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ABSTRACT This paper aims to build an artificial intelligence (AI) architecture for automated extraction
of learned-from-data image features from contrast-enhanced ultrasound (CEUS) videos and to evaluate the
Al architecture for classification between benign and malignant cervical lymph nodes. An Al architecture
for CEUS feature extraction and classification was constructed by using the point-wise gated Boltzmann
machine (PGBM). The PGBM consisted of task-relevant and task-irrelevant hidden units for both feature
learning and feature selection, and the task-relevant units were connected to the support vector machine
(SVM) to yield the likelihood for classification. The synthetic minority over-sampling technique was used
to improve the classification ability for an unbalanced data set. Experimental evaluation was performed
with the five-fold cross validation on a database of 127 lymph nodes (39 benign and 88 malignant) from
88 patients. The SVM likelihood exhibited a significant difference between benign and malignant cervical
lymph nodes (0.74 £0.21 versus 0.33+0.28, p < 0.001). On the test set, the accuracy, precision, sensitivity,
specificity, and Youden’s index of the Al architecture were 82.55%, 89.58%, 84.75%, 77.56%, and 62.32%,
respectively. The Al architecture using the PGBM shows promising classification results, and it may be
potentially used in clinical diagnosis for cervical lymph node malignancy.

INDEX TERMS Artificial intelligence, contrast-enhanced ultrasound, cervical lymph nodes, point-wise

gated Boltzmann machine.

I. INTRODUCTION

Cervical lymphadenopathy often presents with head and
neck malignancies such as thyroid cancer, lymphoma, and
esophageal cancer [1]. Differentiating malignant from benign
cervical lymph nodes is important for clinical manage-
ment including staging, prognosis, and optimization of treat-
ment process [1]. Contrast-enhanced ultrasound (CEUS)
is an emerging technique for diagnosis of lymphadeno-
pathy [2]-[7]. CEUS involves harmonic imaging and admin-
istration of ultrasound contrast agent intravenously to
enhance the backscattering signal and visualize the perfusion
of intranodal blood vessels [2], [4], [7].

Lymph node examination using CEUS provides a video
lasting for a few minutes that may include thousands of
sequential images. Visual interpretation of a CEUS video
is subjective, tedious and time-consuming for a radiologist

or oncologist [8], which also limits the accuracy of lym-
phadenopathy diagnosis. Therefore, it would be desirable
to develop computer-aided diagnosis (CAD) approaches
for more accurately, objectively and efficiently interpreting
CEUS images and distinguishing malignant from benign cer-
vical lymph nodes [9], [10].

Recent CAD systems for lymphadenopathy on ultra-
sound uses the statistical features (SFs), also called the
human-crafted features in research areas of computer
vision [11], [12]. The SFs include shape features and intensity
statistics of a lymph node that are calculated on B-mode,
Doppler sonography and elastography [12]-[15], as well as
perfusion features that are derived from the time-intensity
curve (TIC) analysis on CEUS [3]. The SFs are often
extracted by depending on professional knowledge or human
labor, and the choice of specific SFs largely affects the
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diagnosis performance [16]. Artificial neural networks
(ANNs) have gained a huge attention in various fields on
account of recent advances in artificial intelligence (Al) tech-
nology [17]. ANNSs involve applying connected units called
artificial neurons to raw data (such as the pixel values in an
image) to learn features (representations) of the data. Thus
in an image classification scenario, ANNs allow a computer
to be fed with raw pixel values and to automatically explore
the learned-from-data features needed for end-to-end classi-
fication [17]. Recent development of CAD for breast tumors
with ultrasound has suggested that the image features auto-
matically induced from pixels by ANNs could outperform the
SFs [11], [18]. The performance of ANNs on the classifica-
tion of lymphadenopathy with CEUS is yet to be determined.

However, lymph node CEUS images contain speckle noise,
artifacts including acoustic shadows, and other irrelevant
patterns including the interference from neighboring tis-
sues or large vessels such as carotid arteries. These irrelevant
patterns may all hinder precise classification of lymph nodes.
To deal with the irrelevant patterns is an extreme difficulty
in building an ANN architecture that can robustly learn from
complex CEUS video images. Hence the challenge is how
to learn robust representations that can differentiate useful
(i.e., task-relevant) patterns from large amounts of distracting
(i.e., task-irrelevant) patterns [19].

