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ABSTRACT The number of Internet of Things (IoT) nodes is increasing in modern cities which demands
spectrum and energy efficiency. Fifth-generation (5G) networks are considered as a key paradigm for the
realization of future IoT applications. Particularly, cognitive radio and non-orthogonal multiple access are
candidate technologies for 5G networks that can improve spectral efficiency and accommodate a large
number of IoT devices. Furthermore, radio frequency (RF) energy harvesting can increase the energy
efficiency of IoT networks. In this paper, we propose a resource management scheme for cognitive IoT
network with RF energy harvesting in 5G networks. The objective is to maximize the throughput while
assuring quality-of-service requirements in terms of data rate and minimum residual energy constraint on
each IoT node. We use mixed integer linear programming and greedy approaches to solve the optimization
problem. We then present the simulation results of the proposed scheme to exhibit the significant positive
impact on the performance of the IoT network.

INDEX TERMS 5G networks, energy efficient, Internet of Things, smart cities, spectrum efficient.

I. INTRODUCTION
The Internet of Things (IoT) is expected to play a major
role in addressing the problems of growing population and
urbanization. In IoT-enabled smart cities, common devices
such as household machines, office devices, cars, and hos-
pital equipment will be directly communicating with each
other without human involvement [1], [2]. The objects will
become intelligent enough to sense and process the infor-
mation ubiquitously and in real time. The upcoming fifth
generation (5G) networks are forecasted to play a major role
in IoT systems. The second generation (2G) networks were
meant for voice communications, third generation (3G) added
data, and fourth generation (4G) was primarily focused on
broadband Internet experiences. On the other hand, 5G is
meant to communicate the objects with each other such that
a large number of IoT nodes can exchange data with each
other in real time [3]. These IoT nodes are expected to have
the ability to share information, interact with real people,
support intelligent business processes and even make smart
decisions [4]. For example, the IoT-enabled transportation
system in smart cities can overcome the problem of traffic
congestion and reduce accidents; IoT-enabled distribution
systems in supply chains can make better quality products

at a reduced cost; smart grid solutions can help to optimize
the electricity distribution and consumption. However, there
are many challenges associated with the IoT-enabled solu-
tions for smart cities. Particularly, we need spectral efficient
solutions to accommodate a large number of IoT nodes.

IoT devices are expected to be interconnected through
wireless communication technologies in smart cities, mainly
5G [3]. Therefore, it is indispensable to investigate IoT in
5G networks, which is expected to provide a massive con-
nectivity along with high data rates. Due to a large number
of users, wireless spectrum will be insufficient to cater the
needs of all IoT devices. This can be mitigated by adopting
intelligent frequency spectrum allocation schemes. Also, IoT
applications should employ cognitive capabilities for effec-
tive spectrum utilization according to the available bandwidth
and application needs. Therefore, cognitive radio (CR) tech-
nology needs to be adapted into IoT systems to increase the
spectral efficiency and reliability [5], [6]. CR technology can
efficiently address the spectrum underutilization problem,
and also enhance the interoperability between various wire-
less communications systems. Incorporating CR technology
in IoT systems can be a big step forward towards autonomous
and self-reconfigurable IoT systems.
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Energy management of IoT nodes is another key constraint
in massive IoT deployments [7]. Aggregate energy consump-
tion of low power devices in the networks may accumulate to
become very large. Thus, we need to target extremely low
power designs. Moreover, we intend to embed most of these
devices in the environment managed remotely and operated
perpetually without frequent battery replacements or bulky
power cords. These requirements increase the interest in the
concept of wireless power transfer techniques or harvest-
ing energy from their surroundings. Energy harvesting from
radio frequency (RF) signals is becoming quite popular these
days [8]–[10]. Although the net energy gained from RF har-
vesting is very less as compared to other possible alternative
sources such as renewable energy (solar/wind etc), its easy
availability (inside/outside buildings, and throughout the day)
makes it much attractive. In this paper, we enable IoT devices
to harvest RF energy from ambient RF sources such as base
stations.

