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ABSTRACT This paper presents a comparison study on visual quality scores obtained from single-stimulus
and double-stimulus approaches for pattern images, respectively. We also conduct the comparison on general
(non-pattern) images, which serve as a control group. The pattern and non-pattern (PNP) images are collected
and built by the Perceptual Data Analysis and Processing Laboratory, National Chung Hsing University, and
evaluated by a group of people with both single-stimulus and double-stimulus approaches. Then, we examine
the difference of mean opinion scores obtained by both the methods with respect to the image types,
image contents (scenes), and distortion types. The hypothesis tests are used to determine whether there is a
significant difference between both the sets of scores. The test results suggest that the differences exist and
are significant for some specific distortion types and image contents. For example, the pattern images with
simple colors should be viewed by the double-stimulus method in order to reduce the variance of subjective
scores. In the end, we test three well-known full-reference image quality metrics (IQMs) on both the PNP
images. In addition, we investigate whether the visual saliency (VS) plays a more important role for pattern
images compared with non-pattern images. We discover that the most salient regions are more influential
on pattern images than non-pattern images. Also, by introducing the VS information into the IQMs with
a newly proposed Otsu’s weighted VS mask, the correlation performance between objective quality scores
obtained from IQMs and subjective scores from human’s visual perception can be boosted further.

INDEX TERMS Absolute category rating-hidden reference (ACR-HR), hypothesis test, pattern images,
simultaneous double stimulus for continuous evaluation-discrete category scale (SDSCE-DCS), visual

saliency (VS).

I. INTRODUCTION

In recent years, visual quality assessment has drawn consid-
erable attention to many researchers on several topics [1],
such as image quality metrics [2]-[6], video quality
metrics [7], the construction of image quality databases with
specific purpose [8], [9], and new subjective test methods for
evaluating image quality [10] and video quality [11]. Among
the topics mentioned above, the later two belong to the area
of subjective visual quality assessment [12], [13], which plays
an irreplaceable role to the development of perceptual qual-
ity assessment. Most of these subjective evaluation methods
for visual quality assessment have been included into the
international standard, such as ITU-R BT.500-13 [14], and
ITU-T P910 [15]. Some of these approaches (e.g., sin-
gle stimulus continuous quality evaluation (SSCQE) [14],

absolute category rating (ACR) [15], and pair comparison
(PC) [15]) do not use explicit references. However, the other
methods, such as double stimulus continuous quality scale
(DSCQS) [14], simultaneous double stimulus for continu-
ous evaluation (SDSCE) [15], and degradation category rat-
ing (DCR) [15] use explicit references. Broadly speaking,
the SSCQE and ACR belong to single-stimulus approaches.
The DSCQS, SDSCE, DCR, and PC are defined as the
double-stimulus approaches. Single stimulus is a type of
approach where observers rate the quality of only distorted
image, while in double stimulus methods, viewers evaluate
the quality or the change on quality between two compared
images (reference and distortion).

In general, each subjective test methodology has its
own advantages and disadvantages. For instance, the
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SSCQE approach is claimed to have more representative
estimates for quality monitoring applications [16]. The
DSCQS method is considered to have less sensitivity to con-
text effects [14] because the images are displayed in pairs
with random order. When human subjective opinions are
influenced by the order and severity of distortions within the
test, the context effects occur. For example, when a strongly
distorted image is presented after a series of weakly dis-
torted images, the subjects may rate the image with a lower
score than it actually has. Moreover, the SDSCE is a double-
stimulus test approach where the subjects view reference
and distorted images simultaneously. The two images can be
shown side by side on two aligned monitors or on the same
monitor depending on the size of the image.

Besides continuous rating scale adopted by SSCQE,
DSCQS and SDSCE, ACR and DCR choose the discrete
scale, which simplifies the scoring process since the discrete
rating scale has much fewer levels than the continuous scale.
First, the ACR is fast and can be implemented easily. More
importantly, the stimuli presentation of the ACR is similar to
that of the common use of the systems. The DCR method
can be used when testing the fidelity with respect to the
source signal. Moreover, the DCR can also be applied for high
quality system evaluation in the context of multimedia com-
munications [15]. The PC approach provides the high dis-
criminating capability, which is particularly useful when test
images have similar image quality. However, in order to com-
plete the collection of enough valid results from observers,
large numbers of comparisons are necessary. This will dis-
courage its use.

As we know, several specific purpose images have been
studied, such as high dynamic range (HDR) images [8],
and screen content images [9]. In this work, we would like
to investigate whether there exists a difference between the
quality scores obtained from subjective test methods with-
out reference and with explicit reference for pattern images.
Pattern images belong to a special type of images which
have repeated objects or periodic shapes (e.g., concentric
circles and squares). Because of this characteristic of self-
similarity, it is difficult to distinguish the differences between
two similar pattern images. Also, the degradation or distortion
happened on repeated objects or periodic shapes in the pattern
images may enhance or lessen the personal bad perceptual
feeling on image quality. Moreover, pattern images are also
widely found in natural scenes and our daily life, such as
clouds, trees, building architecture, and clothing. In addition,
pattern images were also rarely explored by the researchers.
Therefore, we would like to study on pattern images since
they are also important to humans.

First, in order to accomplish this task, we collect 30 source
images, including 15 pattern and another 15 non-pattern
images. Then we generate several types of distorted images
with 4 distortion levels based on these 30 reference images.
Secondly, we evaluate these images via both ACR with hid-
den reference (ACR-HR) and SDSCE with discrete category
scale (SDSCE-DCS). The results of the subjective evaluation
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are examined by the steps described in [14], and the scores
obtained from outlier viewers are excluded from the calcula-
tion of mean opinion score (MOS). We compare the scores
from ACR-HR (without explicit reference) and SDSCE-DCS
(with explicit reference) methods. In addition, we also discuss
how the visual saliency information affects the estimation
of visual quality on pattern and non-pattern images for the
existing popular objective image quality metrics.