Popular ANN methods including the convolutional neural
network and autoencoder are inappropriate for overcoming
the challenge, because they do not focus on distinguishing
task-relevant and irrelevant patterns [11]. Instead, a newly
developed ANN approach, the point-wise gated Boltzmann
machine (PGBM), appears to be promising through intro-
duction of a gating mechanism for estimating where task-
relevant patterns occur [19]. Thus, the aim of this study is to
construct an Al architecture by using PGBM for automated
extraction of learned-from-data, task-relevant image features
from CEUS videos, and to evaluate the Al architecture in
classification between benign and malignant cervical lymph
nodes.

Il. MATERIALS AND METHODS
A. IMAGE ACQUISITION AND PRE-PROCESSING
This retrospective study was approved by our institutional
review board and informed consent was obtained from all
patients. Cervical lymph nodes suspected for malignancy
were referred to CEUS examination at the Department
of Ultrasound, Zhongshan Hospital, Fudan University. The
CEUS video images of 127 lymph nodes from 88 patients
(33 male and 55 female; 49.1 & 15.4 years old; age range:
20-77 years) were collected. Malignant diagnosis was
reached through pathology as the gold standard, while the
benignancy was confirmed through pathology or negative
follow-up. There were 39 benign and 88 malignant lymph
nodes in the cohort.

The CEUS imaging was carried out with the MyLab
Twice ultrasound system (Esaote SpA, Genoa, Italy) and a
bolus injection of 1.5 mL of the contrast agent SonoVue
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(Bracco SpA, Milan, Italy). Each CEUS video was in a
size of 800 x 555 with 256 gray scales, a resolution
of 138.3 + 24.3 pixel/cm, and a sampling frequency of
24.2 £ 3.4 frame/s.

After injection of contrast agent, the average gray level
(AGL) within a lymph node on CEUS varies along time due
to blood perfusion. In a CEUS video sequence, an elliptical
region of interest was specified along the nodal border, and
the AGL within the region was calculated to generate a TIC.
From the TIC, the frame with the largest AGL called the
peak frame was detected. A sequence of successive frames,
which lasted several seconds and was centered on the peak
frame, was automatically selected from the video images
with the Butterworth band-pass and low-pass filtering. These
selected frames were averaged to derive a temporal mean
image (TMI). The TMI was downsampled to a fixed size
of 32 x 54 and converted to a vector of 1728 dimensions
as the input of the AI architecture. For details of the
CEUS image pre-processing, readers can refer to our previous
work [8], [20], [21].

B. PGBM-BASED Al ARCHITECTURE FOR FEATURE
EXTRACTION AND CLASSIFICATION

A CEUS image of a cervical lymph node contained a large
amount of irrelevant sensory patterns such as speckle noise,
acoustic shadows, and interference from neighboring tis-
sues or vessels, which were distracting to the diagnosis.
Thus it was crucial to explore an automated algorithm to
distinguish between relevant and irrelevant patterns. Here
we used the PGBM to estimate where task-relevant patterns
occurred on CEUS and thereby constructed an Al architec-
ture for CEUS feature extraction and classification based on
the PGBM.

As shown in Fig. 1, first, the CEUS video images were
pre-processed to produce a TMI image, and the TMI image
was converted to a vector as an input to the PGBM. Second,
the PGBM introduced a gating mechanism by relying on
the so-called ““switch units”’, through which the PGBM per-
formed feature selection both on learned high-level features
(i.e., hidden units) and on raw features (i.e., visible units
that were TMI image pixels) [11], [19]. Finally, based on the
features selected by the PGBM, the support vector machine
(SVM) was used to yield the likelihood of classification and
to identify the benign and malignant cervical lymph nodes.
Here, the SVM likelihood of classification was a posterior
probability between 0 and 1 representing the possibility of a
lymph node being classified into a benign one [11], [12]. For
details of the PGBM technique, please refer to the pioneering
technical work by Sohn et al. [19] and our recent application
of PGBM to breast tumor sonoelastogrpahy [11].