Channel access techniques are extremely important in
providing the user with a medium of communication in
wireless networks. For instance, orthogonal frequency divi-
sion multiple access (OFDMA) is used in 4G networks.
However, every channel access technique has its own lim-
itations, like in OFDMA where the number of users are
restricted by the total number of resources and their schedul-
ing. Recently, non-orthogonal multiple access (NOMA) has
become a vital technology for 5G networks [11], [12]. It has
numerous advantages as compared to previous techniques
such as NOMA which supports multiple users on the same
resource block in the same cell while harnessing channel gain
differences of various users.

A. CONTRIBUTIONS
In this work, we introduce a resourcemanagement scheme for
cognitive IoT systems with RF energy harvesting. Following
are the main contributions of this paper:
• We mathematically model a throughput maximization
problem of IoT system in 5G networks. We adopt RF
energy harvesting technology to enhance the energy
efficiency of the network.

• The proposed model ensures the minimum required data
rate and minimum residual energy constraints for each
IoT node by using NOMA and RF energy harvesting
technologies.

• We first convert the optimization problem from mixed
integer non-linear programming (MINLP) tomixed inte-
ger linear programming (MILP) by using the rate func-
tion constant. We then solve the problem using MILP
and greedy approaches.

• Finally, we analyze the performance of proposed frame-
work to show the impact of incorporating NOMA and
RF energy harvesting technologies in IoT systems.

B. ORGANIZATION
The rest of the paper is organized as follows. Section II
provides related work for RF energy harvesting in IoT, spec-
trum sharing in IoT, simultaneous wireless power transfer

and spectrum sharing in IoT, and NOMA in IoT. The system
model for the proposed resource management framework is
provided in III. We present the proposed resource manage-
ment framework for cognitive IoT systems in Section IV.
The performance of proposed framework is evaluated in
Section V. Finally, the paper is concluded in Section VI.

II. RELATED WORK
Recently, a plethora of work has been done on energy harvest-
ing, multi-band spectrum sharing and NOMA technique for
IoT systems in 5G networks. Here, we present our literature
review on these topics. We have observed that none of the
existing work cover all three aspects at the same time.

A. RF ENERGY HARVESTING FOR IoT
Takacs et al. [8] addressed the recent advances in the area of
RF energy harvesting for IoT, particularly in structural health
monitoring applications. Several rectenna (rectifier antenna)
design topologies were presented and their performances in
the various bands were discussed to prove the phenomenon of
energy harvesting to monitor the condition of antenna panels
of the satellites. A novel mechanism to optimize the place-
ment and the number of energy transmitters in wireless sensor
networks (WSNs) with wireless energy transfer was proposed
in [9]. Similarly, Ejaz et al. [10] presented a mechanism to
optimally locate the energy transmitters in software-defined
WSNs with RF power transfer, and find optimal number
of energy transmitters. Authors also presented a scheduling
mechanism for energy transmitters for the given tasks of
energy charging. The performance of the proposed scheme
is proved by simulating fairness, energy charged, number of
tasks, number of energy transmitters, and energy consump-
tion. An effective energy harvesting-aware routing algorithm
is developed by Nguyen et al. [13] to address the issues of
energy efficiency, QoS, and network lifetime extension for
IoT applications with the use of three energy harvesting tech-
niques: solar-based, RF-based, and moving vehicle-based
energy harvesting. Similarly, Michelusi and Levorato [14]
developed a control framework for energy harvesting devices
that are connected to a BS over a multiple access channel.
The idea is to enable the nodes to make channel access
decisions based on their own harvesting state, as well as of
the other nodes in the network. Beng et al. [15] proposed a
WSN farming animals health monitoring system using near
field communication (NFC) to monitor the main parameters
such as body temperature. Authors used RF energy cap-
tured by the remote wireless power transmitters to charge
up the lithium battery of the WSN units attached to the
animal. However, Takacs et al. [8], Ejaz et al. [9], [10],
Nguyen et al. [13], Michelusi and Levorato [14], and
Beng et al. [15] only focused on RF energy harvesting and
did not address multi-band spectrum sharing and NOMA
techniques for IoT systems.

