliers, candidate RDCs, and AAs.
Figure 4(a) is the parent chromosomes originally. After
crossover, there are nine chromosomes have been changed,
and the offspring chromosomes are shown in Figure 4(b). And
Figure 4(c) shows the offspring chromosomes after mutation.
Numbers 5, 11, 13 are the mutated chromosomes.

3) PARAMETER TUNING
It is necessary to set suitable parameters of heuristic algo-
rithms. Taguchi method is one of the most efficient methods
for setting parameters, and it minimizes the changes and
sensitivity of chaos factors [33]. NSGA-II parameters include
population size (Ns), crossover possibility (Pc), mutation
possibility (Pm), and maximum number of iterations (Max-
it), and MOPSO parameters include Ns, Max-it, personal
learning coefficient (C1), and global learning coefficient (C2).
Table 2 shows different levels of parameters and

Figures 5–6 show the related S/N ratios obtained by the
Minitab software. The one with the highest S/N ratio is
selected as the best parameters.
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TABLE 2. The parameters of the algorithms and their levels.

FIGURE 5. The S/N ratios of NSGA-II parameters.

FIGURE 6. The S/N ratios of MOPSO parameters.

V. CASE ANALYSIS
The real-world case lies in Sichuan Province, China
(Figure 7), and it suffered from an earthquake disaster.
Figure 7(a) shows the location of two suppliers and three
AAs in reality, meanwhile, the corresponding network topol-
ogy considering transmission lines is shown in Figure 7(b).
Additionally, the two suppliers are named of S1, S2, and the
three AAs are named of D1, D2, and D3.

A. PRIORITIZATION OF GOODS DISTRIBUTION FOR AAS
Since the total transfer capacity and the line betweenness
respectively represent different attributes of transmission
lines, there are different values shown in Figure 8.

Table 3 shows that UxD3 > UxD2 > UxD1. Therefore,
the priority of goods distribution to AAs is: D3>D2>D1.

FIGURE 7. The map and corresponding network topology of the sample
problem.

FIGURE 8. Normalized values of line betweenness (B) and total transfer
capacity (Pttc) of each line in the AAs.

TABLE 3. Calculation results of importance indicators (Ux ) of AAs.

B. SPECIFIC DISTRIBUTION PROCESS
In dealing with disasters, three types of emergency goods
named of R1, R2, and R3 are considered in this case, includ-
ing rescue vehicles, rescue tools, etc. We also consider four
scenarios simultaneously: P1, P2, P3, and P4, with occur-
rence probabilities of 0.45, 0.3, 0.1, and 0.15, respectively.
These scenarios and associated probabilities are designed
by disaster planners based on historical records and known
geological faults [18]. The variability weight λi is equal to
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TABLE 4. The ability of each supplier to provide goods.

TABLE 5. Fixed establishing cost of a RDC depending on its storage
capacity.

TABLE 6. Unit procurement cost, goods volume, and transportation cost.

TABLE 7. Demand for each AA in four scenarios.

TABLE 8. The inventory quantity of goods in RDCs in pre-disaster phase
(xsij ).

0.5 for i ∈ I . Table 4-7 show the data collected in pre-disaster
phase.

Table 7 shows that for each AA, there is a four-element
vector that represents goods demands under different scenar-
ios. Demand is estimated on the basis of the power equipment
density multiplied with the importance indicator U .

Table 8 shows that there are four RDCs in pre-disaster
phase: one RDC stores only one goods (R3); one RDC stores
only two goods (R2, R3); one RDC stores all three types of
goods; one RDC stores nothing. The ‘‘-’’ in Table 8 means no
storage. Formulating Tpij = 1.5h, Tpjk = 2h, then we solve
the small-size problem using GAMS software by ε-constraint
method. The results are shown in Tables 9–10.

Taking the data in Table 9 as an example, RDC1 receives
95 units and 57 units R3 from S1 and S2 suppliers under the
fourth scenario (P4). The ‘‘-’’ in Table 9 means no distribu-
tion.

TABLE 9. The quantity transferred from suppliers to RDCs under different
scenarios in post-disaster phase (xpsij ).

TABLE 10. The quantity transferred from RDCs to AAs under different
scenarios in post-disaster phase (ypsjk ).

FIGURE 9. Optimal solutions of the objective functions (independently
solved).

