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ABSTRACT Block-based hierarchical motion estimations are widely used for frame interpolation in
frame-rate up-conversion and are successful in generating high-quality interpolations. However, it still fails
in the motion estimation of small objects when a background region moves in a different direction. This
is because the motion of small objects is neglected by the down-sampling and over-smoothing operations
at the top level of image pyramids in the maximum a posterior (MAP) method. Consequently, the motion
vector of small objects cannot be detected at the bottom level, and therefore, the small objects often appear
deformed in an interpolated frame. This paper proposes a novel algorithm that preserves the motion vector
of the small objects by adding a secondary motion vector candidate that represents the movement of
the small objects. This additional candidate always propagates from the top to the bottom layers of the
image pyramid. Experimental results demonstrate that the intermediate frame interpolated by the proposed
algorithm significantly improves the visual quality when compared with conventional MAP-based frame
interpolation.

INDEX TERMS Frame interpolation, FRUC, MEMC, motion estimation, small object.

I. INTRODUCTION
Motion-compensated frame-rate up-conversion (MC-FRUC)
is widely used for Liquid Crystal Display Televisions
(LCD TVs) to increase the frame rate during video dis-
play [1], [2]. Hierarchical block-based motion estimation
is widely used for MC-FRUC thanks to its relatively
small complexity because a real-time operation is required
for LCD TVs. The visual quality of a generated interme-
diate frame is heavily dependent on the accuracy of the
motion vectors between two temporally consecutive original
frames. Conventional block-based hierarchical motion esti-
mation suffers from a fundamental limitation in handling
motion details, such as the diverse movements of a small
object in the background. In general, it is not easy to define
a general size to classify an object into small one or not.
Because a part of a large object in a block can also be
defined as a small object when the motion vector of the
small part is different from the motion vector of the block
that includes the small part. The two primary reasons for the
fundamental limitation in handling motion of small objects
are image down-sampling and motion over-smoothing.

As down-sampling reduces the size of an object at the top
pyramid level, it has little effect on the motion estimation
for a block that includes the object. Therefore, the motion
of a small object is often neglected in the motion estimation
at the top level. The over-smoothing of a motion vector
occurs in a conventional maximum a posterior (MAP) [9],
[11]–[16], [22], including the operation to increase the
smoothness of a motion vector field. Over-smoothing occurs
when a motion vector of a block is different from the motion
vectors of neighboring blocks. MAP replaces the motion
vector of a small object block with a background motion
vector, which often results in the selection of a wrong motion
vector of a block that includes the small object.

Fig. 1 shows an example that illustrates the limitation of
the conventional block-based hierarchical motion estimation.
In this example, an area of 16 × 16 pixels in an input image
is used as the unit for motion estimation and the number
of pyramid levels is three. The scaled image of each level
is partitioned into 4 × 4 blocks, and each of these blocks
is represented by a square. A small object is represented
by a shaded area while the background is represented by

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

60353

https://orcid.org/0000-0003-0841-8586
https://orcid.org/0000-0002-0602-9256
https://orcid.org/0000-0001-9839-4762
https://orcid.org/0000-0001-8895-9117


N. V. Thang et al.: Hierarchical Motion Estimation for Small Objects in FRUC

FIGURE 1. Example of an inaccurate motion vector of a small object that
is represented by the shaded area in a hierarchal motion estimation:
(a) the ground-truth motion vector at the bottom level. (b) a block
with a motion vector at top level; (c) blocks with motion vectors
at lower levels; (d) error of the estimated motion vector of
a small object at the bottom level.

a white one. For simple illustration, the number in each block
represents only the horizontal component of the estimated
motion vector. In this example, a small object moves in a
different direction from the direction of the movement of
the background. The ground truth motion vectors are shown
in Fig. 1 (a), in which a shaded block corresponds to a
small object. In block-based hierarchical motion estimation,
an input image is down-sampled and motion vectors are
estimated from the top level. Fig. 1 (b) shows a top level
block obtained by down-sampling the image area in Fig. 1 (a).
The portion of the small object in the block at the top
level is small; therefore, the motion of the small object has
little effect on the motion estimation of the block. Thus,
the estimated motion vector only represents the motion of the
background whereas the motion of the foreground is ignored.
As shown in Fig. 1 (c) and (d), the motion vector of the small
object is not propagated from the higher level. Consequently,
the motion vector of a small object is inaccurately determined
as shown in Fig. 1 (d), which is different from the ground-
truth motion vector shown in Fig. 1 (a). The wrong motion
vector may cause a small object to appear distorted or to
disappear in the interpolated frame.