B. SPECTRUM SHARING FOR IoT
Rawat et al. [6] presented an approach to solve research
challenges in the field of CR technology for M2M and IoT.
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Authors reviewed CR techniques to address various problems
of IoT including energy efficiency, scalability and hetero-
geneity etc. Energy efficient CR technology for the IoT is
considered by Qureshi et al. [16]. Authors observed that the
selection of reliable data channels for the IoT devices, and its
integrationwith backup data channels, has reduced communi-
cation time among the secondary users, which plays a critical
role, directly affecting the performance of the CR ad hoc
networks in terms of energy consumption and throughput.
A service prioritized scheduling scheme for IoT is presented
in [17]. The authors proposed traffic modeler to support pro-
posed scheme. The proposed model is the service-centric
spectrum usage pattern of IoT nodes as a six-state continuous-
time Markov chain. Authors showed that the QoS requires
both real and non-real time services which are satisfied by the
proposed scheme as compared to the mixed critical schedul-
ing algorithm. Khan et al. [18] measured the spectrum usage
behavior of three rotating radar systems that were fixed on
ground at various different locations, in order to prove the
appropriateness of the rotating radar spectrum for the IoT
shared spectrum access. Etim and Lota [19] employed a
power loss exponent that plays a vital role in various oper-
ating environments for IoT in the non-cooperative game cost
function to evaluate the necessary transmission power in the
CR network (CRN). Various secondary users will be able to
transmit with less power using this approach, and save power
consumption. Furthermore, Kim [20] worked on CR based
IoT systems and designed a novel scheme for cooperative
spectrum sensing and sharing based on the inspection game
model. Based on simulations, the performance of system
is improved while approximating the aspiration equilibrium
status. The focus of [6] and [16]–[20] is on spectrum sharing
for IoT and authors do not consider on energy harvesting and
NOMA aspects.

C. WIRELESS POWER TRANSFER AND
SPECTRUM SHARING FOR IoT
Ercan et al. [21] proposed a spectrum and energy efficient
IoT network for 5G systems. They showed that for the same
amount of cellular traffic in the area, the IoT network uti-
lization increases with the increase in the number of IoT
devices. The broadcast nature of energy transfer results in a
multi-user gain. A spectrum share model is proposed in [22]
for IoT devices with capability of wireless power transfer.
First, energy is harvested by secondary transmitters from the
primary signal. The secondary transmitter then transmit infor-
mation on primary signal without any harmful interference
to primary users. The primary signal’s transmit power and
secondary transmitter’s reflection coefficient is optimized
to maximize the secondary system’s capacity. Similarly,
Tang et al. [23] proposed protocols for energy harvesting in
cognitive networks. It is shown that the system performance
(achievable rate of the secondary transmission) is improved
by using proposed protocols.

Energy and channel management schemes are proposed
in [24] for spectral and energy efficient CR sensor networks

for IoT systems. The effectiveness of proposed schemes is
evaluated in terms of functional nodes and residual energy of
the network. Lyu et al. [25] proposed harvest-then-transmit
and backscatter communication mode for the wireless power
cognitive IoT systems to maximize throughput. Authors pre-
sented numerical results to show that the proposed scheme
have higher throughput compared to traditional schemes.
An analysis for the performance of the network considering
wireless power and data transmission at the same time is con-
ducted in [26]. The objective is to study the spectrum sharing
in the CRN with a multi-antenna primary receiver using the
antenna switching technique. The benefits of using secondary
transmitter are proved and theoretical results are validated by
the Monte Carlo simulations. Furthermore, Mou et al. [27]
investigated secure communication for RF-powered CRNs.
The secondry user harvest energy from primary user to trans-
mit information in the presence of attacker. Although authors
considered both wireless power transfer/RF energy harvest-
ing in [21]–[27], however, none of them considered NOMA
which is a key 5G candidate technology to improve spectrum
efficiency.