In Table 10, when the quantity of the RDC closest to an AA
is in short supply, the second RDC closest to the AA provides
goods. The ‘‘-’’ in Table 10 means no distribution.

In order to determine the number j of RDCs, optimal values
of objective functions can be obtained by varying possible
number j. Figure 9 depicts the values of min Obj1, min Obj2,
and min Obj3 while j = 1, 2, 3, 4, 5. When j = 4, min Obj1,
minObj2, andminObj3 all obtain the minimum values, so the
optimal number j is assumed to be 4, and the number of RDCs
in Table 8 is based on this assumption.
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FIGURE 10. Three-dimension Pareto-optimal set.

FIGURE 11. Projection diagram of the three-dimension Pareto-optimal
set.

TABLE 11. Extreme solutions in Pareto-optimal set.

Meanwhile, a widely distributed three-dimensional Pareto-
optimal set is obtained, as shown in Figure 10. Figure 11 is
the projections of the three-dimensional Pareto-optimal set on
two-dimensional planes.

Figures 10–11 show that there is an association between
three objective functions. Specifically, an increase in the total
time (Obj1) will result in an increase in the goods shortage
(Obj2) and a decrease in the total cost (Obj3). Therefore,
optimizing the total cost is at the expense of the other two
objectives, and there is a positive correlation between the total
time and the goods shortage.

If minimizing the total time (Obj1), goods shortage (Obj2),
and total cost (Obj3) are the objectives respectively to search
extreme solutions, the results are shown in Table 11.

TABLE 12. Best compromise solutions in Pareto-optimal set.

Table 11 shows that, if only the total time or goods
shortage is optimized, the economic burden of distribution
will increase; if only the total cost is targeted, it will be
unfavourable for the rapid supply of goods, so it is necessary
to weigh all objectives and fully exploit the information in
the Pareto-optimal set. The compromise solution is obtained
from the Pareto-optimal set by the fuzzy membership func-
tion, shown in Table 12.

C. SENSITIVITY ANALYSIS OF UNCERTAINTIES
In order to quantitatively analyze the influence of uncertain
parameters on disaster relief logistics planning, four typi-
cal models are compared according to different uncertain
degrees of three parameters (demand/supply/cost). As shown
in Table 13, the degree of uncertainty in models (M1-M4) is:
M4 > M3 > M2 > M1. The uncertainty degree λ = 0.5.
Figure 12-14 show projections of Pareto-optimal sets on

the XY, XZ, YZ plane. With the increasing degree of uncer-
tainty, the optimal solution tends to increase total time, reduce
shortage and total cost. The reasons are as follows.
M1 does not consider uncertainty. Therefore an essen-

tial cost is incurred and causes total cost to become con-
siderably unstable while dealing with different scenarios.
When demand uncertainty is considered in M2, the com-
plexity of the model increases to some extent, resulting in
a longer total time. However, the capability responding to
unexpected situations improves as well, making a decrease

TABLE 13. Typical models with different degrees of uncertainty, M4 is the
model in this article.

FIGURE 12. Pareto-optimal sets of typical models M1-M4 on the XY plane
(λ = 0.5).
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FIGURE 13. Pareto-optimal sets of typical models M1-M4 on the XZ plane
(λ = 0.5).

FIGURE 14. Pareto-optimal sets of typical models M1-M4 on the YZ plane
(λ = 0.5).

TABLE 14. Pareto-compromised sets of models M1-M4.

in goods shortage. Whenever higher degrees of uncertainty
are considered, the complexity increases accordingly. How-
ever, the improvement in responsiveness reduces the cost of
processing different scenarios, making a reduction in total
cost.

In Table 14, models M1, M2, and M3 have the results
that the total time Obj1 is 12.44h, 13.29h, and 13.54h;
the goods shortage Obj2 is 15.34%, 11.31%, and 9.16%;
the total cost Obj3 is 48.21 thousand RMB yuan, 47.22
thousand RMB yuan, and 45.91 thousand RMB yuan,
respectively. In comparison with models M1-M3, which
cover lower degrees of uncertainty, M4 considering three
sources of uncertainty increases the total time by 9.65%,
3.49%, and 1.67%; decreases the goods shortage by 8.22%,
4.19%, and 2.04%; and saves the total cost by 15.09%,
12.72%, and 9.60%, respectively. Figure 15 depicts the sen-
sitivity analysis of the uncertainty level on the objective
functions.

