
Received September 18, 2018, accepted October 3, 2018, date of publication October 11, 2018, date of current version November 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2875498

Rateless Multiple Access: Asymptotic Throughput
Analysis and Improvement With Spatial Coupling
ZHAOYANG ZHANG 1, (Member, IEEE), XIANBIN WANG1, YU ZHANG 2, (Member, IEEE),
AND YAN CHEN3, (Member, IEEE)
1College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China
2College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
3Huawei Technologies Co., Ltd., Shanghai 200121, China

Corresponding author: Zhaoyang Zhang (ning_ming@zju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61725104 and Grant 61631003, the
National High-Tech R&D Project under Grant 2014AA01A702, and in part by Huawei Technologies Co., Ltd., under Grant
HF2017010003, Grant YB2015040053, and Grant YB2013120029.

ABSTRACT A novel random code-domain non-orthogonal multiple access (NOMA) framework, rateless
multiple access (RMA), is studied in this paper. In RMA, instead of granting each user specific radio
resources in a fixed and centralized manner, the access point simply assigns to it a random access control
function, according to which the user independently chooses a pseudo-random number of symbols each time
and transmits their weighted sum until receiving an acknowledgment that indicates the successful recovery
of its information. In this way, the transmission process of each individual user as well as that of all the users
as a whole, resembles a special linear superposition rateless encoder and, thus, information can be retrieved
with the low-complexity belief propagation (BP) algorithm at the access point. In this paper, the asymptotic
throughput of RMA with BP decoding is analyzed. Then, in order to bridge the performance gap between
BP decoding and the optimal MAP (maximum a posteriori) decoding, we apply the most recently developed
coding technique of spatial coupling to RMA and propose an enhanced version, SC-RMA, in which all
the user codewords are properly spatially-coupled across different subsets of REs. We prove that SC-RMA
asymptotically approaches the channel sum-rate capacity with high adaptability and low-signaling overhead,
which makes it a viable candidate for massive access.

INDEX TERMS Internet of Things (IoT), massive access, non-orthogonal multiple access.

I. INTRODUCTION
A. MOTIVATION
Massive access is one of the key technologies for future
Internet of Things (IoT) which aims to provide reliable and
adaptive connections for large number of devices over shared
and dynamic resources [2]–[5]. Recently, non-orthogonal
multiple access (NOMA) [6] has attracted a lot of research
interest for its potential in enhancing the system capacity
and meanwhile increasing the number of users by non-
orthogonally sharing the resources among users. A typical
NOMA scheme either exploits mainly the power domain
and applies successive interference cancelation (SIC) to the
received signal with differentiated user power [6], or exploits
mainly the code domain and iteratively decodes the received
signal by making use of certain codeword sparsity, such as
low density signature multiple access (LDS) [7] and sparse
code multiple access (SCMA) [8]. Due to its high spectrum
efficiency, NOMA has been selected as the basic framework
in 5G standardization.

However, several critical issues have yet to be solved in the
design of massive access schemes. First, as the user number
increases, centralized coordination becomes more difficult
and inefficient. In particular, well-designed user pairing and
accurate power control as usually required in conventional
NOMA incurs considerable signalling and is not easy to
realize in practice. Distributed coordination instead becomes
more attractive in this sense. Second, the network becomes
more dynamic with the increasing user number as well as
the varying channel conditions in a wireless context. Fixed
code/signature sequence design as in LDS, cannot adapt well
to the network dynamics. High adaptability is thus of partic-
ular importance in the massive access protocol design.

Recently, random access, a technique for early computer
networking, has been resurging due to its great advantages
in signaling overhead and network adaptability [9]. Among
all the possible approaches, the random access protocols
incorporated with random coding and adaptive SIC have
been of particular interests due to the increased achievable
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throughput [10]. However, the spectrum efficiency of these
protocols are still relatively low, since only single-user detec-
tion and decoding has been employed in these protocols.

