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ABSTRACT Motor imagery (MI) is a multi-dimensional high-level cognitive ability that involves
coordinated contributions from multiple brain regions [i.e., supplemental motor area (SMA), premotor
cortex (M1), and posterior parietal cortex] and their couplings as well. However, the dynamic interactions
among these activated regions during MI are still unclear. Here, we applied the adaptive directed transfer
function (ADTF) to track time-varying connectivity patterns among activated regions during MI. We found
that the connectivity patterns are different in two MI tasks and dynamically changes over time, representing
special state-dependent and timing-dependent time-varying connectivity patterns. Our findings indicate
that left anterior insula (aIns), contralateral SMA, and contralateral M1, which served as important causal
targets, play crucial roles in reorganization of the network at different stages, implying that there exists a
hierarchical network reorganization during MI. In addition, we found that the lateralization of the left- and
right-hand MI occurred in the MI middle stages and was reflected by the effective connectivities modulated
by contralateral SMA.Moreover, a graph analysis was adopted to further characterize the temporal evolution
of these interactions among activated regions. We also found that network efficiencies are coordinated with
the connectivity pattern of networks during MI. Collectively, these findings based on the ADTF analysis
expand our understanding of the time-varying network organization in MI.

INDEX TERMS Motor imagery, time-varying network, adaptive directed transfer function, fMRI.

I. INTRODUCTION
Motor imagery (MI) is one important fundamental cognitive
ability of the mind. It is generally defined as a dynamic
mental rehearsal of a given motor act without any concomi-
tant physical movement [1]. Many studies have shown that
MI is beneficial to the improvement of motor skills, reha-
bilitation of motor function and control of brain-computer
interfaces [2]–[5], which have become inseparable parts of
people’s daily lives [6], [7]. The underlying neural mech-
anism of MI has been extensively studied from different
aspects using various neuroimaging techniques, such as elec-
troencephalogram (EEG) [8], [9] and magnetic resonance
imaging (MRI) [10], [11]. The studies have consistently

demonstrated that multiple brain regions are activated during
MI including the supplementary motor area (SMA), primary
motor area (M1), inferior parietal lobule (IPL), putamen,
insula, cerebellum and other areas [12]. However, the interac-
tions, especially the dynamic connectivity, among these brain
areas are still unclear.

Recently, there has been growing evidence suggesting that
the interactions among task-related brain regions are useful
for better understanding cognitive processes of the human
brain [13]–[15].Meanwhile, based on those constructed brain
networks, multiple network measurements can be obtained
and further used in multiple aspects, such as BCI and the
diagnose of clinical diseases [16]–[18]. The interactions in
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the network are mainly studied with functional or effective
connectivity. Functional connectivity is generally defined
as the temporal correlations between spatially remote brain
regions without the direction of the flow of information [19].
For example, in our previous study [10], by using the resting-
state functional connectivity analysis in the fronto-parietal
attention network (FPAN), we showed that an effective
FPAN network can facilitate MI performance. The effec-
tive connectivity is defined as the causal influence that
one brain area exerts over another with the direction of
the flow of information [20]. Gao et al. [21] applied the
conditional Granger causality method to measure the effec-
tive connectivity between activated regions during MI. They
found more circuits of effective connectivity among the task-
activated core regions during right-hand MI than during left-
hand MI. Kasess et al. (2008) used dynamic causal modeling
to estimate the effective connectivity between SMA and M1,
and the results revealed that the connection from SMA to
M1 strongly suppressed the activation of M1 during MI.
In addition, Solodkin et al. [22] utilized structural equation
modeling to study the effective connectivity network among
the specified regions of interest (ROIs) duringMI, where their
results also showed that the connection from SMA toM1 was
strong and negative during MI, implying a suppressive effect
of SMA on M1.

The aforementioned techniques for estimating the inter-
actions between areas or networks are dependent upon the
assumption that the connections remain constant over an
entire time course (i.e., 5 minutes or more) [10], [19], [23].
However, the nature of neural activity is highly dynamic
even within the resting state, showing evidence of time-
varying network connectivity patterns [24], [25]. Therefore,
the static connectivity pattern obtained by averaging over the
whole period of time is not efficient enough to capture the
information regarding network dynamic reconfiguration [26].
Recently, several new methods have been proposed for inves-
tigating dynamic connectivity for facilitating understand-
ing of cognitive processes of the human brain at different
time scales (i.e., seconds, minutes, years or decades) in the
fMRI time course [27]–[29]. For example, Allen et al. [30]
combined a sliding time window (size = 44 s) and inde-
pendent component analysis (ICA) to examine dynamic
functional connectivity at rest in healthy subjects, resulting
in seven states with different network connectivity pat-
terns. Using a similar procedure, they also found dynamic
connectivity changes in schizophrenic patients [31].
Deshpande et al. [32] applied directed transfer function
(DTF) analysis of multivariate Granger causality (GC) to ana-
lyze dynamic effective connectivity changes of the network
(three time windows) in motor fatigue, revealing dynamic
evolution of the motor network during the fatigue process.
In addition, Monti et al. [25] proposed a Smooth Incremental
Graphical Lasso Estimation (SINGLE) algorithm to estimate
the dynamic interactions of network at a higher temporal
granularity. Based on this new method, they found that
the right inferior frontal gyrus (IFG) and right IPL played

important roles in regulating the dynamic balance between
other brain regions in attention and execution tasks. From
another aspect, Liu and Duyn [33] proposed a single-volume
co-activation pattern analysis method to reveal multiple spa-
tial patterns at a single time point. In sum, these findings
consistently imply that the dynamic interactions of network
analysis provide a new method for better understanding the
nature of the human brain.