The rest of the paper is organized as follows. First,
in Section II, we introduce the source images, and then the
two subjective methods (i.e., ACR-HR and SDSCE-DCS)
we adopted to evaluate the images. The subjective test proce-
dure is also elaborated in Section II. Afterwards, a thorough
comparison between scores obtained from both approaches
is conducted and we analyze the differences via statisti-
cal tests in Section III. In Section IV, we investigate the
impact on the performance of predicting visual quality scores
for pattern and non-pattern images by incorporating visual
saliency information into image quality metrics. Several
visual saliency detection methods are included into the exist-
ing image quality metrics for comparison. Finally, the con-
clusion is drawn in Section V.

Il. SUBJECTIVE TESTS

A. PATTERN AND NON-PATTERN IMAGES

In order to investigate if the self-similarity (e.g., repeated
objects or periodic shapes) in the image will affect the
visual perception of humans toward image quality, we choose
the 14 natural images from [17] and one artificial image
from [18] as the reference images for this special type of
images (called pattern images). In addition, to have another
type of images for comparison, we select 15 images from
the Kodak database [19] as the reference images for this sec-
ond group of images (called non-pattern images). We also
can use the following method and steps to classify images
into pattern and non-pattern images, respectively. In the first
step, we determine whether there exist repeated objects (RO)
or periodic shapes (PS) in the image. In the second step,
we check if the number of RO or PS is more than 3. The
image will be classified as pattern image if both steps are sat-
isfied. Otherwise, the image will be classified as non-pattern
image. The flowchart of image classification is demonstrated
in Fig. 1.

Next, we generate four commonly seen types of distor-
tion, including Gaussian blur, additive Gaussian white noise,
JPEG compression, and contrast change. Thus, the collec-
tion of all pattern and non-pattern images constitute the
Pattern and Non-Pattern (PNP) image quality database [20],
which includes 30 reference images, 4 distortion types for
each reference image, and 4 different levels for each distor-
tion type. In another word, the complete database contains
480 distortion images with size 512 x 384 stored in bitmap
(BMP) format. For easy reference, we show 15 reference
pattern images (scenes) in Fig. 2 and 15 reference non-
pattern images in Fig. 3, respectively. To be able to generate
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FIGURE 1. Pattern image classification steps.

P#1 P #2 P#3 P#4 P #5
P #6 P #7 P #8 P #9 P #10
P #11 P #12 P #13 P #14 P #15

FIGURE 2. Reference images for pattern (P #1 - P #15) images in PNP
image quality database.

NP #1 NP #2 NP #3 NP #4 NP #5
NP #6 NP #7 NP #8 NP #9 NP #10
NP #11 NP #12 NP #13 NP #14 NP #15

FIGURE 3. Reference images for non-pattern (NP #1 - NP #15) images in
PNP image quality database.

four different visually perceivable levels of distortion for each
type of image distortion, we use the following methods and
parameters:

61434

FIGURE 4. The graphical user interface designed for test without
reference.

o Gaussian blur:
Apply a rotationally symmetric Gaussian lowpass filter
of 4 different sizes (3 x 3,6 x 6,9 x 9, and 12 x 12)
with standard deviation 5 to the original image.

« Additive Gaussian white noise:
Add Gaussian white noise to the image with zero mean
and 4 different variances 0.01, 0.05, 0.1, and 0.5.

« JPEG compression:
Use Matlab imwrite function to generate 4 different
lossy compressed images with quality parameters 20, 40,
60, and 80.

« Contrast change:
Use Matlab imadjust function to map 4 different contrast
limits ([0.1, 0.9], [0.2, 0.8], [0.3, 0.7], and [0.4, 0.6]) of
the original image to the same contrast limit ([0, 1]) of
the generated image.

B. SUBJECTIVE TEST WITHOUT REFERENCE

To realize a subjective viewing test without reference for
PNP image quality database, the ACR-HR method is chosen
since it is easier to implement and able to accommodate
more assessments in a single session [21]. Here, the five-level
rating scale, labeled as “Bad”, “Poor”, “Fair”’, “Good”,
and “Excellent”, is employed in the test. They correspond to
numerical score 1 to 5, where the score “5” corresponds to
the excellent visual quality, and the score ““1”” represents the
bad visual quality. In the test, the subjects are presented one
test image each time, and then asked to give a score (1 to 5)
to each viewed image independently. The test procedure must
include a reference version of each test image. During the
data analysis, a differential quality score will be computed
between each test image and its corresponding (hidden) ref-
erence. This is known as “hidden reference”. The graphical
user interface for the subjective evaluation without reference
is shown in Fig. 4.

C. SUBJECTIVE TEST WITH REFERENCE

The subjective tests for this part are realized by SDSCE-DCS
method. First, as shown in Fig. 5, a test image and
the corresponding reference image are simultaneously dis-
played on the screen. The left image is the source image
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FIGURE 5. The graphical user interface designed for test with reference.

for reference, and the right image is the test image to be
evaluated. Next, the test subject is asked to rate the test
image based on the reference (undistorted) image with five-
level discrete rating scale, which is the same as the one we
used in the subjective test without reference. A higher level
(e.g., 9 or 11) rating scale can also be used [22]. However,
to make the process of scoring simpler for the subjects,
the 5-level scale is chosen.

D. TEST EVALUATION PROCEDURE

First, the 480 distorted images are divided into 2 groups
(i.e., pattern and non-pattern images), respectively. For each
group of images, we conduct the visual quality tests by both
ACR-HR and SDSCE-DCS. Therefore, there are 4 test ses-
sions to be conducted in the experiment. This means each
subject only has to view 255 (240 distorted images plus
15 reference images) images in one session. The average time
cost for each subject in one session is approximately 15 min-
utes, which will not cause visual fatigue to the viewers [14]
and affect the viewing outcomes. Furthermore, we set the
color of background to be gray (i.e., pixel value 128) [15]
to lessen the visual contrast effect [23].

We also keep the viewing conditions [14], [24] (e.g., peak
luminance of the screen, and background room illumination)
the same for each viewer. The images are displayed at a
Dell 21 full-color LCD monitor with 1366 x 768 resolution.
And the viewing distance between the center of the screen
and the observer is six times the image height (i.e., 6H, where
H is the image height).