C. COMBINATION OF PGBM AND SMOTE FOR
UNBALANCED DATA

The ratio of benign and malignant sample size was 1:2.3
in our study, which means the dataset was unbalanced.
The unbalance of data has a large influence on the
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FIGURE 1. Schematic diagram of our artifically intelligent diagnosis architecture for lymphanopathy on contrast-enhanced ultrasound (CEUS) images

based on the point-wise gated Boltzmann machine (PGBM).

FIGURE 2. The Al architecture for diagnosis on an unbalanced dataset with the point-wise gated Boltzmann machine (PGBM) and the synthetic minority

over-sampling technique (SMOTE).

classification performance of SVM [22], [23]. There-
fore, we wused the synthetic minority over-sampling
technique (SMOTE) to reduce the class unbalance by cre-
ating synthetic minority class examples [22]. The basic
principle of the SMOTE is to interpolate between two
minority class samples, resulting in a new minority class
sample.

The PGBM-based Al architecture for diagnosis on an
unbalanced dataset is illustrated in Fig. 2, including the fol-
lowing steps:

1) The dataset was divided into a training set and a test set;

2) The SMOTE was used to increase the number of minor-
ity class samples in the training set to reduce the unbalance
of data;

3) The PGBM and SVM were used on the training
set for training the feature extraction and classification
model;

4) The PGBM and SVM were used on the test set for
validating the performance of the trained model.

VOLUME 6, 2018

D. CROSS VALIDATION AND PERFORMANCE EVALUATION
The proposed approach for Al based diagnosis, as well as

the statistical analysis and validation, was implemented with
MATLAB R2014a (The MathWorks, Natick, MA, USA).

1) GENERAL EVALUATION
First on the entire cohort, the independent two-sample t-test
was employed to examine the difference of SVM likeli-
hood between benign and malignant lymph nodes. Then the
five-fold cross validation was used to verify the feature
extraction and classification model. The entire dataset was
randomly divided into five equal-sized subsets, four of which
were used for training and the remaining one was used for
testing. This process was repeated five times, and each time
one different subset was used as a test set. The five-fold cross
validation was again randomly repeated five times, taking the
average values from 25 test sets as the final results.

In order to quantitatively evaluate the classifica-
tion performance, the following indices were calculated:
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TABLE 1. Results of eight models based on the point-wise gated Boltzmann machine (PGBM) for classification of cervical lymph nodes (unit: %).

ACC PRE SEN SPC YI
PGBM 82.68+0.49 83.00+1.51 94.32+1.82 56.4145.47 50.73+3.70
PGBM-SMOTE 82.55+1.40 89.58+1.88 84.7542.76 77.56+4.92 62.32+3.61
PGBM-EC 72.07£1.94 74484038 88.18+0.91 31.79+2.05 19.98+1.14
PGBM-SMOTE-EC 77.80+0.32  82.72+0.15 85.91+0.91 59.49+1.03 45.40+0.12
PGBM-RBM 82.36+0.63  80.59+0.85 98.18+1.36 46.67+1.02 44.85+0.34
PGBM-RBM-SMOTE ~ 74.49+0.39 93.03+2.59 68.41£1.67 88.21+5.02 56.61+3.35
PGBM-RBM-EC 65.0442.20 72.31+0.83  80.23+3.18  30.77+0.00 10.99+3.18
PGBM-RBM-SMOTE-EC  62.99+6.22  79.86+3.07 62.05+8.99 65.13+4.76 27.17+9.63

accuracy (ACQ), precision (PRE), sensitivity (SEN), speci-
ficity (SPE), and Youden’s index (YI). In addition, we
summarized the numbers of cases correctly and wrongly
classified, and we performed x2-test to compare two clas-
sification models.

2) COMPARISON BETWEEN DIFFERENT MODELS

Our final Al architecture (i.e., model) for feature extraction
and classification using both PGBM and SMOTE was named
PGBM-SMOTE. The PGBM-SMOTE model was compared
with the model only using PGBM but without SMOTE,
namely the PGBM model. The PGBM-SMOTE and PGBM
were both shallow ANNs which only had a single layer of
networks. In our previous work, we proposed using a deep
ANN model named the PGBM-RBM model, which had two
layers of networks, for classification of breast tumors on
sonoelastography [11]. Here, the PGBM-SMOTE model was
also compared with the PGBM-RBM model and its variant
combining with SMOTE (PGBM-RBM-SMOTE).