Although these dynamic connectivity analysis methods
enriched our knowledge of the functional organization of the
brain, one of the main issues associated with their practical
use is that the choice of the optimal window size or inter-
esting observations is actually difficult, which requires
experience or the complicated evaluation procedure [25].
Recently, several methods have shown higher efficiencies for
estimating time-varying connectivity, such as time-varying
GC (tv-GC), time-varying partial directed coherence
(tv-PDC), and adaptive directed transfer function (ADTF),
also named time-varying DTF (tv-DTF), all of which are
defined in the frequency domain and are based on the
use of a time-varying multivariate adaptive autoregressive
(tv-MVAAR) model built on original time series [34]–[36].
These time-varying methods can not only identify a time-
variant network pattern at each single time point without
the additional requirement of choosing the window size but
also capture the direction of the functional coupling (infor-
mation propagation). Therefore, they have been widely used
for time-varying network analysis for electrophysiological
signals including EEG and Ecog [37], [38]. For example,
Samdin et al. [39] applied tv-PDC and ADTF to the MI-EEG
data to investigate dynamic interactions among motor areas,
and they found that the event-related changes of information
flows around the beta-band in a unidirectional way between
the left and right hemisphere during MI. Wilke et al. [36]
also reported that the ADTF can reconstruct the time-varying
connectivity patterns consistent with the real epileptic-form
electrocorticogram (EcoG) data that come from an epilepsy
patient. Moreover, in the study of P300, Li et al. [40] used
ADTF to reveal that the various P300 stages (i.e., the decision
process and neuronal response stages) correspond to differ-
ent brain network structures. These findings demonstrated
that these time-varying methods seem to be a good tool
for investigating dynamic network patterns and directional
information flow at shorter time scale. However, these tech-
niques to date have primarily applied to high time resolution
EEG data, and very few studies have used such methods in
MRI data.

In the present study, we applied ADTF and graph anal-
ysis to explore the neural mechanism of MI based on MI
fMRI data. First, general linear model (GLM) analysis was
used to acquire the activated regions during left- and right-
hand MI, respectively. Subsequently, the ADTF was used to
estimate time-varying network connectivity based on these
task-activated ROIs during two MI tasks. Finally, the graph
analysis was used to quantitatively evaluate the time-varying
network properties, which will characterize the different
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FIGURE 1. An analytical process of time-varying network connectivity.

strategies used in the different MI states for information
processing.

II. MATERIALS AND METHODS
A. SUBJECTS
Twenty-six healthy university students were recruited
(9 females and 17 males, aged 22.85 ± 2.48 years, range
19-26 years, 24 right hand-dominant) to complete the
MRI scanning. All participants did not habitually consume
drugs and alcohol, and had no cognitive impairments or neu-
rological disorders. Two left-handed subjects and four sub-
jects with large headmotionwere excluded. The experimental
protocol was approved by the Institutional Research Ethics
Board of the University of Electronic Science and Technol-
ogy of China (UESTC). All participants were asked to read
and sign an informed consent form before participating in the
study.

B. EXPERIMENTAL DESIGN AND PROCEDURES
The fMRI experiment consisted of four runs: one left-hand
MI task, one left-hand motor execution (ME) task, one right-
handMI task, and one right-handME task. Each run included
20 blocks, and each block lasted 40 s including 2 s cue, 20 s
task and 18 s rest. Each block, begins with a 2 s yellow
fixation cross in the center of the screen to indicate subjects to
prepare for the following task. Then, the color of the yellow
fixation cross turned white and a gray left or right arrow also
appeared on the screen, and subjects were asked to perform
motor imagery (executive) during the 20 s period. During
MI, all participants were conducted to performance sustained
kinesthetic imagery. When the arrow disappeared, subjects
were allowed to have 18 s rest while being asked to still focus
their attention on the gray fixation cross. In this study, we only
considered the left- and right-hand MI tasks.

C. MRI DATA ACQUISITION
Functional imaging was performed at the medical center
of UESTC using a GE 3T scanner with an eight channel-
phased array head coil. Functional images were collected

using a single-shot echo-planar imaging (EPI) sequence
(TR = 2000 ms, TE = 30 ms, flip angle = 90ř, matrix
size = 64 × 64, field of view (FOV) = 24 × 24 cm2, slice
thickness/gap = 4 mm/0.4 mm, and 32 slices oriented in
an AC-PC line).

D. ANALYSIS PROCEDURE
A block diagram of the data analysis procedure is shown
in Fig. 1 First, the MI task-related fMRI data were prepro-
cessed. Second, the GLM analysis was applied to obtain indi-
vidual and group task-related t-contrast images. Third, group
analysis results were used to extract the regions of interest
(ROIs). Fourth, the ADTF method was used to construct the
time-varying network for two MI tasks. Finally, graph anal-
ysis and time-varying network analysis were conducted to
investigate the dynamic patterns of network connectivity for
MIs. Detailed information regarding these steps is described
in the following sections.

E. FMRI DATA PREPROCESSING
The preprocessing analysis was performed using the statisti-
cal parametric mapping software (SPM8; http://www.fil.ion.
ucl.ac.uk/spm). All functional runs were preprocessed fol-
lowing a standard pipeline of slice scan-time and 3D motion
correction, normalization to the Montreal Neurological Insti-
tute (MNI) space with the EPI template, and smoothed with
a 6 mm FWHM Gaussian kernel.