A training (or demo) session is designed to place before the
test session to instruct the viewers how to give a consistent
opinion score to the visual quality of each image. All the
images in the test session has to be different from those in the
training session. Participating viewers (including 17 males
and 8 females) in the test are the university students, including
undergraduate and graduate students. 21 of the viewers have
age ranging from 20 and 29 years old, and the other 4 viewers
have age between 30 and 39 years old. In addition, the number
of experts and non-experts in the test are 15 and 10, respec-
tively. In the end, 25 sets of scores are recorded for each test
image.
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E. MEAN SCORE COMPUTATION

After obtaining the scores via both ACR-HR and
SDSCE-DCS approaches, we follow the procedure outlined
in [14] to obtain the MOS and standard deviation for each test
image.

Let S;jx denotes the subjective score given by the observer i
to the image j in session k = {l1,2, 3,4}. We convert the
original raw score Sjj to differential viewer score (DVS) Djj,
which is specified in [15]. Then the DVSs are calculated
on per subject and per test image basis. The corresponding
hidden-reference (HR) is used to calculate D;j by the formula
below

Diji. = Sijk — SijHRK + 5, (H

where Sjjgryk is the viewer’s opinion score for the cor-
responding hidden-reference (HR). Next, Djj values will
be modified by the following 2-point crushing function to
become crushed DVS (CDVS) values Cj

7+ Dy
% when Dijx > 5
Cijk =412+ Dijx 2)
Diji. otherwise.

Then the mean score (_ij and standard deviation oj; for test
image j in the k-th session are

N

~ 1

Cik =+ 21: Ciji 3
=

1

7 2 (Cir = Cr)”, @)

oj =

-

i=1

where N is the number of observers.
To screen out the abnormal observers, the observers screen-
ing steps have to be performed as suggested in [14].

1) Determine whether the subjective scores are nor-
mally distributed or not by calculating the kurtosis
coefficient Bji

M4 here my, = 2t (Ci=G)" 5 4

(m2)? N
The scores are considered to be in normal distribution
if Bjx lies between 2 and 4. Otherwise they are not
normally distributed.

2) For each observer i, find Ljx and My, by:

If2 < ,Bjk < 4, then

if Cjx > Cix + 207k, then Ly = Ly + 1;

if Cj < Cix — 207k, then My = My + 1;
else

if Cijx = Cjx + /200, then Ly = Lix + 1;

if Cjx < Cjx — +/2007, then My = My + 1;
end

3) If L“;,r% > 0.05 and ‘Z’;;%ﬁ’; ‘ < 0.3, then we reject
observer i, where Nj; is the number of test images seen
by the observer i in the k-th session.

Bik =
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TABLE 1. Number of participated and rejected observers in each session.

Test session 1 2 3 4
Image Type Pattern | Pattern | Non-pattern | Non-pattern
No. of participated observers 25 25 25 25
No. of rejected observers 2 1 0 0
Ny 23 24 25 25

Finally, the values of MOS and the standard deviation (SD)
for each test image can be computed by

Ny
1
MOSy = — ) Cu, (5)
J Nk ; 1
1 2
SDy = > (Cyj — MOSi)”. (6)

Ny — 14
i=1

where Ny is the number of remaining observers in the k-th
session after observer rejection. Then the MOS and SD values
are recorded for each test image. The number of participated
and rejected observers in each test session is shown in Table 1.
In sessions 1 and 2, the non-pattern images are viewed, while
the pattern images are observed in sessions 3 and 4. As we
can notice from Table 1, the numbers of rejected observers
are 0, 0, 2, and 1 for session 1 to 4, respectively. Thus,
more observers are decided as outliers when viewing pattern
images.

Ill. ANALYSIS AND DISCUSSION

In order to observe the differences between the scores
obtained by ACR-HR and SDSCE-DCS for both pattern
and non-pattern images, we apply the Hypothesis test
methods [10], [25] to determine the relationship between two
subjective testing methods. The hypothesis tests we used here
are paired t-test and Wilcoxon signed-rank test depending
on the distribution of subjective scores [26]. In other words,
the paired t-test is used when the scores are normally dis-
tributed, and the Wilcoxon signed-rank test is adopted oth-
erwise. For both hypothesis tests mentioned above, we reject
the null hypothesis if h = 1, where the null hypothesis is

Hy:{No significant difference between 2 MOS groups
obtained from ACR-HR and SDSCE-DCS}

with probability P < «, where « is the significance
level, which is generally chosen as 0.05. In another word,
there is a significant difference between two MOS groups
if h = 1, while the difference between two MOS groups is not
significant if h = 0. We also conduct the difference analysis
in terms of three aspects, specifically the image types, image
scenes (contents), and image distortion types.

A. IMAGE TYPES
First, we calculate the h value for both pattern and non-
pattern images. As indicated in Table 2, the hypothesis test-

ing suggests the significant difference exists between two
sets of MOSs obtained by ACR-HR and SDSCE-DCS for
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TABLE 2. The h value (0 or 1) of hypothesis test of MOSs between
ACR-HR and SDSCE-DCS for pattern and non-pattern images.

Image Type | Pattern | Non-pattern
h 1 1

TABLE 3. The sum of variances of MOSs between ACR-HR and SDSCE-DCS
for both types of images.

Image Type Pattern Non-pattern
Evaluation method ACR-HR [ SDSCE-DCS ACR-HR [ SDSCE-DCS
Sum of variances 168.81 [ 159.72 162.24 [ 161.94

TABLE 4. The h value (0 or 1) of hypothesis test of MOSs vs. image scenes
between ACR-HR and SDSCE-DCS for pattern and non-pattern images.

Image Content # | Pattern | Non-pattern
1 1 0
2 0 0
3 1 0
4 1 0
5 0 0
6 1 0
7 1 1
8 1 1
9 0 0

10 1 0
11 0 0
12 1 0
13 0 0
14 1 0
15 0 1

pattern images, and also non-pattern images. Hence, observ-
ing images with reference or without reference definitely
can guide us to give different quality ratings for the image
quality. We also can observe that the MOS distributions for
both ACR-HR and SDSCE-DCS methods are significantly
different in either pattern or non-pattern images from Fig. 6.
In addition, by observing Table 3, the sum of variances (SoV)
is larger for conducting subjective evaluation by ACR-HR
in both pattern and non-pattern images. The difference of
SoV between ACR-HR and SDSCE-DCS becomes signif-
icant when the evaluation is performed on pattern images.
Therefore, we should conduct subjective viewing tests by
SDSCE-DCS for both types of images, especially for pattern
images.