In this work, we aim to establish a novel framework of
random non-orthogonal massive access, namely, Rateless
Multiple Access (RMA), which incorporates random access
with the code-domain NOMA. In particular, in RMA, instead
of granting each user specific resource elements (RE, i.e., a
certain subcarrier-time slot pair), the access point (AP)
assigns to it an random access control function (RACf)
according to which each user independently and pseudo-
randomly chooses a certain number of symbols for every RE
and then transmits their linear combination over that RE. The
transmission stops once the user receives an acknowledge-
ment (ACK) from the AP indicating the successful recovery
of its information. As a result, the transmission process of
each individual user, as well as those of all the users as
a whole, resembles a special linear superposition rateless
encoder and BP algorithm can be used to retrieve the user
information at the AP. Intuitively, RMA could work without
specific RE allocation, which greatly reduces the signalling
overhead. Moreover, due to the intrinsic rate adaptation prop-
erty of rateless codes, RMA adapt well to the traffic and
channel variations.

To further improve the performance, based on the above
framework, we further incorporate RMA with the most
recently developed idea of spatial coupling [11], a tech-
nique to improve the saturation threshold of iterative
BP decoding or iterative detection [12], [13], and pro-
pose a novel Spatially-Coupled RMA (SC-RMA) protocol.
SC-RMA retains the whole attractive features of RMA, and
more importantly, it is proved to be capacity-approaching in
an asymptotic sense.

B. RELATED WORKS
The original work of [14] studied in theory the achievability
of gaussian multiple access channel capacity with rateless
coding, which shows a new way for the design of multiple
access protocols. To the best of our knowledge, the first
series of attempts that incorporate rateless codes into practical
multiple access protocol design were reported in [15]–[17].
Therein, instead of precoding the user information with a
fixed-rate LDPC code as in IDMA [18], Raptor code [19]
was employed to adapt the user transmission rate to the mul-
tiple access channel in which collision occurs unexpectedly
since there lacks centralized coordination. Similarly, in [20],
the authors introduced a frameless ALOHA that operates
like a rateless code with simple repetitive encoding and
iterative erasure decoding, and provided heuristic criteria to
maximize the media access control (MAC) layer throughput.
However, physical-layer properties of the wireless multiple
access channel, such as linear superposition of collided sig-
nals and channel noise have not been fully considered therein.
In [21], the authors proposed a similar idea in an analog
fountain code framework. Therein empirical code degree and
weight distribution are employed, the asymptotic achievable

sum rates have not been analyzed, and the non-optimality
of BP decoding and efficient spatial coupling of user code
graphs have not been considered.

On the other hand, spatial coupling has been applied to ran-
dom access protocols such as coded slotted ALOHA (CSA),
to attain a performance close to the theoretical limit [22].
However, the physical-layer properties have not been fully
considered there. In [12], the authors applied spatial coupling
to sparsely spread CDMA to improve the detection perfor-
mance. In [23] and [24], spatially coupling combined with
two-stage decoding is proved in theory to achieve the channel
capacity. Compared to the above schemes, we are not just
applying another type of spreading codes (i.e., rateless codes
vs. fixed-rate codes) which makes RMA adapt well to the
traffic and channel variations and asymptotically achieve the
sum-rate capacity, but its rateless nature brings a major con-
ceptual shift with respect to the previous centralized spread-
ing, which greatly reduces the signaling overhead especially
when the number of users is large or the set of active users
changes dynamically.

C. SUMMARY OF CONTRIBUTIONS
The contributions of this paper can be summarized as
below:
• We establish a novel framework for random non-
orthogonal massive access, namely RMA, which pro-
vides high spectrum efficiency with a relatively low
signaling overhead and high adaptability. We derive the
maximum achievable throughput under different signal-
to-noise ratios (SNRs) and overloading factors based on
the extrinsic information transfer (EXIT) theory [25],
and develop the optimal degree distribution which pro-
vides some insights for the practical design of RACfs.

• We incorporate the coding technique of spatial coupling
to RMA and propose the SC-RMA scheme, which pro-
vides increased system spectrum efficiency and reduced
decoding complexity while retaining all the other attrac-
tive properties of basic RMA. Furthermore, we derive
the achievable throughput of SC-RMA based on EXIT
theory and prove that it is able to approach the channel
capacity asymptotically.

• For further enhancing the performance of RMA in
practical applications, we optimize system parameters
including the RACfs, the spatial coupling pattern, and
the coding rates and degree profiles of LDPC precoders
using a two-step design method, which provides a feasi-
ble way for real system design.