F. MI TASK-INDUCED ACTIVATION ANALYSIS
In the current study, activation analysis was performed, aim-
ing to validate these MI tasks and to extract a set of task-
related ROIs to be used for subsequent time-varying network
analysis. For each subject, task-related fMRI data were first
entered in a first level linear model in SPM8. The MI task
onsets and six headmotion parameters constituting the design
matrix are modeled as regressors convoluted by a canoni-
cal HRF. In addition, the data were further processed by tem-
porally filtering with a high-pass filter (cut-off of 128 s) and
no global scaling. Then, t-statistic was performed to calculate
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TABLE 1. MNI coordinates and t-values of significantly activated regions for both the right- and left-hand MI tasks.

the individual task-related t-contrast images (MI > 0). After
that, a one-sample t-test was performed to examine the group
level effects for MIs based on the individual t-contrast maps.
These statistical maps were corrected for multiple compar-
isons at the voxel level using a false discovery rate (FDR,
p < 0.05). Finally, the local peaks were assessed to define
ROIs for further time-varying network analyses.

G. REGIONS OF INTEREST
The aim of the current study was to explore the time-varying
network connectivity among the key activated areas involved
in our MI experimental tasks. Considering that the defini-
tions (i.e., prior brain atlas, task scanning or independent
component analysis) of ROIs can have a large influence
on the patterns of network connectivity and the properties
of network topology [41], task-based definition operated as
an important method was selected in this study [42], [43].
According to the local peaks in the MI-task > 0 t-contrast
of the group analysis, a total of 11 ROIs were defined
for the left- and right-hand MI, respectively. For different
MI-task conditions in particular, we selected the contralat-
eral M1 and ipsilateral cerebellum (Cere) corresponding to
the MI-related performing hand. The MNI coordinates and
their corresponding nomenclatures and T-values for these
11 ROIs are listed in Table 1. All ROIs were defined as
spheres with 6 mm radius. The averaged time course of
each ROI was then extracted for two MI conditions for each
subject. These time courses were used for further analyses

H. CONSTRUCTION OF MI-RELATED TIME-VARYING
FUNCTIONAL BRAIN NETWORK
A brain functional network contains two basic elements:
a set of nodes and edges. Nodes can be denoted with

activated ROIs, and edges can be defined by the coupling rela-
tionships between pairs of nodes. Based on the extracted time
course of the ROIs, we constructed a time-varying dynamic
network for left- and right-hand MI for each the concerned
time point, respectively. The construction of the time-varying
network was composed of four main steps: (1) MI-task fMRI
data segmentation, (2) tv-MVAAR model coefficient estima-
tion, (3) ADTF values calculation, and (4) dynamic network
pattern estimation. Detailed descriptions of these steps are
shown in the following sub-sections.

1) DATA SEGMENTATION
To identify the transient architecture of the network during
MI, we mainly focused on a complete MI process. Since
the MI experiment is a block design, the same task was
repeated in each block. In our study, the MI-task was scanned
for 400 time points, including 20 blocks. The MI-related
fMRI time series were segmented in the interval [1]–[20]
TR (2-40s) according to the onset of the MI task. Finally,
these block-by-block time courses were then used to con-
struct a dynamic network using ADTF.

2) IDENTIFICATION OF THE TV-MVAAR MODEL
BY KALMAN FILTER
In order to calculate the ADTF values, the tv-MVAAR
model [44]–[46] is first formed based on the time courses of
the extracted ROIs. Let a single block time course X (t) =
(x1, x2, . . . , x20) be the data vector with 20 time points. Then
the tv-MVAAR model is obtained for left- and right-hand
MI task blocks by the equation

X (t) =
p∑
i=1

A(i, t)X (t − i)+ E(t) (1)
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where A(i, t) represents the coefficient matrix of the
tv-MVAAR model, which is estimated by the Kalman filter
algorithm [20], [47], E(t) is the multivariate independent
white noise process, and p is the corresponding model order,
which is automatically determined using the Akaike Informa-
tion Criterion (AIC) [48].

3) ADTF VALUE CALCULATION AND TIME-VARYING
NETWORK PATTERN ESTIMATION
By transforming equation (1) to the frequency domain,
we can obtain the ADTF function H (f , t). Based on
the coefficient matrix of the tv-MVAAR model, Ak,, the
ADTF is calculated [36] by

A(f , t)X (f , t) = E(f , t) (2)

X (f , t) = A−1(f , t)E(f , t) = H (f , t)E(f , t) (3)

where A(f , t) =
p∑

k=0
Ak (t)e−j2π f1tk , and X(f, t) and E(f, t)

are the corresponding transformations of X (t) and E(t) in the
frequency domain.

The function H(f, t) contains all the information of the
spectral properties and the interactions between ROIs and the
elementHij inH(f, t) represents the directed information flow
from ROI j-th toi-th at time point t . Then, the normalized
ADTF is defined between [0, 1] as,

γ 2
ij (f , t) =

∣∣Hij(f , t)∣∣2
n∑

m=1
|Him(f , t)|2

(4)

To evaluate the total information flow from a single ROI,
the integrated ADTF is calculated [36] by averaging
the ADTF values over the all interested frequency band
(0.01-0.1Hz) that is considered to be meaningful in the
BOLD signal,

22
ij(t) =

f2∑
k=f1

γ 2
ij (k, t)

f2 − f1
(5)

Based on the frequency band of interest, the time-varying
network was constructed for each block. Finally, the block-
by-block connectivity patterns were estimated by averaging
over all the blocks for each time point for each subject.
To reveal the common time-varying network patterns for all
the subjects, the time-varying networks were further averaged
across all subjects at each concerned time point.

I. SIMULATED SIGNALS
In the present study, to evaluate the availability of ADTF to
capture the time-varying connectivity patterns, we initially
applied ADTF to the simulated data. We predefined three
directed network models (see Fig. 3b) with four nodes to
simulate the different patterns in the different time peri-
ods. The three network patterns are specifically described as
follows:

For the first phase, t from 1 to 10s.