D. NOMA (NON-ORTHOGONAL
MULTIPLE ACCESS)
Ding et al. [11] compared the effect of user pairing on the
performance of two systems that were based on NOMA.
1) F-NOMA (with fixed power allocation), 2) CR-NOMA
(inspired by CR). Liang et al. [28] studied the user pairing in
a downlink NOMA network, where the power was allocated
to the pairwise users by the base station. Authors solved the
power allocation and user pairing problem in the CR-NOMA
systems by using the matching theory. Application of NOMA
to multi-cast CRNs is investigated in [29], where the authors
presented a dynamic cooperative NOMA scheme. Authors
proved significant improvements using proposed scheme as
compared to non-cooperative NOMA. Ding et al. [30] pro-
posed a MIMO-NOMA scheme for IoT systems, where QoS
requirements for one user are satisfied while serving other
users opportunistically using NOMA. The performance of the
proposed scheme is demonstrated by analytical and numeri-
cal results. A massive NOMA technique is presented in [31]
as a promising solution to support a large number of IoT
devices in cellular networks. Zhang et al. [32] introduced
multiple antenna techniques in the existing CR basedNOMA,
by specifying a certain number of primary users, and then
optimized the energy efficiency such that QoS requirements
are met for each primary user. For this, authors proposed
an algorithm based on the sequential convex approximation.
A power-domain uplink NOMA is proposed in [33] for nar-
row band (NB)-IoT systems. Simulation results are presented
to demonstrate that the proposed NOMA technique is able
to increase the number of successfully connected nodes in
NB-IoT systems compared to orthogonal multiple access.
Ding et al. [11], [30], Liang et al. [28], Lv et al. [29],
Shirvanimoghaddam et al. [31], Zhang et al. [32], and
Mostafa et al. [33] considered NOMA for IoT and
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TABLE 1. Summary of existing literature on RF energy harvesting for IoT, spectrum sharing for IoT, wireless power transfer and spectrum sharing for IoT,
and NOMA.

CR based NOMA. However, RF energy harvesting was not
considered to improve energy efficiency.

In summary given in Table 1, existing literature has consid-
ered RF energy harvesting for IoT, spectrum sharing for IoT,
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FIGURE 1. Architecture of cluster based IoT network.

simultaneous wireless power transfer and spectrum sharing
in IoT, and NOMA as a potential candidate of 5G networks.
However, spectrum sharing in IoT with RF energy harvesting
in 5G networks (NOMA) is not well investigated. In this
paper, we propose a resource management scheme for cog-
nitive IoT systems in 5G networks.

III. SYSTEM MODEL
We consider a 5G heterogeneous network with RF energy
harvesting in smart cities. The architecture can have multi-
ple primary networks with the different number of available
channels. We assume that each primary network is com-
prised of multiple clusters, where each cluster consists of N
IoT devices and C channels in each cluster. The architec-
ture of cluster-based IoT network is demonstrated in Fig. 1.
We assume that the number of IoT devices is greater than
the number of channels, i.e., N > C . We also assume that
every IoT node is associated with only one wireless interface,
i.e., nodes can either transmit data or harvest energy. We con-
sider cluster heads in each cluster as energy-rich nodes.
The cluster head in each cluster can act as a central entity/
fusion center for spectrum sensing and resource allocation.
For illustration purposes, we consider only one cluster in this
paper. The users in the primary network are the licensed users
to utilize channels, while IoT devices can use the channels
opportunistically. The primary users can transmit data over
the channels in time slot manner with frame duration T . The
duration of frame in 4G (long-term evolution (LTE)) network
is 1ms [21], however, it is expected to be dynamic in 5G
systems [3].

The frame structure of the cluster based IoT network with
RF energy harvesting is shown in Fig. 2. We assume that each
frame is divided into three slots, i.e., sensing slot, scheduling
slot, and user slot. At the beginning of sensing slot, each IoT
node will check its residual energy and perform spectrum
sensing for multiple channels if its residual energy (ER,n) is

FIGURE 2. Frame structure of the cluster based IoT network with RF
energy harvesting.

greater than a certain threshold θs. This can be written as:

φnc =

{
1, ER,n ≥ θs
0, otherwise,

(1)

where φnc will be 1 if n-th IoT node is performing spectrum
sensing and 0 if it is harvesting energy or in idle mode. The
duration of sensing slot is τs and depends on several factors
such as signal to noise ratio (SNR) of the channel, sensing
method, computation power of the device, the number of
channels to be sensed, etc. We consider energy detection
scheme for spectrum sensing and multi-band approach for
cooperative spectrum sensing [34].