The rest of the paper is organized as follows. In Section II,
the system model, access procedure and decoding algorithm
are introduced. In Section III, the achievable rate region of
RMA is analyzed using the EXIT theory. In Section IV,
SC-RMA is introduced and is proved to be capacity-
approaching. In Section V, the key parameters in RMA are
optimized using a practical two-step design method. Exten-
sive simulation results are presented in Section VI and con-
clusions are drawn in Section VII.
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FIGURE 1. Block diagram of the user side in the RMA framework.

II. PROTOCOL AND ALGORITHM
Consider a cellular network with a number of potential users
and an AP. All the users are assumed to be synchronized
according to the down-link beacon. In case there still exist
residue packet delays among users, such delays could be
naturally compensated by the CP (cyclic prefix) if OFDM
(Orthogonal Frequency Division Multiplexing) signalling is
adopted. The users independently access the AP sporadically.
At a given time, among all of them, K users, denoted by
set UA of {U1,U2, ...,UK }, are active. As shown in Fig.1,
during each access period, Uk (k = 1, 2, ...,K ) first
encodes its mk information bits with an LDPC encoder,
and maps the resultant coded bits to a vector of sym-
bols {xk,1, xk,2, ..., xk,Nk } with ±1-valued indices, and then
attempts to send them to theAP based on the access procedure
as described below. The total length of information bits from
all the active users is denoted by m ,

∑K
k=1 mk , and the total

amount of resultant symbols is denoted by N ,
∑K

k=1 Nk .
At last, a quasi-static fading channel is considered, i.e., we
assume that the channel gains from different users to the
AP are independent and keep static during the transmission
period of each packet.

A. ACCESS PROCEDURE OF RMA
Before starting the packet transmission, each active user
accomplishes a certain initialization/registration process
(please be referred to [9] for details), which enables the AP
to obtain the current UA, the packet lengths and the corre-
sponding channel gains, etc. Based on these parameters, the
AP starts the procedure of data transmission by assigning
each active user an RACf as follows:

ρk (x) =
dmax∑
d=0

pk,dxd , k = 1, 2, . . . ,K (1)

where pk,d denotes the probability of User k to select d out of
Nk symbols and

∑dmax
d=0 pk,d = 1. The RACfs can be viewed

as some kind of distribution profiles and are used for the
active users to share a block of REs in a distributive manner
as described below.

As the transmission process starts, for every RE t ∈
{1, 2, . . . ,T } where T denotes the total amount of REs, Uk
first pseudo-randomly chooses a degree dk,t from 0 to dmax
with probability pk,dk,t according to its RACf. If dk,t = 0,
it transmits nothing over the RE. Otherwise, it uniformly
selects dk,t symbols from {xk,1, xk,2, . . . , xk,Nk }, linearly
combines them and then sends out the result over RE t .

Denote the set of indices of the selected symbols as V(t, k) ⊆
{1, 2, . . . ,Nk}. Thus the signal transmitted by Uk over RE t
is

x ′k,t =

{∑
nk∈V(t,k)

gkxk,nk dk,t 6= 0

0 dk,t = 0,
(2)

in which gk denotes the scaling factor to meet the power
constraint. The signals transmitted over RE t from all the
users are linearly added together in the air, and thus the signal
received by the AP over RE t can be written as

yt =
K∑
k=1

hkx ′k,t + zt =
K∑
k=1

∑
nk∈V(t,k)

hkgkxk,nk + zt , (3)

where zt denotes the Gaussian noise at RE t with mean zero
and variance σ 2

w. Since hk and gk have equivalent impacts
on the received signal, we need not distinguish them, and
hereafter we define ck = hkgk for brevity:

yt =
K∑
k=1

∑
nk∈V(t,k)

ckxk,nk + zt . (4)

At the AP, it consistently collects signals from all the avail-
able REs and keeps attempting to decode the user messages.
Once a user message is successfully decoded, the AP feeds
back to that user an ACK signal via the downlink to end its
current transmission. Note that in this paper, we consider a
half-duplex system in which the uplink and downlink trans-
missions are separated in time or frequency.
Remark 1: Obviously, the above transmission process

resembles a special linear superposition rateless encoder
(in contrast to the XOR-based conventional rateless
encoders). On the one hand, the transmission of each user
can be viewed as a centralized linear superposition rateless
encoder, since each of its channel inputs is the local linear
combination of a random number of randomly selected sym-
bols. On the other hand, the transmissions of all active users
as a whole can be viewed as a distributed linear superpo-
sition rateless encoder, since now the linear superposition
is accomplished over the air. Due to such intrinsic features,
the proposed framework is named RMA.