B. IMAGE SCENES (CONTENTS)

In Table 4, we can notice that the MOSs are signifi-
cantly different between the ones obtained by ACR-HR and
SDSCE-DCS for pattern image with contents #1, #3, #4,
#6, #7, #8, #10, #12, and #14. And we can observe these
nine pattern images all have repeated patterns and simple
colors. Similarly, the h value is also one for non-pattern
image with contents #7, #8, and #15, which are a couple,
mountain & river, and a house, respectively. It suggests that
the difference between the MOSs obtained by ACR-HR and
SDSCE-DCS is significant. Thus, the opinion scores of view-
ers will be very different depending on the existence of the
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(®)
FIGURE 6. Histograms of MOSs for PNP database. (a) Pattern images.

(b) Non-pattern images.

TABLE 5. The sum of variances of MOSs between ACR-HR and SDSCE-DCS
for different types of image contents.

Image Content # Pattern Non-pattern
ACR-HR | SDSCE-DCS | ACR-HR | SDSCE-DCS

1 10.56 9.14 10.70 9.44
2 10.68 12.67 9.12 9.18
3 9.83 9.73 8.69 11.86
4 11.53 7.78 9.59 8.79
5 7.76 8.70 11.68 14.14
6 12.42 9.12 10.90 9.99
7 13.94 11.05 15.73 9.40
8 11.35 9.64 14.83 13.12
9 13.73 12.54 12.52 9.95
10 11.51 14.95 10.27 9.07
11 10.20 14.41 8.48 9.43
12 10.32 8.16 10.39 12.48
13 10.87 9.84 8.88 11.11
14 15.26 12.80 9.49 13.47
15 8.86 9.20 10.97 10.51

reference, especially for image contents with dull colors.
Table 5 also suggests there is smaller SoV if we evaluate these
images (non-pattern images #7, #8, #15) by SDSCE-DCS.
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TABLE 6. The h value (0 or 1) of hypothesis test of MOSs vs. distortion
types between ACR-HR and SDSCE-DCS for pattern and non-pattern
images.

Distortion Type | Blur | Additive Noise | JPEG | Contrast Change
Pattern 1 1 1 1
Non-pattern 1 1 0 0

TABLE 7. The sum of variances of MOSs between ACR-HR and SDSCE-DCS
for different types of image distortions.

Distortion Type Pattern Non-pattern
ACR-HR | SDSCE-DCS | ACR-HR | SDSCE-DCS

Blur 41.09 39.54 47.34 47.66

Additive Noise 44.18 42.26 39.34 37.34

JPEG 41.43 40.59 38.33 39.25

Contrast Change | 42.11 37.34 37.22 37.69

Therefore, it will cause a significant difference for the sub-
jective scores the observers give to this type of scenes when
viewing with or without the existence of the reference image.
This is not unexpected since viewers indeed need a reference
image to differentiate the quality difference between the dis-
torted image and reference one when they view an image
with so many similar patterns and simple colors. Hence,
the variance of MOS will be larger when viewing this type
of images without a reference to compare (i.e., ACR-HR).
Table 5 shows the sum of variance is smaller for pattern
image with contents #1, #3, #4, #6, #7, #8, #9, #12, #13, and
#14 when evaluating by SDSCE-DCS, which also confirms
the above results. The only exception is pattern image #10,
which can be evaluated by ACR-HR because of smaller SoV.

C. IMAGE DISTORTION TYPES

From Table 6, the hypothesis test (h = 1) suggests that
there exists a significant difference between two MOS groups
obtained by ACR-HR and SDSCE-DCS for all distortion
types on pattern images, and for Blur and Additive noise
distortions on non-pattern images. Based on the observation
from Table 6, we can conclude that the difference of two
MOS sets is not significant for JPEG distortion and Contrast
Change on non-pattern images. In addition, from Table 7,
we note that for pattern images, the SoV is always smaller for
all distortion types when subjective evaluation is conducted
by SDSCE-DCS. However, the SoV is smaller for Blur dis-
torted non-pattern images by using ACR-HR and for non-
pattern images with Additive noise by using SDSCE-DCS.
Hence, we can conclude SDECE-DCS is a better candidate
for pattern images with all 4 types of distortions, while
ACR-HR is more appropriate for evaluating non-pattern
images with Blur, JPEG, and Contrast Change.

D. CORRELATION WITH IMAGE QUALITY METRICS (IQMS)
Based on the observations from above, we think SDSCE-DCS
is a more suitable approach for evaluating pattern images
instead of ACR-HR. The difference is little by using either
ACR-HR or SDSCE-DCS on non-pattern images. However,
the difference between both evaluation methods is large on
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() (e) ()

FIGURE 7. VS maps generated by using 5 different VS detection methods on pattern image. (a) Pattern image. (b)-(f) 5 different VS maps of (a).

(a) Pattern. (b) GBVS. (c) ITTI. (d) HSSR. (e) FSRD. (f) SDSP.

(a) (®) (©

(d) ) (H

FIGURE 8. VS maps generated by using 5 different VS detection methods on non-pattern image. (a) Non-pattern image. (b)-(f) 5 different VS maps of (a).

(a) Non-pattern. (b) GBVS. (c) ITTI. (d) HSSR. (e) FSRD. (f) SDSP.

FIGURE 9. The block diagrams of CW-VS-1QM (block A) and OW-VS-IQM (block B).

TABLE 8. Correlations of scores computed by IQMs and MOSs obtained
by SDSCE-DCS for pattern and non-pattern images.