We further compared the features learned and selected
by using our Al architecture with the SFs on classification
of lymph nodes. The SFs included the TIC features, gray
level statistical features, gray level co-occurrence matrix fea-
tures, and binary image texture features [11], [20], [21]. The
TIC features consisted of the peak intensity, enhanced inten-
sity, mean transit time, time to peak, etc. [8], [20]. The gray
level statistical features included the mean, median, standard
deviation, entropy and several percentiles of the gray lev-
els within a lymph node on the TMI [20]. The gray level
co-occurrence matrix features included contrast, energy,
entropy and homogeneity [21], [24]. The binary image tex-
ture features included center deviation degree, dispersion
degree, etc [20]. In total, 312 SFs were calculated. Then
we performed two schemes regarding feature selection of
SFs: (a) the least absoulute shrinkage and selection opera-
tor (LASSO), and (b) t-test [11]. Thus, two SF models for
feature extraction and classification were derived and named
SF-LASSO and SF-T, respectively.
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Adding an error cost (EC) in the SVM classifier may
contribute to enhanced performance for unbalanced data [23].
For comparison purposes in this study, we set a larger EC
for the minority class in order to reduce the influence of the
unbalanced data. The PGBM model modified with adding an
EC term was named PGBM-EC.

In total, there are 16 feature extraction and classifica-
tion models for comparison, named as “XX-YY”. Here,
“XX” stands for PGBM, PGBM-RBM, SF-LASSO, or
SF-T; “YY” stands for SMOTE, EC, both SMOTE and EC
(“SMOTE-EC”), or none of SMOTE and EC (only “XX"").

Ill. RESULTS
A. CHARACTERISTICS OF CERVICAL LYMPH NODES
Among 39 benign lymph nodes, 35 were reactive hyperplasia
and 4 were lymph node tuberculosis. Among 88 malignant
lymph nodes, 13 were lymphoma, and 57 were metastasis
from thyroid cancer, 8 from lung cancer, 4 from esophageal
cancer, 3 from breast cancer, 1 from nasopharyngeal cancer,
1 from ovarian cancer, and 1 from mesothelioma.

The SVM likelihood in benign cervical lymph nodes
was significantly different from that in malignant nodes
(0.74 £0.21 vs. 0.33 £0.28, p < 0.001).

B. CLASSIFICATION RESULTS OF PGBM-BASED MODELS
Table 1 shows classification results of eight PGBM-based
models on the test sets. According to the YlI-value,
the PGBM-SMOTE performed best among eight models
(62.32%), and its ACC, PRE, SEN, and SPE were 82.55%,
89.58%, 84.75%, and 77.56%. From Table 1, we can also
see that the four single-layer PGBM models (i.e., the shallow
networks) were all better than the corresponding two-layer
PGBM-RBM model (i.e., the deep networks) in terms of ACC
and YI.

C. CLASSIFICATION RESULTS OF STATISTICAL FEATURES
The classification results of SF models on the test sets are
enumerated in Table 2. The SF-LASSO-SMOTE achieved
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TABLE 2. Results of eight models based on statistical features for classification of cervical lymph nodes (unit: %).

ACC PRE SEN SPC YI
SF-T 68.50+43.73  73.33+1.96 85.68+44.47  29.7445.28  15.42+7.47
SF-T-SMOTE 65.5142.51  73.0242.56 80.00+4.10 32.82+10.56 12.82+8.39
SF-T-EC 69.134£2.01  78.97£1.99 75.6842.65 54.36£5.71  30.04+5.33
SF-T-SMOTE-EC 66.7742.08 72.35+1.62 84.32+41.33  27.1845.52  11.50+5.92
SF-LASSO 73.2342.17  77.6242.10 86.36+2.87  43.59+£7.25  29.95+6.41
SF-LASSO-SMOTE ~ 73.53+0.81 78.73+1.31 83.77+1.54 4821+4.70  31.9843.5]
SF-LASSO-EC 68.0343.36  78.06+2.85 75.0042.24  52.31£6.99  27.31+8.56
SF-LASSO-SMOTE-EC ~ 71.97+#2.52  78.27+1.93 82.50+3.01  48.21+5.71  30.71%6.05

the best performance among eight models in terms of YI
(32.98%). Its ACC, PRE, SEN, and SPE were 73.53%,
78.73%, 84.77%, and 48.21%. The SF-LASSO-SMOTE
was inferior to the PGBM-SMOTE. From the experimental
results, we can also see that the SF-LASSO models were
generally better than the SF-T models. In addition, the SEN
and SPC of the SF models had a large difference even they
used SMOTE or EC methods for compensation of the data
unbalance.