B. DECODING ALGORITHM OF RMA
Similar to Raptor codes [19], the transmission process of
RMA can be elegantly represented by a single sparse factor
graph, which brings the following two attractive features:
(i) It enables the AP to retrieve the messages using a low-
complexity BP algorithm; (ii) As elaborated in the following
sections, it facilitates the design of the RMA schemes. Here
we briefly describe the factor graph at first.

As shown in the graph representation of RMA in Fig.2,
there are three kinds of nodes, including check nodes (CNs),
variable nodes (VNs) and resource element nodes (RENs).
In the precoding part, each subgraph within a rectangle rep-
resents the LDPC code applied at a user. At the bottom,
each REN represents an RE. The edge between a VN and an
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FIGURE 2. Graph representation of RMA.

RENmeans that the corresponding symbol is transmitted over
that RE. The other nodes and edges are similarly defined as
in Raptor codes [19]. As we have described that, at each time
and for each active user, the number of symbols and their
indices are pseudo-randomly generated with some predefined
seed according to the RACf and the uniform distribution,
respectively. Therefore, the AP has full knowledge about
each user’s graph structure once it is activated via the reg-
istration process, and hence is able to reconstruct the whole
graph. In the case of no registration process available or in
the so-called grant-free scenario, the graph structure can
be recovered in conjunction with information decoding by
exploiting the intrinsic and unique access pattern of each
user, as elaborated in [28]. Here we only focus on the former
case.

The AP then performs iterative BP algorithm based on
which soft messages are exchanged on the graph iteratively to
retrieve the original information bits. In this process, we need
not distinguish which user a specific symbol is from, thus in
the followingwe can drop the subscript k from xk,nk in (2) and
denote them as {xn, n = 1, 2, . . . ,N } unless otherwise explic-
itly stated. The VN that represents xn is referred to as VN n.
Let L jn←−t (resp. L

j
n−→t ) denote the log-likelihood ratio (LLR)

passed from REN t (resp. VN n) to VN n (resp. REN t) in
iteration j. In particular, at the initial stage of the decoding
algorithm, there is

L0n−→t = 0. (5)

In the following, the iterative joint detection and decoding
algorithm is described briefly.

First, denote the set of indices of VNs that are connected
to REN t as V(t) ⊆ {1, 2, . . . ,N }. For VN n ∈ V(t),
the soft message from REN t to VN n can be calculated
using the MAP (maximum a posteriori probability) criterion
as follows:

L j+1n←−t = ln
p(xn = 1|yt , {L

j
n′−→t }n′∈V(t)\n)

p(xn = −1|yt , {L
j
n′−→t }n′∈V(t)\n)

= ln
p(yt |xn = 1, {L jn′−→t }n′∈V(t)\n)

p(yt |xn = −1, {L
j
n′−→t }n′∈V(t)\n)

(6)

in which

p(yt |xn = ±1, {L jn′−→t }n′∈V(t)\n)

=

∑
{xn′ }n′∈V(t)\n

∏
n′∈V(t)\n

p(xn′ )p(yt |xn

= ±1, {xn′}n′∈V(t)\n) (7)

and

p(xn′ ) =


exp (L jn′−→t )

exp (L jn′−→t )+ 1
xn′ = 1

1

exp (L jn′−→t )+ 1
xn′ = −1.

(8)

Note that the calculation of p(yt |xn = ±1, {xn′}n′∈V(t)\n) is
slightly different from that in the conventional XOR-based
Raptor codes since linear superposition is involved here.

Second, the soft message that VN n gets from all the
connected RENs can be expressed as

L j+1n =

∑
t∈Q(n)

L j+1n←−t , (9)

in which Q(n) ⊆ {1, 2, . . . ,T } denotes the set of indices
of RENs that are connected to VN n. Based on this, the
LDPC coding part can be updated iteratively as in [19] and
feeds back L j+1n−→t to RENs to further improve the detection
performance as shown in (6).

III. ACHIEVABLE THROUGHPUT OF RMA UNDER
BP DECODING
The main object of this section is to derive the maximal
achievable throughput of RMA under the low complexity
BP decoding algorithm. Due to the random structure of the
factor graph and the iterative manipulations applied herein,
it is difficult to pursue an explicit result by convergence analy-
sis. Here we resort to the EXIT theory [26] which provides an
effective approach for analysis of the performance of iterative
decoding algorithms.