QM Pattern Non-pattern

PCC SROCC | RMSE | PCC SROCC | RMSE
PSNR | 0.5750 | 0.5531 0.7477 | 0.3744 | 0.3935 0.8744
SSIM | 0.7338 | 0.7239 0.6208 | 0.7591 | 0.7225 0.6139
FSIM | 0.8128 | 0.8094 0.5324 | 0.7745 | 0.7753 0.5965

pattern images. In order to have a fair and the same stan-
dard comparison for both pattern and non-pattern images,
we adopt the MOS results from the SDSCE-DCS method.
We also perform the tests for pattern and non-pattern
images by using three full-reference image quality met-
rics (IQMs), including PSNR, SSIM [27], and FSIM [28].
The experimental results are summarized in Table 8.
As we can observe in Table 8, FSIM ranks the first on
the correlation coefficients [29], [30] (Pearson Correla-
tion Coefficient (PCC), Spearman Rank Order Correlation
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Coefficient (SROCC)) and has the smallest Root-Mean-
Squared Error (RMSE) [31] compared with other methods,
which means it has the best performance to estimate the
quality scores for both pattern and non-pattern images, while
PSNR performs the worst.

Furthermore, we notice that PSNR and FSIM are more
appropriate IQMs for predicting the quality scores of pattern
images instead of non-pattern images because of their better
correlation performance with MOS. However, SSIM does a
better job at quality score prediction for non-pattern images.

IV. VISUAL SALIENCY EFFECTS

A. VISUAL SALIENCY CONSIDERATION

In this section, we want to investigate whether visual
saliency [32], [33] plays an important role for predicting
visual quality of pattern images. As we know, the visual
saliency information has been incorporated into IQMs to
improve the prediction performance of visual quality for
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FIGURE 10. Otsu’s weighted VS maps obtained by applying N level Otsu’s algorithm on Fig. 7 (b)-(f). (a) GBVS, N =22 — 1. (b) ITT, N =22 — 1.
(c) HSSR, N =22 — 1. (d) FSRD, N =22 — 1. () SDSP, N = 22 — 1. (f) GBVS, N = 23 — 1. (g) ITTI, N = 23 — 1. (h) HSSR, N = 23 — 1. (i) FSRD,
N =23 _1.(j)SDSP, N =23 — 1. (k) GBVS, N =2% — 1 (I) ITTI, N = 2% — 1 (m) HSSR, N =2% — 1 (n) FSRD, N = 2% — 1 (0) SDSP, N =2% — 1.
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(0)

FIGURE 11. Otsu’s weighted VS maps obtained by applying N level Otsu’s algorithm on Fig. 8 (b)-(f). (a) GBVS, N =22 — 1. (b) ITT, N =22 — 1.
(c) HSSR, N =22 — 1. (d) FSRD, N =22 — 1. () SDSP, N = 22 — 1. (f) GBVS, N = 23 — 1. (g) ITTI, N = 23 — 1. (h) HSSR, N = 23 — 1. (i) FSRD,
N =23 _1.(j) SDSP, N =23 — 1. (k) GBVS, N =2% — 1 (I) ITTI, N = 2% — 1 (m) HSSR, N = 2% — 1 (n) FSRD, N = 2% — 1 (0) SDSP, N =2% — 1.

general (non-pattern) images [9]. In most of the cases,
the visual saliency (VS) map is used as a weighting function
at the stage of score pooling [34]. It also can be used as
a feature map to characterize the quality of local image
region [35]. Here, we adopt five best known and
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well-performed VS detection methods in this proposed sys-
tem, including the VS model proposed by Itti et al. [36]
for still images (ITTI), Graph-Based Visual Saliency
(GBVS) [37], Highlighting Sparse Salient Regions (HSSR)
proposed by Hou et al. [38], Frequency-tuned Salient Region

61439



IEEE Access

T.-). Liu: Study of Visual Quality Assessment on Pattern Images

(@) (®) © (d (e ® (€9) ()

FIGURE 12. Otsu’s weighted VS masks obtained by changing the Thzy, values for Fig. 10 (h). (@) Thzw = 0. (b) Thzw = 1. (¢) Thzw = 2. (d) Thzw = 3.

(€) Thaw = 8. (f) Thzw = 5. (8) Thaw = 6. (h) Thay = 7.
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FIGURE 13. Otsu’s weighted VS masks obtained by changing the Thzy values for Fig. 11 (h). (a) Thzw = 0. (b) Thzw = 1. (¢) Thzw = 2. (d) Thzw = 3.

(e) Thzw =4. (f) Tth =5. (g) Thzw =6. (h) Thzw =17.

Detection (FSRD) [39], and Saliency Detection by combining
Simple Priors (SDSP) [40].

We apply the afore-mentioned VS detection methods to the
pattern image in Fig. 7 (a) and non-pattern image in Fig. 8 (a).
The resultant VS maps generated by five different VS detec-
tion algorithms are shown in Fig. 7 (b)-(f) and Fig. 8 (b)-(f).
It can be observed different VS detection approaches cover
different VS areas. In addition, the more salient the pixel is,
the brighter the pixel in the VS map. Hence, the VS map
mostly covers a smaller part of the original image. For
instance, as shown in Fig. 8 (d), the VS map only considers
the couple instead of both the ocean and the couple. This will
affect the accuracy of image quality estimation.

B. VS-GUIDED IQMS

The VS detection method is performed on the test images to
obtain the respective VS maps. Then, the obtained VS map X
is converted to a normalized VS map Y by

x — min(X)
y= — X
max(X) — min(X)

255, 7

where x and y represent any single pixel value in X and Y,
respectively. Next, we apply the N level Otsu’s algorithm [41]
on normalized VS map to obtain a new VS map with N + 1
gray levels, called Otsu’s weighted VS map. We denote the
pixel value in Otsu’s weighted VS map and Otsu’s weighted
VS mask as p and g, respectively. The g value is decided by
comparing the p value with the Th;,, value via the following
equation:

—Th > Th,,
_ P w P Z Lz (8)
0 p < Thy,,
where Th,, = 0,1,2,...,N is a threshold to assign zero

values to the Otsu’s weighted VS map. Finally, the Otsu’s
weighted VS mask ¢ times the quality map m obtained
by the IQM to form the Otsu’s Weighted VS-guided
IQM (OW-VS-IQM), whose quality score can be computed
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as below:

ern q(x)m(x)
errr q(x) '

where x represents the block or pixel in the entire image
domain . The detailed procedure is illustrated in the block B
of Fig. 9. Here, we also present a Conventional Weighted
VS-guided IQM (CW-VS-IQM) in block A of Fig. 9 for easy
comparison. The resultant quality score can be calculated
by

C))

Sow—vs—1om =

2 rex A0IM()
ZXET[ d(x) ’

where d(x) is the conventional weight obtained from the
VS map.