Extensive research efforts have been made to handle
the motion estimation for challenging cases in frame-rate
up-conversion, from repetition pattern objects [17]–[19] to
small objects [3]. A previous study proposes a SIFT feature-
based optical flow in order to explore the motion vector
of a small object [3]. The method proposed in this study
successfully improves the accuracy but increases the com-
putational complexity. For example, the time required to
estimate the flow of an urban test sequence in the Middlebury
test bench is 342 s. Another method employs variable block
sizes at motion boundary blocks to provide a dense motion
vector field [4]. This method succeeds in deriving accurate
motion vectors at boundary blocks but it also requires exten-
sive computation. In the method proposed in [5], a pixel-
based motion vector selection is derived from neighboring
block-based motion vectors. The motion vectors of the pix-
els are generated from the estimated motion vectors of the
blocks that include them. The pixel-based estimation further
improves the accuracy of motion estimation although small
objects may remain undetected if the motion estimation for

a block is inaccurate. Recently, Jeong, Lee and Kim propose
a use of video segmentation for estimating motion vectors of
pixels [6]. The method can generate a dense motion vector
field and successfully reduce block artifacts. However, its
computational complexity is high owing to the derivation of
video segmentation solving a graph cut algorithm. Variable
block size approaches have been also studied in previous
works [4], [6], [7]. The method proposed in [9], increases
the density of a motion vector field in a hierarchical manner.
In other words, the motion vector of a sub-block is derived
from the motion vector of a parent block and those of the
neighboring blocks of the parent block. This method success-
fully reduces the computational complexity while offering a
reasonable level of accuracy. However, it cannot reduce the
motion vector errors owing to the disappearance of themotion
vector of small objects from the motion estimation of the
original blocks.

This study addresses the difficulty in the motion estimation
of a small object described in Fig. 1 and proposes a new
hierarchical motion estimation algorithm for MC-FRUCwith
two primary contributions.

• The hidden motion information of a small object at the
top level is represented by an alternative motion vector
candidate. The alternative candidate is propagated to the
lower levels and used for the motion estimation of small
objects at the bottom layer.

• A matching algorithm for determining the alternative
motion vector is proposed. If pixels with high residual
costs are detected in a block, the matching algorithm is
performed for the high cost pixels, otherwise it main-
tains the motion vector estimated by a full search block
matching algorithm as the alternative motion vector.

The rest of the paper is organized as follows. Section II
introduces previous works and the motivations of the paper.
The proposed method is presented in Section III and exper-
imental results are discussed in Section IV. Section V con-
cludes this paper.

II. PREVIOUS WORKS
A. MAXIMUM A POSTERIOR FRAMEWORK
A recent proposal of MAP-based motion estimation has
achieved better performance than the conventional block
matching algorithm (BMA) because it exploits smoothness
constrains of motion fields [9], [12], [13]. The smooth-
ness constraint on neighboring motion vectors can improve
the estimation accuracy thanks to the property that motion
vectors in an object do not change abruptly. The smooth-
ness constraint is a key contribution of many optical flow
methods [20], [21], and block based motion estimation
methods [9], [13], [22]. Horn and Schunck [20] propose
an algorithm that uses a smoothness constraint as a penalty
for pixel-matching scores in dense motion field estimation.
Zach et al. [21] compute the smoothness term with an
L1 norm of motion vector difference between neighboring
ones. In recent block based motion estimation [9], [13], [22],
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smoothness constraint is used as a key approach to find true
motion vectors.