The IoT devices will forward their sensing outcome to the
central entity for cooperative spectrum sensing. The central
entity will then make a global decision by fusing the outcome
frommultiple IoT devices about the channel state, i.e., busy or
available. In this way, the central entity will have occupancy
information of all C channels. The central entity will then
assign appropriate channels to IoT nodes for data transmis-
sion or energy harvesting. Reporting and scheduling will be
done in scheduling slot for duration τr . Let τu be the user slot
duration, which is given by τu = T − τs − τr . IoT devices
can be scheduled for data transmission or energy harvesting
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in this duration depending on their residual energy (ER,n) and
requirements. Thus, the IoT devices will be divided into three
groups as shown in Fig. 2.

A. ENERGY HARVESTING MODEL
Let gn,c be the channel gain of n-th IoT node to the c-th
channel. The gain consists of several parameters including
path loss and antenna factor. Let PC be the transmit power of
base station on channel c. As mentioned above, IoT devices
can harvest energy during τu Then, energy harvested by n-th
IoT node can be written as:

EHn = ωgn,cPCτu, (2)

where ω is the harvesting efficiency. The harvesting circuit
will convert the received RF energy into DC electricity for
storage in the IoT node. There are several possible losses
during this process. Thus, the harvesting efficiency mainly
depends on the quality of harvesting circuit.

B. ENERGY CONSUMPTION MODEL
Each IoT node consumes energy while performing different
tasks shown in Fig. 2. Thus, energy consumption will be
different in transmission mode, energy harvesting mode, and
idle mode. Let PS,n be the power consumed in the sensing
process by n-th IoT node. Then, the total energy consumption
for sensing process will be PS,n × τs. Energy will also be
consumed during its communication with the central entity
and scheduling process. The IoT node needs power PR,n
for communication with the central entity, then the energy
consumed by the IoT node during this slot will be PR,n × τr .
Moreover, the device’s processor and hardware circuit will
also consume power for duration τu when it is in active mode
(i.e., transmission mode). The total energy consumed by n-
th IoT device during transmission phase (Group 1) can be
given as:

EC,Tn = (PS,n × τs)+ (PR,n × τr )

+ ((PRF + PHC + Ptr )× τu), (3)

wherePRF ,PHC , andPtr are the power consumed byRFmod-
ule, hardware circuit, and transmission of data respectively.

In the case, when the residual energy of IoT node is less
than θs, the IoT node will be in harvesting mode (group
2). The RF to DC circuit will also consume power to store
energy in the IoT node, let the power consumption for this
process be Prd . Further, the energy consumption includes
power consumed in reception and power consumed by RF
module. This can be written as:

EC,Hn = (PR,n × τr )+ ((PRF + Prc + Prd )× τu), (4)

where the power consumed in reception is Prc.

C. DATA RATE
Since the number of IoT nodes is more than the number of
channels. We are using NOMA to accommodate IoT nodes in
the network. It is assumed that the IoT nodes are sorted with

respect to their gain, where g1,c > g2,c > g3,c · · · > gn,c.
The data rate of n-th IoT node on c-th channel can be repre-
sented as:

Rn,c = τu log2

(
1+

Ptrgn,c
N0 +

∑N
i=n+1,Pigi,c

)
, (5)

where N0 is the noise.
A descriptive list of the symbols is provided in Table 2.

TABLE 2. Definition of the variables used in the model.

IV. RESOURCE MANAGEMENT FRAMEWORK
FOR COGNITIVE IoT SYSTEMS
At the beginning of network operation, each IoT device will
check its residual energy and decide to participate in cooper-
ative multi-band spectrum sensing process or not. The cluster
head/fusion center then assigns some channels to sense by
the IoT devices, which have sufficient energy to perform
multiband spectrum sensing. On the other hand, the IoT
devices with low residual energy will do nothing until the end
of sensing slot. The cluster head then combines the sensing
outcome from IoT devices and applies majority rule to decide
presence or absence of primary user on each channel. It is
assumed that the cluster head will manage all IoT devices
and collects the information about primary network channels.
This paper focuses on channel assignment and network selec-
tion, therefore, do not propose a novel multi-band spectrum
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FIGURE 3. Proposed framework for cluster based IoT network with RF
energy harvesting.

sensing scheme. We adopt the centralized multiband spec-
trum sensing scheme proposed in [5]. When the IoT node has
sufficient energy and data to transmit then it will specify its
minimum data rate requirement to the central entity during
scheduling slot. Now that the central entity has information
about the occupancy of all C channels, it can schedule IoT
devices optimally based on their requirements. The proposed
framework is shown in Fig. 3. We consider IoT nodes to
be capable of performing both spectrum sensing as well as
energy harvesting. The assumption is valid as IoT node is
considered as node which can conned many sensor nodes
(small devices) with it [5].