X(1, t) = ε(1, t)− 0.25X(1, t− 1)+ 0.30X(2, t− 2)

X(2, t) = ε(2, t)+ 0.20X(2, t− 1)

X(3, t) = ε(3, t)+ 0.25X(3, t− 1)+ 0.30X(2, t− 2)

X(4, t) = ε(4, t)− 0.25X(4, t− 1)+ 0.30X(2, t− 2) (6)

For the second phase, t from 11 to 20s.

X(1, t− 100) = ε(1, t− 100)− 0.10X(1, t− 101)

+ 0.90X(2, t− 102)

X(2, t− 100) = ε(2, t− 100)+ 0.20X(2, t− 101)

X(3, t− 100) = ε(3, t− 100)− 0.10X(3, t− 101)

+ 0.90X(4, t− 102)

X(4, t− 100) = ε(4, t− 100)− 0.10X(4, t− 101)

+ 0.90X(2, t− 102) (7)

For the third phase, t from 21 to 30s.

X(1, t− 200) = ε(1, t− 200)− 0.10X(1, t− 201)

+1.40X(4, t− 202)

X(2, t− 200) = ε(2, t− 200)− 0.10X(2, t− 201)

+1.40X(4, t− 202)

X(3, t− 200) = ε(3, t− 200)− 0.10X(3, t− 201)

+1.40X(4, t− 202)

X(4, t− 200) = ε(4, t− 200)+ 0.20X(4, t− 201) (8)

where X denotes the time series on the four network nodes,
which conforms to normal distribution. Using this model,
the corresponding four simulated signals for these nodes
were generated, which contained 100 trials to simulate
actual repeated stimuli in fMRI experiment. After the tri-
als are generated, the Gaussian noise with different SNRs
(0, 5 and 10 dB) is added. We then evaluated the tvMVAAR
coefficients for each single-trial. Finally, based on the mean
tvMVAAR coefficients across all trials, we constructed the
time-varying networks using ADTF.

J. MI-RELATED TIME-VARYING BRAIN NETWORK
PROPERTIES
Depending on the state condition of the brain (i.e., task
or resting state), the network connectivity patterns
(i.e., strength or information flow) can affect the efficiency
of the network. Graph analysis provides an important method
to measure the efficiency of the network. In this study, four
common directed weighted network properties including
the clustering coefficient (C), global efficiency (Ge), local
efficiency (Le), and characteristic path length (L), were calcu-
lated for each time-varying network using the brain connec-
tivity toolbox (http://www.nitrc.org/projects/bct/) [49], [50].
Detailed definitions of these network measurements are
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shown as follows:

C =
1
n

∑
i∈N

×

1
2

∑
j,h∈N

(wij + wji)(wih + whi)(wjh + whj)

(
∑
j∈N

wij +
∑
j∈N

wji)(
∑
j∈N

wij +
∑
j∈N

wji − 1)− 2
∑
j∈N

wijwji

(9)

L =
1
n

∑
i∈N

∑
j∈N ,j6=i

d→ij

n− 1
(10)

Ge =
1
n

∑
i∈N

∑
j∈N ,j6=i

(
d→ij

)−1
n− 1

(11)

Le =
1
2n

∑
i∈N

×

∑
j,h∈N ,j6=i

(wij+wji)(wih+whi)(
[
d→jh (Ni)

]−1
+
[
d→hj (Ni)

]−1)
(
∑
j∈N

wij+
∑
j∈N

wji)(
∑
j∈N

wij+
∑
j∈N

wji−1)−2
∑
j∈N

wijwji

(12)

where wij is a weighted connection strength between
node i and j, d→ij is the shortest directed path length between
node i and j. N is the set of network nodes, n is the number of
nodes. For more details on these network properties, please
refer to previous literature [49], [50].

In addition, the in-degrees and out-degrees of the nodes
were also calculated for each task to evaluate the time-varying
causal interactions of each node [21].

III. RESULTS
A. BRAIN ACTIVATION DURING LEFT- AND
RIGHT-HAND MI
In order to identify specific ROIs for the subsequent time-
varying brain network analyses, we evaluated the brain activ-
ities that were elicited by differentMI tasks. Fig. 2 showed the
brain activation during left-hand MI (Fig. 2a) and right-hand
MI (Fig. 2b) obtained with the group analysis (t-statistic).
The contrast of left-hand MI (task > 0) generated a set
of clusters with local maximum peaks, including bilateral
SMA, PMA, Putamen, aIns, and left Cere, left IPL and right
M1 (see Table 1). Similarly, the contrast of right-hand MI
(task > 0) generated a set of clusters with local maximum
peaks, including the bilateral SMA, PMA, Putamen, aIns, and
right Cere, left IPL and left M1 (see Table 1).

B. EVALUATION OF THE ADTF MODEL WITH
SIMULATED DATA
To evaluate the availability of ADTF to capture the time-
varying network patterns, artificial data was used. Fig. 3a
showed the simulated time series in the three phases for each
node. Fig. 3b showed the three predefined network connec-
tivity patterns. By using ADTF, we can estimate the dynamic

FIGURE 2. The activated areas during left-hand MI and right-hand MI by
group analysis. (a) The activated areas during left-hand MI (p < 0.05, FDR,
t-value > 3.3). (b) The activated areas during right-hand MI (p < 0.05,
FDR, t-value > 3.5).

network processes at the concerned time point (i.e., every
2 seconds). Fig. 3c showed the estimated tvMVAR coef-
ficients for our predefined network patterns under three
different noise conditions, where we found that ADTF can
effectively track fluctuation trends of coefficients that are
determinative for the time-varying network construction.
Based on the estimated time-varying coefficients, the corre-
sponding time-varying networks could be constructed, and
the networks at every 2 seconds (i.e., TR = 2 seconds)
for each stage are given in Fig. 3d. The results suggested
that the ADTF is available to capture the dynamic network
pattern at a relatively shorter time scale, which is important
to probe the underlyingmechanism of information processing
for cognitive processes.