The N(N = 2> — 1,23 — 1,2* — 1) level Otsu’s algo-
rithm is applied to Fig. 7 (b)-(f) and Fig. 8 (b)-(f) to divide
the VS map into N + 1 discrete gray levels to form the
Otsu’s weighted VS maps, which are shown in Fig. 10 and
Fig. 11. As we can observe in both figures, larger N values
result in finer VS maps. In addition, we increase the Th;,
value from O to N to make the VS mask only keep the
most salient objects or regions in the image. Thus, N + 1
different VS masks are created in Fig. 12 and Fig. 13 for
Otsu’s weighted VS maps in Fig. 10 (h) and Fig. 11 (h),
respectively.

We use three well-known IQMs (PSNR, SSIM, and FSIM)
to compute the quality map for each test image. Then the
quality map times the VS map and Otsu’s weighted VS mask
respectively to realize the Conventional Weighted VS-guided
IQM (CW-VS-IQM) and Otsu’s Weighted VS-guided IQM
(OW-VS-IQM). To have a clear comparison, we plot
the SROCC performances of these three OW-VS-IQMs
versus threshold of zero weight (Th;,) on three different
levels (22,23, and 2%) of VS maps for pattern images
in Fig. 14(a)-(i), and non-pattern images in Fig. 14()-(r).
As we can see in Fig. 14, each VS detection approach cannot
work consistently well for all IQMs.

Scw-vs—iom = (10)
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FIGURE 14. (Continued.) SROCC performance of OW-VS-IQM for PNP database. (a)-(i) Pattern images. (j)-(r) Non-pattern images.

(]

@

TABLE 9. The SROCC gain for all IQMs using the best matched VS detection method on pattern images.

@

1QM Original the best matched VS | Conventional | Otsu’s N and Th,, of Otsu’s | SROCC SROCC SROCC
(A) detection method weighting weighting weighted VS map and | gain gain gain
B) © mask B)>-@A) | ©-Aa) | ©-®B
PSNR | 0.5531 HSSR 0.5937 0.6505 N =2% —1,Thy, = 12 | 0.0406 0.0974 0.0568
SSIM | 0.7239 HSSR 0.7576 0.7869 N=23—1,Th,, =4 0.0337 0.0630 0.0293
FSIM | 0.8094 SDSP 0.8193 0.8498 N =27 —1,Thyy =9 0.0099 0.0404 0.0305
TABLE 10. The SROCC gain for all IQMs using the best matched VS detection method on non-pattern images.
1QM Original the best matched VS | Conventional | Otsu’s N and Th_, of Otsu’s | SROCC SROCC SROCC
(A) detection method weighting weighting weighted VS map and | gain gain gain
®B) © mask B)-A) | ©-A) | ©-B)
PSNR | 0.3935 ITTI 0.4287 0.5692 N=2%—1,Th,y, =5 0.0352 0.1757 0.1405
SSIM | 0.7225 HSSR 0.7781 0.8207 N=23—1,Th,, =4 0.0556 0.0982 0.0426
FSIM | 0.7753 GBVS 0.7876 0.7889 N =22 1,Thyy =1 0.0123 0.0136 0.0013
TABLE 11. Performance of CW-VS-IQMs and OW-VS-IQMs for pattern and non-pattern images.
oM Pattern Non-pattern
PCC SROCC | RMSE | PCC SROCC | RMSE
CW-VS-PSNR | 0.6054 | 0.5937 0.7273 | 0.4090 | 0.4287 0.8605
CW-VS-SSIM | 0.7714 | 0.7576 0.5815 | 0.8191 | 0.7781 0.5409
CW-VS-FSIM | 0.8234 | 0.8193 0.5186 | 0.7828 | 0.7876 0.5867
OW-VS-PSNR | 0.6550 | 0.6505 0.6906 | 0.4956 | 0.5692 0.8190
OW-VS-SSIM | 0.8033 | 0.7869 0.5443 | 0.8512 | 0.8207 0.4949
OW-VS-FSIM | 0.8489 | 0.8498 0.4831 | 0.7843 | 0.7889 0.5850

C. COMPARISON BETWEEN PATTERN

AND NON-PATTERN IMAGES

We summarize the best matched VS detection algorithm,
N and Thy, values with respect to each IQM in Table 9
and Table 10 for pattern and non-pattern images, respec-
tively. The SROCC performance gain for each IQM with
respect to the used weighting method is also summarized
in Tables 9 and 10.

For pattern images, HSSR is the best match of VS detection
method for PSNR and SSIM, while SDSP is the most suitable
one for FSIM. The SROCC gains are 0.0568, 0.0293 for
PSNR and SSIM, which are not as significant as the improve-
ment on non-pattern images. However, the Otsu’s weighting
boosts the SROCC performance by 0.0305 over conven-
tional weighting for FSIM on pattern images. This improve-
ment appears more significant than the one for FSIM on
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non-pattern images. For non-pattern images, ITTI, HSSR,
and GBVS are the best matched VS detection methods
for PSNR, SSIM and FSIM. The SROCC value increases
by 0.1405 when Otsu’s weighting is used to replace the con-
ventional weighting for PSNR. But the SROCC performance
is almost the same (i.e., increase by 0.0013 in SROCC value)
for FSIM using either conventional or Otsu’s weighting.

As we can observe from Tables 9 and 10, the value of
threshold of zero weight (Th,,) is larger for pattern images
than non-pattern images. This is probably because the pattern
images have repeated objects or periodic shapes on them.
Therefore, the IQMs can just focus on the most salient
objects or regions rather than whole area to complete the
evaluation of image quality by setting most of the weights
to zeros (i.e., for non-salient areas) in the Otsu’s weighted
VS mask.