The BMA is an unconstrained optimization; meanwhile,
MAP applies prior probability to the optimization in order
to make a smooth change in motion vector field. In MAP,
the objective function is to minimize an energy function that
is composed of two components. The first term is a data cost
that represents the block matching value or likelihood and
the second one is a smoothness cost that encodes a prior
probability of the motion vector field. The combination of
two components, which are likelihood and prior probability,
is to estimate the posterior probability of the motion vector
field as shown in the following equations:

E(u) = SAD(u)+ λ ∗6Pc(u, vc) with vc ∈ Nc (1)

E(u) =
∑

x∈Block
|Ic(x)− Ir (x+ u)| + λ

∗

∑
vc∈Nc
{||u− vc|| ∗ θ (u, vc)} (2)

where u = (ux , uy), is the motion vector variable, SAD(u) is
the sum of absolute difference of the block that corresponds
to u, Pc(u, vc) is the smoothness function that corresponds
to the motion vector difference between neighboring blocks,
Nc represents the neighboring motion vectors of the current
motion vector u, and λ is a weighting parameter. Eq. (2) is a
specific formulation of Eq. (1), where Ic(x) is the intensity of
a pixel at position x in the current block. Ir (x+u) is the inten-
sity of the corresponding pixel (x+u) in the reference block,
θ ((u, vc) is a threshold continuity function that is equal to
zero when the difference between u and vc is larger than a
predefined threshold, otherwise, it is equal to one. During
the optimization of the energy function E(u), u varies within
the search range S that is a 2-D value table, i.e (±16,±16).
The final estimated motion vector û that optimizes the energy
function E(u) is defined as follows:

û = argminu∈SE (u) (3)

In general, MAP-based methods outperform the conven-
tional BMA method. However, in areas with small objects
in which the motion vectors are different from the motion
of the surrounding background, over-smoothing in motion
vector typically occurs. In these areas, BMA tends to yield
more accurate motion vectors. Thus, this paper proposes an
algorithm for using motion vectors obtained by BMA for the
motion estimation of small object areas.

B. HIERARCHICAL MOTION ESTIMATION
For real time operation of LCD TVs, an FRUC algorithm
must be sufficiently fast to process 60 frames per second.
In order to satisfy this strict requirement, a hierarchical
motion estimation has been often used for reducing the com-
putational complexity [8]–[10]. To obtain precise motion
vector field, the MAP method is used at the top level [9].
Subsequently, the top motion vectors are propagated to the
bottom level to produce finer motion vector fields. In this
manner, the images at all pyramid levels are partitioned into

FIGURE 2. Hierarchical motion estimation [9].

blocks of the same size. To estimate motion vector of a
block at a lower level, three motion vectors from the upper
level are used as its initial motion vectors. The first one is
from its parent block, and the other two are from the blocks
both horizontally and vertically adjacent to the parent block.
Fig. 2 illustrates an example. The full search around the three
initial motion vectors with a search distance of ±d pixels are
performed to choose the best motion vector in three search
windows. The motion estimation for each layer is recursively
performed in this manner from the top to the bottom levels
in the image pyramid. If there are missing motion vectors
at the top level, the propagation cannot discover the missing
ones at the bottom level. This is the primary drawback of the
conventional hierarchical motion estimation. Thus, this paper
proposes a new hierarchical motion estimation algorithm that
discovers the missing motion vector of small objects at the
top level and propagates it into the bottom level. With this
manner, the proposed algorithm successfully preservers the
motion vector of small objects in hierarchical motion estima-
tion framework.

III. HIERARCHICAL MOTION ESTIMATION
FOR A SMALL OBJECT
In hierarchical motion estimation, an input image is down-
sampled for generating the top pyramid layer inwhich the size
of an object becomes smaller than that in the bottom layer.
Consequently, a small object typically occupies only a small
part of a block at the top level. Therefore, the small objectmay
be ignored in motion estimation, and the remaining region of
a block contributes more significantly to motion estimation
than the small object does. If the motion information for a
small object is ignored at the top level, it cannot be recovered
at the bottom level. Thus, hierarchical motion estimation
often fails in the generation of a correct motion vector for a
small object. However, this small object may be sufficiently
large to occupy an entire block at the bottom level, and the
erroneous motion vector of a small object can deteriorate
the image quality in MC-FRUC. Therefore, it is necessary to
store the motion information of a small object at the top level
and to pass it to be used for motion estimation at the bottom
level.
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This paper aims to propose a novel algorithm for hierar-
chical motion estimation that avoids the artifact in the region
that includes a small object. In the algorithm proposed in [9],
each block at a lower level has threemotion vector candidates:
one from the motion vector of the parent block, and the other
two from themotion vectors of the nearest neighboring blocks
of the parent block in the horizontal and vertical directions.
This paper proposes the use of an additional motion vector
candidate that represents the motion information of a small
object at the top level. The additional candidate is propagated
to the lower level and used for motion estimation of a small
object.