FIGURE 15. The correlation between objective functions and uncertainty
level.

TABLE 15. General data of test problems.

FIGURE 16. Comparison between the exact method and heuristic
algorithms based on MID.

D. ANALYZING THE PERFORMANCE OF THE
PROPOSED ALGORITHM
In order to compare the results of different algorithms, based
on the works [34], [35], four criteria including mean ideal
distance (MID), spacing metric (SM), diversification metric
(DM), and calculation time (CPU time), are considered. MID
shows the mean distance of the Pareto sets from origin,
SM and DM show the distribution and diversification of the
Pareto sets respectively, and CPU time is one of the most
important criteria. Equations (25)–(27), shown at the top of
next page, are definitions with the criteria.
where, ci is the distance of the ith Pareto point from the ideal,
n is the number of Pareto sets, di is the Euclidean distance
between two adjacent Pareto sets, d̄ is the mean value of
di, f1i, f2i, f3i are the values of the ith Pareto point for each
objective functions.
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MID =
n∑
i=1

ci/n (25)

SM =

(
n∑
i=1

∣∣d̄ − di∣∣)/[(n− 1) d̄
]

(26)

DM =

√√√√(max f1i −min f1i
f max
1.total − f

min
1.total

)2

+

(
max f2i −min f2i
f max
2.total − f

min
2.total

)2

+

(
max f3i −min f3i
f max
3.total − f

min
3.total

)2

(27)

FIGURE 17. Comparison between the exact method and heuristic
algorithms based on SM.

FIGURE 18. Comparison between the exact method and heuristic
algorithms based on DM.

Thus, with the value of MID, SM, CPU time decreas-
ing, the performance of algorithms is better; and with the
value of DM increasing, the performance of algorithms is
better. Figures 16-19 show the comparison between the exact
method and heuristic algorithms.

In the low-dimension problems, the exact method performs
closely compared to heuristic algorithms. However, the CPU
time of the exact method increases exponentially while the
size of problems increases. Generally speaking, MOPSO per-
forms better than NSGA-II in the MID and SM criteria, while
NSGA-II is better thanMOPSO in the DM and CPU time cri-
teria, but the difference in the four criteria is not particularly
significant.

FIGURE 19. Comparison between the exact method and heuristic
algorithms based on CPU time.

VI. CONCLUSIONS AND FUTURE WORK
This paper discusses a robust optimization model for grid
emergency goods distribution. In fact, the model presents a
range of available options because of the dispersion of Pareto-
optimal sets and the relationship of objectives. This research
can optimally assign the amount and path of emergency
goods based on sensitivity analysis of disaster situations and
relationship of optimized objectives. In other words, it helps
the decisionmakers in the power grid to distribute goodsmore
efficiently. The following conclusions can be drawn from this
article:

1) We uses the ε-constraint method to solve the multi-
objective optimization problem exactly. The Pareto-
optimal set shows that an increase in the total time
(Obj1) will result in an increase in the goods shortage
(Obj2) and a decrease in the total cost (Obj3).

2) Compared with the models which cover lower degrees
of uncertainty, the model considering demand, sup-
ply, and the costs of procurement and transportation
as uncertain parameters increases computational com-
plexity, so the total time increases from 1.67% to
9.65%. However, it can reduce the shortage of goods
ranging from 2.04% to 8.22% and the total cost ranging
from 5.94% to 15.2%.

3) We utilize ε-constraint method and two heuristic algo-
rithms (MOPSO/ NSGA-II) to solve test problems. The
CPU time of ε-constraint method is immensely affected
by the size of problems. The heuristic algorithms are
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performing better, which is especially more sensible
when the size increases. Additionally, MOPSO and
NSGA-II are comparable.

In the future, different types of vehicles and corresponding
transportation costs can be considered; in addition, for large-
scale problems, especially the problems that scenario types,
goods types, and the number of AAs are simultaneously
increased, it is necessary to propose new meta-heuristic algo-
rithms. As a limitation, it should be noted that the proposed
framework and algorithms are related to the selected case
study, and we cannot be sure that these outcomes will be
efficient for other areas.
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