C. TIME-VARYING NETWORK PATTERNS OF LEFT- AND
RIGHT-HAND MI
To provide an intuitive comparison, we kept the strongest 10%
of directed connections of each state (i.e., one time point)
to clearly show the divergent (dynamic) connectivity pattern
among states based on the group averaged time-varying net-
works [51], [52]. In the current study, we mainly focused on
the cue and MI-task states (total of 11 states). Fig. 4 showed
the time-varying network patterns for the cue and left- and
right-hand MI.

During left-hand MI, in the cue state, we found that the
left aIns, IPL and right aIns have more interactions with other
regions. In states 1 and 2, the interactions (more connections)
were increased in the left aIns, whereas the interactions were
decreased in the left IPL and right aIns. In state 3, the right
M1 shifted to a new ‘hub’ with more connections. In state 4,
the right M1 lost its ‘hub’, whereas the right SMA instead
became a new ‘hub’. States 5-10 share a similar network
pattern such that the right SMA is an important causal outflow
source for modulating other regions. In addition, we also
observed in these states that more connections existed in the
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FIGURE 3. Estimation of time-varying networks based on simulated data
using the ADTF. (a) The simulated signals in a trial for each node.
(b) Three predefined network connectivity model in the different stages.
Ap[ni,nj] is the (ni,nj)-th entry of the tvMVAR coefficient matrix, and it
represents the causal influence of node nj on ni. (c) The estimated
tvMVAR coefficients for 0dB, 5dB and 10dB noise SNRs. The gray line
denotes the true tvMVAR coefficient. The green, bule and red line
represent the tvMVAR coefficients estimated under different
SNRs. In addition, the coefficients errors are given for each noise
condition by the color bars. (d) Time-varying networks patterns estimated
using ADTF for different time stages under three noise conditions.

right hemisphere contralateral to the left-hand MI, especially
interactions in the right SMA.

During right-hand MI, in the cue state, we found that the
left aIns and PMA have more interactions with other regions
and that the left IPL and right aIns are also important nodes
for receiving information. In states 1-3, we found that they
share a similar network pattern with the left aIns, PMA and
M1 playing important roles in network interactions. These
states, however, still own unique connections patterns across
time, i.e., the interactions in the left aIns were gradually
weakened, whereas the interactions in the left M1 were grad-
ually strengthened from state 1 to 3. In state 4 compared to
state 3, the left PMA shows increased interactions, whereas
the left M1 shows decreased interactions. In state 5, almost
all the interactions are connected with the left PMA and
SMA, and the left M1 uniquely receives information coming
from the left PMA and SMA. In states 6-8, the left SMA
serves as a ‘hub’, which is an important information source

to modulate almost all the interactions within the network.
States 9 and 10 have a similar network pattern with the
cue state such that the left PMA and aIns play hub-like
roles in the network. In the time-varying network patterns,
we also observed that dense connections existed in the left
hemisphere contralateral to the right-hand MI, especially
interactions in the left SMA. Besides the 10% cost, we also
investigated the time-varying network patterns under other
cost values like 5% and 15%, and found the similar patterns
as that in Fig. 4.

D. TIME-VARYING MI NETWORK PROPERTIES
To better understand the evolution patterns of the time-
varying networks, the four global network properties
(i.e., C, L, Ge, and Le) were calculated for each state
for each subject. Fig. 5 shows the time-varying network
properties for the left- and right-hand MI averaged across
subjects. We found that the network properties (i.e., C, Ge,
and Le) were gradually increased, and the network
property (L) was gradually decreased in states 1-6. These
time-varying network properties collectively indicated that
the network efficiency gradually increases to satisfy the
requirement for MI-related information processing. During
the last 5 states, all the network properties were relatively
stable in both MI tasks. In addition, we also found that the
network efficiency of right-hand MI is higher than that of
left-hand MI at the beginning of several states.

E. IN- AND OUT-DEGREES OF NODES IN THE
TIME-VARYING NETWORK
Fig. 6 shows the in- and out-degrees of nodes in the time-
varying network for the left- and right-hand MI, respectively.
During left-hand MI, the left aIns and right SMA have rel-
atively higher out-degrees at different periods (Fig. 6a). The
in-degrees of all nodes are kept relatively smooth, and the
left IPL and right aIns have relatively higher in-degrees over
time (Fig. 6c). During right-hand MI, the left aIns, PMA and
SMA have relatively higher out-degrees at different periods
(Fig. 6b). Similar to left-hand MI, the changes of the in-
degrees of all nodes are relatively smooth, and the left IPL,
left M1 and right aIns have relatively high in-degrees over
time (Fig. 6d). To further explore the interactions between
the left and right hemispheres during two MI tasks, we cal-
culated the average out-degree of the regions within the right
hemisphere, which only connected with the left hemisphere
regions for the left-hand MI, and the averaged out-degree of
the regions within the left hemisphere, which only connected
with the right hemisphere regions for the right-hand MI.
In other words, we estimated the network causal influence
strength between two hemispheres to evaluate the lateraliza-
tion of left- and right-hand MI. Fig. 6e showed the averaged
lateralization strength of left- and right-hand MI over time.
We found that the causal influence of the left hemisphere
regions exerted on the right hemisphere regions is relatively
stable over time during right-hand MI, whereas the causal
influence of the right hemisphere regions exerted on the left
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FIGURE 4. Time-varying networks estimated by ADTF. (a) The time-varying networks for the left-hand MI. (b) The
time-varying networks for the right-hand MI. Green dots represent areas in the left hemisphere. Blue dots
represent areas in the right hemisphere. Red lines indicate the synchronous coupling between two ROIs, and
arrows indicate the direction of their information flow.