A. AN ALTERNATIVE MOTION VECTOR FOR
HIGH COST PIXELS
The proposed algorithm attempts to detect a small object
that has a motion vector different from that of the block that
includes a small object. In this case, it is possible to have a
case that the movement of a small object is different from
that of the surrounding area in the block. The matching error
of the block may be high because small object pixels may
not have matching pixels in a reference block. In this case,
the matching error of the pixels that belong to a small object
is high. The pixel difference, 1I , is defined by the following
equation:

1I = |Ic (i, j)− Ir (i+ u, j+ v)| (4)

where Ic(i, j) is the intensity of the pixel at position (i, j)
in the current frame. Ir (i + u, j + v) is the intensity of the
corresponding pixel (i+u, j+v) in the reference frame. Vector
(u, v) is the motion vector of the current block to be derived.

Herein, a pixel with a large pixel difference is referred to
as a high-cost pixel that has a potential to be a pixel of a small
object. If the pixel difference is larger than the predefined
threshold, it is determined as a high-cost pixel.

When a block contains high-cost pixels, the second full
searchmotion estimation for the high-cost pixels is performed
to estimate the motion vector of a small object that consists
of these pixels. In the second motion estimation, only the
matching cost of the high-cost pixels is considered, and thus,
a motion vector of a small object can be found. A motion
vector that represents the motion of a small object is referred
to as an alternative motion vector.
Fig. 3 shows an example of motion estimation for a

4x4 block at the top level. In Fig. 3 (a), the current block
includes a part of a small object that is represented in black,
and it does a rest part of a background that is in white.
In the first motion estimation, a motion vector of a block is
estimated as +3. Fig. 3 (b) shows a matching block in the
reference frame. When the current block is compared with
the matching block, the pixel difference of the small object
is high, and thus, these pixels are determined as high-cost
pixels which are represented by shaded pixels in Fig. 3 (c).
In the second motion estimation, only high-cost pixels are
used for computing SAD, and an alternative vector of −1 is
derived in this example. In the proposed algorithm,

FIGURE 3. Example of the alternative motion vector: (a) a current block
with a small object in black pixels; (b) a matched block in a reference
frame; (c) high-cost pixels and the alternative vector obtained by
the second motion estimation.

two motion vectors of +3 and −1 are to be propagated to
the lower layers. If the number of layers is three as shown
in Fig. 1, the motion vectors of +12 and −4 are obtained at
the bottom layer. For each block at the top level, two motion
vectors are derived. The first one represents the motion of
the block, and the second one represents a motion of a small
object in the block. The propagation of both motion vectors
to the finer levels allows the motion of the small object to be
preserved from the top layer to the bottom layer.

Each block has two motion vectors. One is the motion
vector of the block from the first motion estimation, and the
other is the motion vector of high-cost pixels from the second
motion estimation. Even when no high-cost pixel exists in
a block, the motion vector of a block can be wrong owing
to over-smoothing of the MAP-based methods. This case
may occur for a block in which all pixels belong to a small
object with its size almost the same as the block size. In this
case, the BMA can obtain a true motion vector of the block.
However, the true motion vector can be replaced with a false
one by MAP when the small object moves in a direction dif-
ferent from that of the background. In the proposed algorithm,
the motion vector from the BMA is assigned to an alternative
vector for the blocks that do not contain high-cost pixels. This
ensures that all potential motion vectors for a small object are
propagated to the lower layers.

B. MODIFIED HIERARCHICAL MOTION ESTIMATION
In the proposed algorithm, fourmotion vectors from the upper
level of an image pyramid are used as the initial motion
vectors for motion estimation. The three motion vectors are
the same as those of the conventional algorithm [9]. The
additional candidate is the alternative motion vector dis-
cussed in the previous subsection. If a block at the top level
includes high-cost pixels, the alternative motion vector is the
motion vector of the high-cost pixels. Otherwise, a motion
vector obtained by the BMA for a block at the top level is
used for an alternative motion vector. Four motion vectors
are propagated to the lower level, and then the full-search
BMA around the four motion vectors with a search distance
of±d pixels are performed to choose the best among the four
search windows. Even when the alternative motion vector is
not selected as the best one, it is still propagated to the next
lower level to preserve the motion vector of the small object.
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FIGURE 4. Modified hierarchical motion estimation.