VOLUME 6, 2018



T.-J. Liu: Study of Visual Quality Assessment on Pattern Images

IEEE Access

In the end, we list the PCC, SROCC, and RMSE perfor-
mances for CW-VS-IQMs and OW-VS-IQMs in Table 11.
The experimental results show the OW-VS-FSIM per-
forms the best for pattern images, while the OW-VS-SSIM
ranks number one for non-pattern images. Additionally, the
CW-VS-PSNR has the worst performance among all com-
pared IQMs for pattern and non-pattern images. Moreover,
comparing Table 11 with Table 8, we find out the performance
of visual quality prediction for IQMs improves by combining
the VS map with the conventional weighting. And the results
can be boosted further by using Otsu’s weighted VS mask.

V. CONCLUSION

In this paper, we perform subjective evaluations on pattern
and non-pattern images in PNP image quality database by
both ACR-HR and SDSCE-DCS. The experimental results
show that the differences between two sets of MOSs obtained
from both evaluation methods are significant for image
types, image contents, and several specific distortion types.
For instance, the sum of variances is obviously smaller
for conducting subjective viewing tests on pattern images
with SDSCE-DCS rather than ACR-HR. Also, the ACR-HR
is more appropriate for evaluating non-pattern images with
Blur, JPEG, and Contrast Change than SDSCE-DCS. How-
ever, the SDSCE-DCS is a better candidate for perform-
ing viewing test on pattern images with all four types of
distortions. In other words, for most of the cases, non-
pattern images can be viewed with a simpler approach
(e.g., ACR-HR) to simplify the viewing process and save
time.

Furthermore, we test several IQMs on pattern and
non-pattern images, respectively. Five popular and well-
performed VS detection models are introduced to the exist-
ing IQMs to boost the performance of predicting image
quality. We discover that each IQM has its corresponding
best matched VS detection approach and threshold value of
zero weight. For example, HSSR is the perfect match for
SSIM on both pattern and non-pattern images. In addition,
We need a larger value to serve as the threshold of zero weight
in the Otsu’s weighted VS mask for pattern images. This
means the salient regions affect human’s perception of image
quality more than non-salient regions on pattern images. This
conclusion also justifies the VS information is more crucial
for evaluating the images with repeated objects or periodic
shapes (i.e., pattern images).

We also propose an Otsu’s weighted VS mask method to
boost the performance of IQMs. The experimental results
show that it indeed improve the correlation performance
between subjective scores and objective scores obtained from
1QMs further than the conventional VS map method.

REFERENCES

[1] W. Lin and C.-C. Jay Kuo, “Perceptual visual quality metrics: A survey,”
J. Visual Commun. Image Representation, vol. 22, no. 4, pp. 297-312,
2011.

[2] T.-J. Liu, W. Lin, and C.-C. J. Kuo, “A multi-metric fusion approach to
visual quality assessment,” in Proc. 3rd Int. Workshop Qual. Multimedia
Exper. (QoMEX), Sep. 2011, pp. 72-77.

VOLUME 6, 2018

[3]

[4]

[5

—

[6]

17

—

[8]

[91

[10]

(11]

[12]

(13]

(14]

[15]

[16]
(17]
(18]

[19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

(27]

M. Narwaria and W. Lin, “SVD-based quality metric for image and video
using machine learning,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 42, no. 2, pp. 347-364, Apr. 2012.

T.-J. Liu, W. Lin, and C.-C. J. Kuo, “Image quality assessment using
multi-method fusion,” IEEE Trans. Image Process., vol. 22, no. 5,
pp. 1793-1807, May 2013.

T. Liu, K. Liu, J. Lin, W. Lin, and C.-C. J. Kuo, “A paraboost method to
image quality assessment,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 1, pp. 107-121, Jan. 2017.

T.-J. Liu and K.-H. Liu, “No-reference image quality assessment by wide-
perceptual-domain scorer ensemble method,” IEEE Trans. Image Process.,
vol. 27, no. 3, pp. 1138-1151, Mar. 2018.

S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective
video quality assessment methods: A classification, review, and perfor-
mance comparison,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 165-182,
Jun. 2011.

M. Liu, G. Zhai, S. Tan, Z. Zhang, K. Gu, and X. Yang, “HDR2014—
A high dynamic range image quality database,” in Proc. IEEE Int. Conf.
Multimedia Expo Workshops (ICMEW), Jul. 2014, pp. 1-6.

K. Gu et al., “Saliency-guided quality assessment of screen content
images,” IEEE Trans. Multimedia, vol. 18, no. 6, pp. 1098-1110,
Jun. 2016.

T.-J. Liu, K.-H. Liu, H.-H. Liu, and S.-C. Pei, “Comparison of subjective
viewing test methods for image quality assessment,” in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2015, pp. 3155-3159.

J. Y. Lin, R. Song, T. Liu, H. Wang, and C.-C. J. Kuo, “MCL-V: A
streaming video quality assessment database,” J. Vis. Commun. Image
Represent., vol. 30, pp. 1-9, Jul. 2015.

T.-J. Liu, W. Lin, and C.-C. J. Kuo, “Recent developments and future
trends in visual quality assessment,” in Proc. Asia-Pacific Signal Inf. Pro-
cess. Assoc. Annu. Submit Conf. (APSIPA ASC), Xi’an, China, Oct. 2011,
pp. 1-10.

T.-J. Liu, Y.-C. Lin, W. Lin, and C.-C. J. Kuo, ““Visual quality assessment:
Recent developments, coding applications and future trends,” APSIPA
Trans. Signal Inf. Process., vol. 2, p. e4, Jul. 2013. [Online]. Available:
http://journals.cambridge.org/article_S204877031300005X

International Telecommunication Union, Recommendation ITU-R
BT.500-13, Jan. 2012, “Methodology for the subjective assessment of the
quality of television pictures.”

International Telecommunication Union, Recommendation ITU-T P.910,
Apr. 2008, “Subjective video quality assessment methods for multimedia
applications.”

M. H. Pinson and S. Wolf, “Comparing subjective video quality testing
methodologies,” Proc. SPIE, vol. 5150, pp. 573-582, Jun. 2003.