The objective is to assign channels such that the system
throughput is maximized. It is important to note that harvest-
ing and data transmission can not occur on the c-th channel
for the same IoT node. We define a binary indicator func-
tion bn,c, which is 1 when the n-th IoT node is using the c-th
channel and 0 otherwise. This can be represented as:

bn,c =

{
1, if n-th user is using c-th channel
0, otherwise.

(6)

Each IoT node can be scheduled for data transmission or
energy harvesting. A binary indicatorψn defines the schedul-
ing of n-th IoT node, where ψn = 1 when n-th IoT node
is scheduled for data transmission and ψn = 0 when n-th
IoT node is scheduled for energy harvesting. This can be
written as:

ψn =

{
1, if n-th IoT node transmit data
0, if n-th IoT node harvest energy.

(7)

Our objective is to increase the system throughput while
optimizing bn,c and ψn for all n and c. The optimization

problem for this framework can be written as:

max
b,ψ
:

N∑
n=1

C∑
c=1

Rn,cbn,c,

Subject to C1 : Rn,c ≥ ψcRminc bn,c, ∀ n and c

C2 : ER,n ≥ θs, ∀ n,

C3 :
N∑
n=1

bn,c ≤ 1, ∀ c,

C4 : bn,c ≤ ψn, ∀ n and c,

C5 : ψn ∈ {0, 1}, bn,c ∈ {0, 1}, ∀ n and c,

(8)

where C1 ensures the minimum data rate requirement of each
IoT node selected for channel c, C2 guarantees that the resid-
ual energy of each IoT node will be greater than threshold θs,
C3 makes sure that one IoT device can only use one channel,
and C4 will make sure that bn,c should be zero if the n-th
IoT node is not selected for data transmission. C5 represents
the binary variables to restrict ψn and bn,c. The optimization
problem formulated in (8) is a MINLP. In general, this type
of optimization problems is NP-hard.

A. SOLUTION
The objective function in (8) involves Rn,c parameter which
is calculated using a log function. This gives us a non-linear
equation if we use the complete log function in the objec-
tive function, and hence we have a non-linear optimization
problem. In order to solve the optimization problem in (8),
we can either use MINLP or convert it into a linear problem
to be solved using linear approaches. In this paper, we opted
for the latter option. We separately calculated values of the
rate for all the values of n and c, and populated a matrix Rn,c
which then consists of only constant values. Now we can
use Rn,c in our objective function equation as it becomes
a linear problem. We have used the following two linear
approaches to optimally assign the channels to the users in
order to maximize network throughput.

1) MIXED INTEGER LINEAR PROGRAMMING
We used MILP approach to solve the reformulated problem
of (8). We used a solver from the optimization toolbox pro-
vided byMATLAB to solve our MILP optimization problem.
Here we take into consideration all of the constraints as men-
tioned above in the system model. We initialize the vectors
f (x), lb, and ub, matrices A and corresponding vector b, and a
set of indices intcon. Since we do not have any equality con-
straint in our systemmodel, we do not use Aeq and Beq. After
initializing, we run the MILP solver to solve our problem for
vector x.

max
x
: f T x,

Subject to x(intcon)areintegers,

A.x ≤ b,

lb ≤ x ≤ ub, (9)
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where f (x) is the coefficient matrix of the objective function,
lb and ub are lower and upper bounds, respectively. Since this
is an assignment problem, we are solving it by MILP. Thus,
we can only have binary values for x which mean lb = 0 and
ub = 1. Matrix A and corresponding vector b are the left hand
side coefficients of our inequality constraints and right hand
side, respectively. This solver involves the following main
steps:

• Preprocessing of the data to check if the number of
variables or the number of constraints can be reduced.

• Solve an initial relaxed (non-integer) problem using lin-
ear programming (dual-simplex method). Our objective
functions and constraints remain the same, but any inte-
ger constraints are removed.