D. COMPARISON BETWEEN NUMBERS OF CASES
CORRECTLY OR WRONGLY DIAGNOSED

Table 3 gives the numbers of cases, in one experiment of five-
fold cross validation, correctly or wrongly diagnosed by three
typical models, namely the PGBM-SMOTE, PGBM and
SF-LASSO-SMOTE. There were 78 cases correctly classi-
fied by all of the three models; the typical examples are
shown in Fig. 3a. There were 16 cases correctly classified by
both the PGBM-SMOTE and PGBM but misclassified by the
SF-LASSO-SMOTE (Fig. 3b). In addition, there were 7 cases
correctly classified by the PGBM-SMOTE but misclassi-
fied by both the PGBM and SF-LASSO-SMOTE (Fig. 3c).
The PGBM-SMOTE correctly classified more cases than
SF-LASSO-SMOTE (104 correct: 23 wrong vs. 93:34,
p = 0.098).

PGBM-SMOTE and PGBM had similar classification
results (104:23 vs. 107:20, p = 0.616). Table 4 further
gives the numbers of cases correctly or wrongly diagnosed
by the PGBM-SMOTE and the PGBM. In benignancy, there
were 10 cases correctly classified by the PGBM-SMOTE
but misclassified by PGBM. Meanwhile, there was only
1 case correctly classified by the PGBM but misclassified
by PGBM-SMOTE. In malignancy, there were 12 cases
correctly classified by PGBM but misclassified by
PGBM-SMOTE. Meanwhile the number of cases correctly
classified by PGBM-SMOTE but misclassified by PGBM
was 0. The classification results of the PGBM on the benign
and malignant subsets were very different (22:17 vs. 85:3,
p < 0.001). In contrast, the results of PGBM-SMOTE were
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TABLE 3. Numbers of cases correctly or wrongly diagnosed with three
feature extraction and classification methods.

PGBM-SMOTE PGBM SF-LASSO-SMOTE Case No.

Correct Correct Correct 78
Correct Correct Wrong 16
Correct Wrong Correct 3
Correct Wrong Wrong 7
Wrong Correct Correct 6
Wrong Correct Wrong 7
Wrong Wrong Correct 6
Wrong Wrong Wrong 4

relatively balanced between benignancy and malignancy
(31:8 vs. 73:15, p = 0.641). These detailed results on
benign and malignant subsets showed that compared with
the PGBM, the PGBM-SMOTE increases the numbers of
correctly classified in benignancy but decreases them in
malignancy. It indicated that the PGBM-SMOTE elevated
the specificity while sacrificed in the sensitivity, and thus
made the sensitivity and specificity balanced for such an
unbalanced dataset consisting of much more malignant nodes
than benign.

IV. DISCUSSION
The main contribution of this study is proposing an end-to-
end Al architecture for learning and selecting image fea-
tures from CEUS videos and for automatic classification
of cervical lymph nodes. The Al architecture has elevated
classification ability for the unbalanced dataset compared
with the traditional SF methods. In future clinical diagnosis,
our Al architecture could be used as a valuable tool for
distinguishing malignant and benign cervical lymph nodes.
Our Al architecture was constructed based on the PGBM.
The switch units in the PGBM allowed the model to esti-
mate for each TMI of CEUS where the task-relevant patterns
occurred and to make only those relevant visible units
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FIGURE 3. Typtical samples of benign (B, top) and maligant (M, bottom)
cervical lymph nodes that were correctly classified with our PGBM-SMOTE
model. The lymph nodes shown in (a) were also correctly classified with
the PGBM and the SF-LASSO-SMOTE, the nodes shown in (b) were
correctly classified with the PGBM but misclassified with
SF-LASSO-SMOTE, and the nodes shown in (c) were

misclassified with both PGBM and SF-LASSO-SMOTE.

TABLE 4. The numbers of cases correctly and wrongly classified in benign
and malignant lymph nodes with the PGBM-SMOTE and the PGBM
models.

PGBM-SMOTE PGBM Case No.