50 Dazzling Images of Patterns. [Online]. Available: http://photography.
tutsplus.com/articles/50-dazzling-images-of-patterns—photo-8567
Tampere Image Database 2013. [Online]. Available: http://www.
ponomarenko.info/tid2013.htm

Kodak Database. [Online]. Available: http://rOk.us/graphics/kodak/

PNP Image Quality Database. [Online]. Available: https:/sites.google.
com/site/tjliu412/home/downloads/pnp_iq_database

D. M. Rouse, R. Pépion, P. Le Callet, and S. S. Hemami, “Tradeoffs in
subjective testing methods for image and video quality assessment,” Proc.
SPIE, vol. 7527, p. 75270F, Jan. 2010.

Q. Huynh-Thu, M.-N. Garcia, F. Speranza, P. Corriveau, and A. Raake,
“Study of rating scales for subjective quality assessment of high-definition
video,” IEEE Trans. Broadcast., vol. 57, no. 1, pp. 1-14, Mar. 2011.

L. Ma, W. Lin, C. Deng, and K. N. Ngan, “Image retargeting quality
assessment: A study of subjective scores and objective metrics,” IEEE
J. Sel. Topics Signal Process., vol. 6, no. 6, pp. 626639, Oct. 2012.
International Telecommunication Union, Recommendation ITU-R
BT.2022, Aug. 2012, “General viewing conditions for subjective
assessment of quality of SDTV and HDTV television pictures on flat
panel displays.”

K.-H. Liu, T.-J. Liu, H.-H. Liu, and S.-C. Pei, “Facial makeup detection
via selected gradient orientation of entropy information,” in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2015, pp. 4067-4071.

S. A. Glantz, Primer of Biostatistics, 6th ed. New York, NY, USA:
McGraw-Hill, 2005.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

61443



IEEE Access

T.-). Liu: Study of Visual Quality Assessment on Pattern Images

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity
index for image quality assessment,” IEEE Trans. Image Process., vol. 20,
no. 8, pp. 2378-2386, Aug. 2011.

Video Quality Experts Group, “Final report from the video qual-
ity experts group on the validation of objective models of video
quality assessment, phase I, Video Quality Experts Group, Ottawa,
ON, Canada, Tech. Rep., Mar. 2000. [Online]. Available: http://www.
its.bldrdoc.gov/vqeg/projects/frtv_phasel

T.-J. Liu, K.-H. Liu, and H.-H. Liu, “Correlation coefficients: Reliable
performance indices for visual quality assessment?”” Int. J. Sci. Prog. Res.,
vol. 30, no. 1, pp. 1-5, 2016.

Video Quality Experts Group, “Final report from the video quality
experts group on the validation of objective models of video qual-
ity assessment, phase II,” Video Quality Experts Group, Hillsboro,
OR, USA, Tech. Rep., Aug. 2003. [Online]. Available: http://www.its.
bldrdoc.gov/vgeg/projects/frtv_phasell

Y. Fang, W. Lin, B.-S. Lee, C.-T. Lau, Z. Chen, and C.-W. Lin, “Bottom-
up saliency detection model based on human visual sensitivity and ampli-
tude spectrum,” IEEE Trans. Multimedia, vol. 14, no. 1, pp. 187-198,
Feb. 2012.

N. Imamoglu, W. Lin, and Y. Fang, “A saliency detection model using
low-level features based on wavelet transform,” IEEE Trans. Multimedia,
vol. 15, no. 1, pp. 96105, Jan. 2013.

J. Y. Lin, T.-J. Liu, W. Lin, and C.-C. J. Kuo, “Visual-saliency-enhanced
image quality assessment indices,” in Proc. Asia—Pacific Signal Inf. Pro-
cess. Assoc. Annu. Summit Conf. (APSIPA), Oct./Nov. 2013, pp. 1-4.

L. Zhang, Y. Shen, and H. Li, “VSI: A visual saliency-induced index
for perceptual image quality assessment,” IEEE Trans. Image Process.,
vol. 23, no. 10, pp. 4270—4281, Aug. 2014.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention
for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 11, pp. 1254-1259, Nov. 1998.

61444

(37]

(38]

(39]

(40]

(41]

J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Proc.
NIPS, vol. 1, no. 2, 2006, pp. 545-552.

X. Hou, J. Harel, and C. Koch, “Image signature: Highlighting sparse
salient regions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1,
pp. 194-201, Jan. 2012.

R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “‘Frequency-tuned
salient region detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2009, pp. 1597-1604.

L. Zhang, Z. Gu, and H. Li, “SDSP: A novel saliency detection method by
combining simple priors,” in Proc. 20th IEEE Int. Conf. Image Process.
(ICIP), Sep. 2013, pp. 171-175.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.

TSUNG-JUNG LIU (S’10-M’14) received the
B.S. degree in electrical engineering from National
Tsing Hua University, Hsinchu, Taiwan, in 1998,
the M.S. degree in communication engineer-
ing from National Taiwan University, Taipei,
Taiwan, in 2001, and the Ph.D. degree in electri-
cal engineering from the University of Southern
California, Los Angeles, CA, USA, in 2014.

He is currently an Assistant Professor with the
Department of Electrical Engineering and Grad-

uate Institute of Communication Engineering, National Chung Hsing Uni-
versity, Taichung, Taiwan. His research interests include computer vision,
perceptual image/video processing, visual quality assessment, and big data
analytics.

VOLUME 6, 2018



	INTRODUCTION
	SUBJECTIVE TESTS
	PATTERN AND NON-PATTERN IMAGES
	SUBJECTIVE TEST WITHOUT REFERENCE
	SUBJECTIVE TEST WITH REFERENCE
	TEST EVALUATION PROCEDURE
	MEAN SCORE COMPUTATION

	ANALYSIS AND DISCUSSION
	IMAGE TYPES
	IMAGE SCENES (CONTENTS)
	IMAGE DISTORTION TYPES
	CORRELATION WITH IMAGE QUALITY METRICS (IQMS)

	VISUAL SALIENCY EFFECTS
	VISUAL SALIENCY CONSIDERATION
	VS-GUIDED IQMS
	COMPARISON BETWEEN PATTERN AND NON-PATTERN IMAGES

	CONCLUSION
	REFERENCES
	Biographies
	TSUNG-JUNG LIU