• Apply heuristics to find feasible points. Intermediate
settings are used in order to optimize the runtime of the
algorithm.

• Apply branch and bound algorithm to find a sub-optimal
solution. This solves linear programming relaxations
with restricted ranges of feasible values of the integer
variables and generates a sequence of updated bounds
on the optimal objective function value. Here we use the
best-first or global-first method as branching rule.

• The bud nodes continue to generate further nodes as we
analyze and discard the ones that do not improve the
value of the objective function until we reach incumbent
solution such that the absolute gap tolerance is 1e-5.

The steps involved in the MILP approach are given in
Algorithm 1.

2) GREEDY APPROACH
In the case of greedy approach, we assign to the user, the first
available channel that satisfies the minimum QoS require-
ment. The following steps are involved:

• For each user that is in transmitting mode, we check all
the available channels in sequence.

• If no channel has been previously assigned to that user
and the channel’s throughput satisfies the minimum
threshold, we assign that channel to the user.

• We re-iterate these steps until all the transmitting nodes
have been assigned their channels and then calculate the
total throughput of the network.

The detailed steps for the greedy approach that solve the
optimization problem are given in Algorithm 2.

The time complexity of both MILP and greedy approaches
is analyzed for fair comparison. TheMILP approach is essen-
tially based on the Branch and Bound method in our solution.
The performance of the branch-and-bound algorithm depends
on the branching rule for choosing which node to branch
further. We have used global first rule. We observe that the
time complexity isO(bm), where b is the maximum branching
factor of the search tree and m is the maximum depth of the
state space. For the greedy approach, the time complexity is
O(n2). It is fairly easy to compute as each node has to iterate
through the channel using nested for loop.

Algorithm 1 Algorithm for MILP Approach
1: Input: Total number of users (N ), total number of chan-

nels (C), residual energy threshold (Er ), an array (Wn),
i.e., which channels are in harvesting and which ones are
in transmitting mode, and minimum rate (RminC )

2: Set throughput variable to zero, i.e., initial overall
throughput of the network

3: Output: bn,c and ψn
4: while incumbent solution is reached do
5: PopulateRn,cmatrix using (5) (assigning rates for each

user-channel)
6: Initialize a column vector f of constants (by reshaping

Rn,c matrix)
7: Initialize a column vector x of variables (same as the

number of elements of Rn,c)
8: Initialize a matrix A of all constraints and their corre-

sponding vector b (this will incorporate the minimum
rate, residual energy threshold, and whether the node
is in transmitting or harvesting mode)

9: Initialize lower bound lb on the variables, i.e., 0
10: Initialize upper bound ub on the variables, i.e., 1
11: Solve mixed integer linear problem by using f ,A,b,lb,

ub to get x vector
12: Reshape the vector x to convert it into matrix form to

see which channel has been assigned to which users
13: Multiply each element of x with corresponding ele-

ment of Rn,c and add all values to get the throughput
of the network

14: end while
15: Take average of all throughput values obtained at each

iteration
16: return Throughput value for the network with particular

number of users and channels
17: repeat
18: For different number of users while keeping fixed num-

ber of channels
19: repeat
20: For different number of channels while keeping fixed

number of users

V. SIMULATION RESULTS
We simulate the proposed framework for resource manage-
ment for IoT in 5G networks to evaluate its performance.
We consider a cluster based IoT system in a cognitive 5G
network with RF energy harvesting. For simulations, we con-
sider N = 1 to 200 IoT nodes and C = 1 to 20 channels
in each cluster. The probability of PU activity is taken as
0.5, i.e., 50% of the channels are available for data transmis-
sion.Further we consider frame duration T = 1ms, sensing
slot duration τs = 1ms, user slot duration τu = 8ms,
transmit power of base station PC = 46dBm, the energy
consumption of sensing for 1ms is 40 µJ [35]. We evaluated
the performance of proposed scheme using MINLP approach
and proposed heuristic greedy based approach.
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Algorithm 2 Algorithm for Greedy Approach
1: Input: Total number of users (N ), total number of chan-

nels (C), residual energy threshold (Er ), an array (Wn),
i.e., which channels are in harvesting and which ones are
in transmitting mode, and minimum rate (RminC )