FIGURE 5. Time-varying network properties for the left- and right-hand MI. Blue and red lines represent the corresponding
network properties of left- and right-hand MI tasks, respectively.

hemisphere regions is gradually increased over time during
left-hand MI. Moreover, during states 7-11, much stronger
causal influence from right to left hemisphere is observed

for the left-hand MI when compared to the right-hand MI
with relatively weaker causal influence from left to right
hemisphere.
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FIGURE 6. The in-degree and out-degree for each node. (a) and (c) are
the in- and out-degrees of nodes of time-varying network during
left-hand MI. (b) and (d) are the in- and out-degrees of nodes of
time-varying network during right-hand MI. (e) Causal influence
between two hemispheres for left- and right-hand MI.

IV. DISCUSSION
In the current study, ADTF, which has the capability to
estimate the time-varying effective connectivity at each time
point, was successfully applied to the fMRI data to explore
the dynamic interactions in activated regions involved in MI.
Our results revealed that SMA, aIns, and M1 play important
roles in dynamic interactions of the network at different task
periods and showed a significant hemispheric lateralization
of the dynamic connectivity during left- and right-hand MI,
especially in the connections from the contralateral SMA to
other regions. Our findings demonstrated that ADTF serves
as an effective tool that can provide novel insights into
dynamic interaction processes during MI tasks.

A. METHODOLOGICAL CONSIDERATIONS
To the best of our knowledge, this is the first study to
apply ADTF to fMRI data to explore time-varying directed
interactions among regions. Such time-varying connectivity
patterns were enabled by incorporating the Kalman filter
algorithm into the tv-MVAAR model [36]. This method has
been widely used in the EEG fields to study the time-variant
propagation of brain activity, indicating that it is a useful tool
to construct time-varying networks during various cognitive
processes [36], [53]. Compared to other time-varying analysis

methods mainly based on the sliding window strategy,
ADTF can identify the time evolution process of the network
connectivity patterns at each time point rather than over the
entire time course or in a coarser sliding window. This allows
for quantifying the dynamic behavior of the networks at a
shorter time scale. As shown in Fig. 3a and b, three differ-
ent network structures are hidden in the simulated signals.
Without any prior interference such as the time window
selection, ADTF used the Kalman filter to automatically esti-
mate the connectivity patterns at each time point. In essence,
ADTF constructs the time-varying networks based on the
MVAR coefficients, that is to say, the accurate estimation of
the corresponding MVAR coefficients is critical to capture
the dynamic network structures. The estimated time-varying
MVAR coefficients in network patterns in Fig. 3c reveal that
ADTF could actually track the coefficients robustly, where
the fundamental fluctuation trends could be captured under
different concerned noise conditions. Therefore, based on the
accurately estimated MVAR coefficients, and Fig. 3d demon-
strated that ADTF is capable of identifying the three prede-
fined dynamic connectivity patterns of the network. These
simulation signals follow a Gaussian distribution, which is
usually assumed to be the dominant distribution in fMRI data.
Moreover, in another simulation study by Wilke et al. [36],
they also found that ADTF is able to reconstruct various
time-variant connectivity patterns, including Gaussian func-
tions, step functions, and oscillating function. Combining our
simulation study and previously reported results, we applied
ADTF to extract the MI related time-varying networks
from fMRI.

As is known, the fMRI response is reflected via the
hemodynamic response, which is sluggish and typically
takes 6-10s. Indeed, this is in line with the nature of per-
sistent neural representations [54]–[56], especially in the
MI task that contains multiple stages such as motor selec-
tion, motor planning and motor preparation [57]. Although
such slow dynamics, the network model is sensitive to per-
sistent and ramping activity. Thus, ADTF may capture the
subtle changes in the network pattern over time. Based on
this method, we found some interesting results as described
below.

B. BRAIN ACTIVATION OF LEFT- AND RIGHT-HAND MI
Fig. 2 showed the activated regions during two differ-
ent types of MI. The results are in line with those of
many other previous studies [12], [21], [58], [59] and
confirmed the significant excitation of the contralateral
M1 and ipsilateral Cere corresponding to the performing of
MI task [12], [60], [61]. According to differentMI conditions,
the consistent ROIs in the bilateral SMA, PMA, Putamen,
aIns, and left IPL were selected for network analysis, except
for M1 and Cere (see Table 1). In the present study, the time-
varying inter-regional interactions of the activated regions
recruited by MI tasks were further explored using ADTF and
graph theory.
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C. DYNAMIC INTERACTIONS OF AINS DURING MI
Many studies have indicated that the insula is involved in
a wide array of cognitive processes, including focal atten-
tion [62], [63], goal-oriented control, switching between
networks, conscious awareness of sensations and move-
ments [64], motor imagery [12], cognitive choices and inten-
tions, emotion [65], [66], etc. In fact, the insula has been
the topic of considerable neuroscience research and has long
been considered to be important in the generation of subjec-
tive feelings that guide decision making [67]. In this study,
our results showed that regardless of the left- and right-
hand MI, the left aIns has always been a core node acting as a
‘causal outflow hub’ [68], which has a strong casual influence
on other regions at state start-cue and task related states 1-4.
However, the right aIns mainly acts as a ‘causal inflow hub’ at
the corresponding state conditions to receive the information
sent from other related areas. In our MI experiment, before
the task begins, the participants were instructed to perform a
specific imaginary action of the hand according to the visual
arrow indicated cue. In terms of the time-varying connectivity
patterns, we found that the left aIns might serve as the first
cortical target of interoceptive input [69] during MI. Thus,
we suggested that the dynamic interactions between the left
aIns and other regions contribute to guide decision making
and coordinate network resources.