Motion estimations for the lower layers are performed in
this manner again in the image pyramid as shown in Fig. 4.
At a finer layer or level l, in each current block (pattern fill
block in Fig. 4), three dashed arrows represent the three con-
ventional motion vectors, the other is the alternative motion
vector.

C. THE PROPOSED ALGORITHM
The flowchart of the proposed algorithm is shown in Fig. 5.
From input frames, image pyramids are constructed for hier-
archical motion estimation. Then, a conventional full search
BMA is performed at the top pyramid level and the high-
cost pixels of each block are detected. In the next step, two
operations are performed in parallel. One is a MAP-based
motion estimation that is performed as a refinement of the
BMA [9]. The other is a full-search motion estimation for
high-cost pixels. When a block does not include high-cost
pixels, the motion vector estimated by BMA is used for
an alternative motion vector. Therefore, all blocks have two
motion vectors. One is estimated by the MAP-based motion
estimation and the other is the alternative motion vector.
These two motion vectors of the top level are propagated to
the lower level in which these vectors are used for generating
search windows. After the motion estimation of the level
is completed, the motion vector from BMA and the scaled
alternative motion vector for each block are propagated to
the next level. The alternative motion vector is propagated
to the next pyramid level irrespective of whether it is chosen
as the motion vector of the block or not, thereby guaranteeing
that the motion vector of the small object is propagated to the
bottom layer.

IV. EXPERIMENTAL RESULTS
For experiment, the proposed algorithm is evaluated with four
full-HD video sequences that contain small objects: tennis
ball, rim ball, basketball and soccer ball. For video frames
in the dataset, odd frames are removed and these frames are
used as the ground truth frames. Motion compensated frame-
rate up-conversion algorithms are applied to even frames to
generate intermediate frames, which are compared to the

FIGURE 5. Motion estimation of the proposed algorithm.

corresponding ground-truth frames. The performance of the
proposed motion estimation is compared to that of the previ-
ous method that uses the MAP algorithm at the top pyramid
level and conventional hierarchical motion estimation [9].
For motion estimation, experiment is carried out with the
previous and proposed algorithms under identical conditions
as follows: three temporally consecutive original frames are
used for estimating both forward and backwardmotion vector
fields as suggested by [9], the number of pyramid levels is
four, and the block size is fixed to 8×8 for all pyramid levels.
One block at level l is a parent of four blocks at level l + 1.
At the top pyramid level, the search range is±16 pixels in the
horizontal direction and ±8 pixels in the vertical direction in
order to reduce search space in the vertical direction. At the
other levels, the small search range d is±1 for both horizontal
and vertical directions. The image size at the top level is
240×135 pixels, at the bottom level is 1920×1080 pixels.
For frame interpolation, the algorithm in [23] is used for both
previous and proposed motion estimations. The peak signal-
to-noise ratio (PSNR) values of interpolated frames are used
for objective comparison. In addition, subjective visual image
quality is also compared.

A. EFFECT OF AN ALTERNAVITE VECTOR
Fig.6. presents an example of over-smoothing of
MAP approach. Figs. 6 (a) and (b) show two consecutive
input frames. Fig. 6 (c) shows a magnified input image that
includes a small object. In this figure, white lines represent
the blocks corresponding to the blocks at the top pyramid
level. The blue arrows represent the motion vectors estimated
by BMA, the red arrows represent the motion vectors esti-
mated by MAP. For the two center blocks that contain a part
of the ball, BMA estimates correctly the motion of the part of
the ball whileMAPover-smooths it tomake themotion vector
of the ball similar to those of neighboring blocks that belong
to the background with different movement. Fig. 6 (d) shows
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FIGURE 6. Effect of over-smoothing of MAP and the alternative motion vector with BMA. (a) the first frame; (b) the second frame; (c) the scaled motion
fields with the alternative motion vectors obtained by BMA (the blue arrows are the alternative motion vectors, the red arrows are the motion vectors of
blocks obtained by MAP); (d) the interpolated frame without the alternative motion vector; (e) the interpolated frame with the alternative motion vector.