2: Set throughput variable to zero, i.e., initial overall
throughput of the network

3: Output: bn,c and ψn
4: while 1000 iterations do
5: Populate Rn,c matrix using equation 5 (assigning rates

for each user-channel)
6: for each channel i that is to be assigned to a user do
7: for each node j that is to be assigned a channel do
8: if Ri,j value is at-least equal to the minimum rate

requirement then
9: if the user j hasn’t been assigned any channel

previously then
10: if the node j is in transmitting mode then
11: assign the channel i to the user j
12: Set Bi,j to 1
13: add Ri,j to the variable throughput
14: end if
15: end if
16: end if
17: end for
18: end for
19: end while
20: take average of all throughput values obtained at each

iteration
21: return the throughput value for the network with partic-

ular number of users and channels
22: repeat
23: For different number of users while keeping fixed num-

ber of channels
24: repeat
25: For different number of channels while keeping fixed

number of users

Fig. 4 shows the residual energy for different IoT nodes.
The horizontal line in the middle indicates the minimum
required residual energy for data transmission. The IoT nodes
that have energy level less than the minimum requirement,
do not have sufficient energy for transmission. Therefore,
these nodes request for energy harvesting prior to data trans-
mission. Once the nodes have sufficient energy, channels
can be assigned for data transmission. On the contrary, the
IoT nodes that have energy level higher than the minimum
requirement can participate in multi-band spectrum sensing
process and then transmit data.

Fig. 5 shows the energy harvested by the IoT nodes that
are below the threshold of the minimum requirement. The
amount of energy harvested depends on the distance of IoT
node from energy transmitter as well as on the efficiency
of harvesting circuit. Therefore, it is evident that the energy

FIGURE 4. Residual energy of different IoT nodes.

FIGURE 5. Energy harvested by different IoT nodes that are below the
threshold of the minimum requirement.

harvested by each IoT node is different. Once the nodes have
sufficient energy, they will be ready for multi-band spectrum
sensing and data transmission. The nodes that were meeting
the minimum energy requirement criteria are contributing in
multi-band spectrum sensing and transmitting data. In other
words, these nodes are not harvesting energy and thus these
nodes are not shown in the result.

Fig. 6 shows throughput versus number of IoT nodes for
simplex method, greedy approach, and random approach.
It is illustrated that simplex method and the greedy method
performed better as compared to the random approach. On the
other hand, simplex method explained in section IV-A, per-
formed even better than the greedy approach method. This
is because of the proposed framework, which maximizes the
throughput of IoT nodes by assigning optimal channels. This
shows the significance of the proposed resource allocation
scheme to maximize the throughput of IoT systems.

The performance of throughput versus the number of chan-
nels is shown in Fig. 7 for simplex method, greedy approach,
and random approach. The throughput performance with the
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FIGURE 6. Throughput versus number of IoT nodes for the cluster based
IoT network with RF energy harvesting.

FIGURE 7. Throughput versus number of channels for the cluster based
IoT network with RF energy harvesting.

random approach does not improve with the increase in the
number of channels. This is because the channels are assigned
randomly. On the contrary, in the other two approaches,
throughput improves drastically with the increase in the num-
ber of channels. Initially, the result of the analysis of the
simplex method and the greedy approach was the same.
However, as the number of channel increases, the simplex
method provides better throughput as compared to the greedy
approach. This shows the optimal assignment of channels in
the case of simplex method.

VI. CONCLUSION
The continuous growth of sophisticated IoT applications
requires spectrum and energy efficient solutions. NOMA is
considered as a potential solution to enhance spectral effi-
ciency in 5G networks. The paper introduced a resource
management framework for cognitive IoT network with
RF energy harvesting in 5G networks. We formulated an

optimization problem with the objective of maximizing sys-
tem throughput while satisfying constraints on the QoS
requirements and residual energy. We then solved the for-
mulated problem with the simplex method and heuristic
algorithm to find an appropriate solution. We evaluated
the performance of the proposed framework for resource
management in terms of system throughput and harvested
energy. The simulation results showed the performance of
the proposed heuristic greedy algorithm is near to the sim-
plex method. The proposed framework is an important step
towards future research work in the area of resource manage-
ment based on NOMA for IoT in 5G networks.
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