Although the left aIns is an important causal resource
during earlyMI stage, the causal influence of left aIns exerted
on other regions is gradually weakened with the decreased
connections. During the later stage of MI, the network center
(causal resource) is shifted from the left aIns to other regions
(i.e., SMA or PMA). In addition, especially in the last two
states, the left aIns connectivity patterns stay relatively stable
during left-hand MI, whereas the left aIns connectivity pat-
terns tend to be the state start-cue to become a ‘causal outflow
hub’ during right-handMI. Given that most of the participants
are right-handed in our study, our results indicated that the
network architecture of left-hand MI is more stable than that
of right-handMI. In other words, state switching (from task to
rest) is easier for right-hand MI, indicating that the subjects
can anticipation what is going to happen, which is formed
during repeated daily life exercise [70].

D. DYNAMIC INTERACTIONS OF M1 DURING MI
It is clearly indicated that the M1 is actually implicated in
MI processes [71], [72]. In our study, we observed that
right M1 was activated during left-hand MI, whereas left
M1 was activated during right-hand MI, which are in
accordance with previous studies [21], [71], [73]. Thus,
the contralateral M1 was selected as a ROI to investigate the
interactions of time-varying networks. The investigation of
time-varying connectivity may provide new insights into the
roles of M1 during MI.

The time-varying connectivity patterns showed that,
regardless of the left- and right-hand MI, the contralateral
M1 played a key role in the early MI period, such as in

states 1-3 during left-hand MI and states 1-4 during right-
hand MI. In these states, we observed that M1 not only
is a causal inflow node but also a causal outflow node
in both MI tasks. The causal inflow information comes
from the left aIns, such as the causal connectivity from left
aIns to contralateral M1, whereas the causal outflow infor-
mation is mainly exerted on the left IPL and right aIns.
These findings implied that M1 may be more sensitive than
other regions toward decoding stimulus related information
(i.e., movement intention). For example Hochberg et al. [74]
reported that the utilization of the cortical spiking patterns of
M1 can precisely decode the intention of the hand motion in
a tetraplegic human.

Moreover, at the later stage of MI, M1 becomes a causal
inflow node particularly in right-hand MI. According to
the time-varying connectivity patterns, we found that there
exists a causal connection from ipsilateral SMA to ipsi-
lateral M1 (i.e., left SMA to left M1) but no feedback
between them. Several studies have shown that the MI and
ME share some common regions including SMA, PMA and
M1 [61], [75], [76]. These brain areas are known to play
key roles in the planning, preparation and execution of motor
commands [57]. Although these areas were activated in both
tasks, the causal connectivity between the SMA and M1 is
very different during ME and MI. For example, in a study
by Kasess et al. [61], they found that the SMA exerts an
inhibitory influence on M1 during MI, whereas the influ-
ence of SMA on M1 was enhanced during ME. In addition,
similar results were also found in amputees [73] and stroke
patients [75]. When compared to the time-varying causal
connections, these findings also suggested that there exists
a suppressive influence of SMA (contralateral) on M1 (con-
tralateral) during bothMI tasks at the later stage ofMI. There-
fore, our results not only confirmed the role of the causal
connectivity between the SMA and M1 but also extended
previous studies on their interactions.

E. DYNAMIC INTERACTIONS OF SMA DURING MI
Previous studies had indicated that the left and right SMAs
played different functional roles in linking cognition to
action [77] and reported that there exists an anatomical recip-
rocal connection between them. Moreover, both the left and
right SMAs are projected to M1 [78], [79]. These findings
provided strong support for dividing SMA into left and right
two parts. More interestingly, beginning from the fifth state,
our results showed that the SMAs shifted to a prominent
causal outflow hub corresponding to performing MI tasks
(i.e., right SMA for left MI and left SMA for right MI).
These findings implied that the roles of SMAs are different
during two MI tasks and demonstrated that the hemispherical
lateralization occurred not only in neural activity (see Fig. 2)
but also in the time-varying connectivity networks.

However, in this study, the lateralization is different from
that in a previous study by Gao et al. [21] in which their
results primarily showed more causal connectivities within
the contralateral hemisphere, whereas interactions between
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the two hemispheres are less observed. Our findings high-
lighted that the dynamic hemispherical lateralization during
MI is characterized with the dominated role of contralateral
SMA to serve as the causal hub node to exert information on
other activated areas including those areas spanning across
two hemispheres. In essence, this is in line with the activated
map largely located within the contralateral primary motor
areas during MI of hand actions [21], [60], [80]. In addi-
tion, such time-varying connectivity patterns of SMA are in
accordance with its fundamental functions that are involved
in action monitoring [81], [82], includingmotor initiation and
inhibition, selection of actions, andmotor planning [83], [84].
In a recent study, Bonini et al. [81] further revealed that
SMA plays a leading role in evaluating successful and erro-
neous actions using the intracerebral electroencephalography
(iEEG). Thus, we suggested that SMA acting as a ‘causal out-
flow hub’ is fundamental for assessing ongoing actions and
detecting errors. At the same time, these casual connections
also implied that both SMAs may dynamically modulate the
intended action (i.e., imagined hand action) and suppress the
unintended action (i.e., avoid executing hand action) during
the current MI task. In fact, several previous studies had con-
sistently demonstrated that effective connectivity (direction
and strength) between SMA and M1 is modulated to adapt
and optimize motor behavior [61], [73], [81].