Correct Correct 21

. Correct Wrong 10
Benign Wrong Correct 1
Wrong Wrong 7

Correct Correct 73

' Correct Wrong 0
Malignant Wrong Correct 12
Wrong Wrong 3

(pixels) to contribute to the final classification. The architec-
ture ignored the task-irrelevant portion of the visible units,
and thus it performed dynamic feature selection, namely
choosing a variable subset of the raw features depending on
adaptive interpretation of an individual image.

From Tables 1 and 2, we can see that the SMOTE and
EC were both helpful for improving the classification per-
formance of the unbalanced data, but the combination of the
two techniques did not perform well. In addition, for the
PGBM models, the SMOTE performed better than EC, while
for the SF models, the EC seemed to yield better results
than SMOTE. This phenomenon might indicate that the
SMOTE and EC were suitable for different feature spaces.
The optimal solution for classification of unbalanced data still
needs to be investigated in the future.

It can be seen from Tables 1 and 2 that three
PGBM-based models, namely PGBM, PGBM-SMOTE
and PGBM-SMOTE-EC, achieved better results than the
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corresponding SF-based models in terms of all five indices.
For instance, compared with the SF-LASSO-SMOTE,
the PGBM-SMOTE increased the ACC, PRE, SEN, SPC,
and YI by 9.02%, 10.85%, 0.98%, 29.35% and 30.34%
respectively. These results indicated that the task-relevant
component in the PGBM could capture the intrinsic differ-
ences in a CEUS video between benign and malignant nodes
and thus improve the classification performance, while the
SF models were disturbed by the task-irrelevant patterns in
the video. In addition, the SF generation required prior expert
knowledge of cervical lymph nodes, which complicated the
diagnosis process. Our Al architecture needed little prior
knowledge, and hence it could be more proper and convenient
for future clinical diagnosis.

The single-layer PGBM models were better than the
two-layer PGBM-RBM models (Table 2), especially when
SMOTE was applied, implying that the shallow networks
outperformed the deep networks (i.e., deep learning) for cer-
vical lymph node classification on CEUS. Since the medical
image datasets are usually in a small size, deep networks on
such small datasets may tend to overfit the data. A recent
study on music genre classification also demonstrated that
shallow networks were better suited for small datasets than
deep networks [25]. In contrast, our previous work on classi-
fication of breast tumors with sonoelastography showed supe-
rior performance of deep networks to shallow networks [11].
Therefore, whether deep or shallow models are appro-
priate for a small medical dataset still needs to be fur-
ther investigated and the answer may depend on specific
applications.

In the PGBM-based models, the classification results with
different numbers of hidden units were similar. For instance,
when we varied the unit number from 10 to 500 in an interval
of 10, the classification accuracy only changed by 4.0%.
It showed the robustness of the proposed architecture to this
parameter. Finally we set the number as 80 to achieve best
performance, where the numbers of relevant and irrelevant
units were both 40.

There are several limitations and directions for future work.
First, multiple modalities, including conventional ultrasound,
sonoelastography, magnetic resonance imaging, computed
tomography and positron emission tomography, are expected
to be incorporated in the Al architecture for better differen-
tiation of lymphadenopathy. Second, this study focuses on
binary classification of benign and malignant lymph nodes.
There are many sub-classes in benign and malignant nodes,
and the detailed classification of nodal sub-classes is helpful
for optimal therapeutic planning and deserves future investi-
gation. Third, in addition to the differential diagnosis of cer-
vical lymph nodes, the proposed Al architecture is expected
to be easily applied to the diagnosis of other diseases with
little modification but retraining on samples of the target
diseases, and then a new network will be constructed for the
new application [11]. Fourth, the Al architecture for diagnosis
will be upgraded for evaluation of treatment response in a
future study, for example, for timely identification of head
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and neck cancer patients at risk of residual malignant lymph
nodes after chemo-radiotherapy [24].

In conclusion, we construct an Al architecture by using
the PGBM and SMOTE for differentiating malignant from
benign cervical lymph nodes on CEUS. The experimental
results show that the shallow PGBM-SMOTE model has
better classification performance than the SF models and
other PGBM-based models including the deep models. Our
Al architecture could be potentially valuable for the future
diagnosis and clinical management of lymphadenopathy.
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