FIGURE 7. Effect of down-sampling and the alternative motion vector with the detected high cost pixels. (a) the first frame; (b) the second frame;
(c) the scaled motion fields with the alternative motion vectors obtained by the second motion estimation for the high cost pixels (the yellow arrows
are the alternative motion vectors, the blue arrows are the motion vectors of the blocks obtained by BMA, the red arrows are the motion vectors of
the blocks obtained by MAP); (d) the interpolated frame without the alternative motion vector; (e) the interpolated frame with the alternative motion
vector.

the interpolated frame when MAP is used and broken artifact
is generated owing to some parts of the object generated
with the erroneous motion vectors. Fig. 6 (e) shows the
interpolated one when the alternative motion vector with
BMA is used. The interpolated frame with the alternative
motion vector preserveswell the shape of the ball. This proves
that the efficiency of the preservation of the motion vector of
small objects with the alternative motion vector obtained by
the BMA.

Fig. 7 presents an example of the alternative motion vector
for the detected high cost pixels. Figs. 7 (a) and (b) show

two original frames. In Fig. 7 (c), each block represents a
top level block at the top pyramid level, and it is scaled to a
corresponding 64×64 block at the bottom pyramid level. The
blue and red arrows represent the motion vectors obtained
by the conventional BMA and MAP, respectively. The blue
dots denote high-cost pixels. The yellow arrows show the
alternative vectors represent the movement of the detected
high cost pixels. The small tennis ball moves to the upper
right corner. However, this movement is dismissed by the
dominance of the background (grass) in the block. If only
the motion vector obtained by BMA or MAP is propagated,
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TABLE 1. PSNR comparisons between the MAP algorithm [9] and the
proposed method.

FIGURE 8. Comparison between the ground truths, the interpolated
frames obtained by the MAP algorithm [9] and the proposed algorithm.

the true motion of the tennis ball cannot be found at the
bottom layer. Then, the tennis ball can be missed or exist
with the deformed shape in the interpolated frame as shown
in Fig. 7 (d). With the proposed alternative vector, the true
motion vector of the tennis ball is persevered and propagated
to the bottom pyramid level. Therefore, it guarantees that the
correct motion vector of the tennis ball can be used for frame
interpolation that generates the intermediated frame as shown
in Fig. 7 (e).

B. PERFORMANCE EVALUATION
The objective quality of the proposed algorithm is compared
to that of the MAP algorithm in [9] in Table 1 which shows
the comparison of the PSNR. The improvement achieved by

the proposed algorithm is about 0.42 dB on average. Fig. 8.
presents the comparison of the subjective image qualities
of the previous work in [9] and the proposed method. The
first column represents the ground truth frames, the second
column shows the interpolated frames of the previous work
in [9], and the third one shows the frames generated by using
the proposed algorithmwith an alternative vector. In theMAP
algorithm, there are broken artifacts in the interpolated frames
because the motion vectors of some parts of the small balls
are lost. The proposed algorithm reduces the broken artifacts
significantly in comparison with the MAP algorithm. The
proposed algorithm preserves the shapes of the small object
because the motion vectors of the whole parts of the small
object are estimated and preserved by the alternative vectors.

V. CONCLUSION
In conventional block-based hierarchical motion estimation,
a motion vector of a small object is not detected at the top
level, and thereby resulting in object deformation in inter-
polated frames in MC-FRUC. This paper proposes a new
algorithm for estimating the motion of a small object in a
hierarchical motion estimation framework, which improves
the image quality of an interpolated frame. The proposed
algorithm detects high-cost pixels for each block, and esti-
mates the motion vector of high-cost pixels. This motion
vector is used as an additional motion vector candidate in
hierarchical motion estimation. The additional motion vector
is propagated to the bottom level, and thus enabling a motion
vector of a small object to be discovered at the bottom level.
Experimental results for MC-FRUC show that the proposed
algorithm achieves a better performance than the MAP algo-
rithm in terms of both subjective image quality and objective
measurements. The PSNR is improved by 0.42 dB on average
by using the proposed algorithm.
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