F. DIFFERENCES OF TIME-VARYING NETWORKS
BETWEEN LEFT- AND RIGHT-HAND MI
Though a similar causal outflow/inflow source and contra-
lateralization connectivity pattern could be observed, there
are actually some differences in the time-varying networks
for the two MI tasks. The first difference is that the causal
influence that the right hemisphere exerted on the left hemi-
sphere during left-hand MI is much stronger than that the left
hemisphere exerted on right hemisphere during right-hand
MI for the right-handed subjects. These findings provided
a novel avenue to understand the left hemisphere-dominant
phenomenon during MI for the right-handed subjects. This
left hemisphere-dominance occurred in the middle and later
stages of MI (see Fig. 6e). Because the participants in our
study were right-handed, the long experience of using right
hand may have formed an optimized and specific circuit
in the left hemisphere. Therefore, more coordinated inter-
actions among activated regions may be needed when the
right-handed subjects perform the left-hand MI task. Such
interactions may facilitate generation of a compensable func-
tion for processing task related information. In a previous
study, Rogers et al. [85] reported a left-hemisphere-dominant
phenomenon for right-handed participants during unilateral
finger movement. Using conditional granger causality anal-
ysis, Gao et al. [21] found that more regions within the left
hemisphere were modulated during the left-hand MI. In fact,
the time-varying in- and out-degrees consistently demon-
strated such left lateralization for right-handed subjects.

The second difference is that the left PMA played a key
role in modulating the dynamic network during right-hand

MI compared to the role of right PMA during left-hand MI,
especially in the early MI processes and last two states.
Several studies had reported that PMA (including dorsal and
ventral premotor areas) is involved in motor planning and
action selection [54], [57], [86], [87]. In a previous study by
Cisek and Kalaska [86], it was reported that the activation
of the dorsal PMA of monkeys might contribute to predicting
the directionality of forthcomingmovement based on abstract
visual cues and did not require the actor to be in view.
By using the intracortical stimulation, Dum and Strick [88]
found that PMA is a major source of input to M1 that is asso-
ciated with the generation and control of hand movements.
In our study, we found that there exists a causal influence
from the left PMA to right M1 in the right MI task. Moreover,
in a recent study, Ohbayashi et al. [89] demonstrated that the
interaction between PMA and M1 guided the performance
of internally generated sequences. Thus, we suggest that the
interactions between the left PMA and other regions, such as
the right M1, facilitate a response to abstract visual cues that
instruct a task to be performed [86], guiding the performance
of the current right-hand MI task. The different roles of PMA
between the two MI tasks may account for the fact that it
is easier for the right-handed subjects to perform the right-
hand MI task than the left-hand MI task. These findings may
serve as an important marker to distinguish between two
MI conditions, which helps to optimize the BCI control sys-
tem and facilitates better understanding of the neural mecha-
nism of MI.

G. TIME-VARYING NETWORK PROPERTIES DURING THE
LEFT- AND RIGHT-HAND MI
The networks mentioned above showed the time-varying
topologies during MI tasks, and the network topologies could
be quantitatively reflected by the corresponding network
properties. Thus, we further employed graph analysis to char-
acterize the temporal evolution of these interactions among
activated regions. In this study, four commonly usedweighted
network properties were calculated for each subject for each
state. As shown in Fig. 5, in bothMI tasks, our results showed
that the network efficiency is gradually increased (i.e., shorter
L and higher C, Ge, and Le) at the states from cue to 5,
followed by a relatively stable network efficiency. The tempo-
ral evolution of the network efficiency is consistent with the
human brain’s cognitive processes, such as the motor execu-
tion [53]. During the first five states, when a salient visual cue
information was input, the left aIns acts as a prominent node
to drive other regions within the network, which is in line with
the function of the left aIns that may have a more prominent
role in evaluating the need to implement subsequent behav-
ioral adaptations [24]. Thus, the gradually increased network
efficiency in the earlier MI stages indicated that the brain was
optimizing the network resources and adjusting the network
interaction to effectively respond to the current task demand.
As the MI tasks progress into later stages, SMAs involved
in guiding and monitoring motor action become the major
causal outflow node, and the corresponding network pattern
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is kept relatively stable, resulting in stable network properties
in these MI periods. Moreover, the high network efficiency
in the later stages implied that the brain has completed the
optimization of the network.

In addition, we also found that the network efficiency of the
right-hand MI task is higher than that of the left-hand MI task
in the earlierMI stages, whichmay also infer that it is easier to
perform the right-hand MI task for the right-handed subjects.
In addition to the network properties, we also calculated
the degree of nodes for each state. We found that the left
aIns and right SMA have relatively high out-degree and that
the left IPL and right aIns have relatively high in-degree
during the left-hand MI task, whereas the left aIns, PMA and
SMA have relatively high out-degrees and the right aIns has
relatively high in-degree during the right-handMI task. These
results consistently suggested that these regions, as important
causal targets, modulate the reconfiguration of time-varying
networks for different MI tasks.

V. CONCLUSION
In our study, we applied ADTF to fMRI data to track
the time-varying effective connectivity patterns among acti-
vated regions during MIs. This method can not only capture
changes of temporal evolution of network patterns but also
estimate the information flow of the network. The following
conclusions can be drawn from the time-varying MI net-
works: 1) the left aIns, contralateral M1, and contralateral
SMA corresponding to the performing hand are important
causal sources for completing the specific MI task. 2) The
casual source switching indicates there exists a hierarchical
organization during MI, for example, in the early stages
of MI (i.e., 4 TRs = 8 s); the left aIns and contralateral
M1 act as important casual in-/outflow nodes to modulate
the patterns of networks for both MI tasks. As time goes
by, the contralateral SMA separately becomes the new causal
source for left- and right-hand MI tasks. 3) The lateraliza-
tion of left- and right-hand MI occurred not only in neural
activity but also in the connectivity modulated by the causal
source, such as the contralateral SMA. Furthermore, graph
theory analysis further characterized the temporal evolution
of these interactions among activated regions during MI.
Taken together, these findings deepen our understanding of
dynamic information processing in motor imagery from the
perspective of a time-varying network.
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