A. DEFINITIONS AND NOTATIONS
For useful insight as well as tractability, we assume that all
the active users have the same Quality of Service (QoS)
requirement and the same LDPC code rate R = m

N . Moreover,
by proper power control all the user signals arrive at the
AP with nearly the same power, i.e., ck (k ∈ {1, 2, . . . ,K })
defined in (4) are equal and thus can be denoted as c with
subscript k dropped hereafter. In such a case, overloading
factor β, which is defined as the ratio of the amount of
symbols from all the users to the amount of REs, can be
calculated by:

β ,
N
T
=

m
RT

, (10)

and, throughput 2 can be calculated by

2 ,
m
T
= Rβ. (11)

VOLUME 6, 2018 63203



Z. Zhang et al.: RMA: Asymptotic Throughput Analysis and Improvement With Spatial Coupling

As to the transmission process, the total number of sym-
bols transmitted on RE t ∈ {1, 2, . . . ,T } is denoted as dt
and therefore, dt =

∑K
k=1 dk,t . Without loss of generality,

we assume that the noise variance σ 2
w = 1. In such a case,

the average SNR over all the REs, denoted by γ , can be
calculated by

γ ,

∑K
k=1 E(dk,t )(ck )

2

σ 2
w

= c2E(dt ). (12)

Moreover, we denote dn as the degree of VN n, namely,
dn = |Q(n)|. Note that Q(n), defined in (9), denotes the set
of indices of RENs that are connected to VN n. As we have
assumed that the symbols are uniformly selected during the
access procedure, we have

dn =
E(dt )T
N

,
∑
t∈Q(n)

c2 =
c2E(dt )T

N
=
γ

β
. (13)

Consider the Gaussian channel y = x + z in which x is
the binary input and z is the Gaussian noise with distribution
N (0, σ 2). In this case, the soft message can be modeled
as log-likelihood ratio Lx which is Gaussian distributed as
N ( 2

σ 2
x, 4

σ 2
). Furthermore, we define σL = 2

σ
, and therefore,

the distribution of Lx can be expressed as:

Lx ∼ N (
σ 2
L

2
x, σ 2

L ). (14)

Based on this, the mutual information (MI) between Lx and x
can be calculated by:

J (σL) , I (Lx; x) = 1−
∫
+∞

−∞

1√
2πσ 2

L

exp {−
(ξ − σ 2L

2 )2

2σ 2
L

}

· log2(1+ e
−ξ )dξ. (15)

Note that J (σL) is a monotonically increasing function of σL
defined on [0,+∞), which means that the less the noise is,
the more information about x we have. Specifically, we have
J (0) = 0 and J (+∞) = 1.

B. THEORETICAL ANALYSIS OF RMA
For ease of analysis, we consider the two-stage detection-
and-then-decoding algorithm for RMA. In the first stage,
the subgraph in the bottom of Fig.2 is iteratively updated
according to (6) until the MI of VNs converge. In the second
stage, the subgraphs of pre-coding part are iteratively updated
to retrieve the original information bits. Now we start to
derive the theoretical achievable throughput in this case.

We first analyze the first stage of the algorithm. The main
object is to derive the accurate relationship between the evo-
lution process MI of VNs and the specific degree distribution
(for more information about degree distribution, please refer
to [19] and the references therein).We denote the edge-degree
distribution of RENs as

�(x) =
l∑
i=1

ωixkida−1, (16)

where l denotes the number of different REN degrees in the
factor graph (therefore, ki1 6= ki2 for i1 6= i2), and ωi denotes
the probability that a randomly chosen edge is connected to an
REN of degree kida (here da is a given natural number), thus∑l

i=1 ωi = 1. If da → ∞, it is referred to as the asymptotic
case. If there is an i∗ ∈ {1, 2, . . . , l} satisfying ωi∗ = 1,
the edge degree distribution is then uniform. If both of them
hold, it is referred to as the uniform asymptotic case.
Before stepping into more details, we first discuss the case

ωi = 1, i.e., each RE is only accessed by one VN. In this
case, we can easily verify that L jn ∼ N ( 2γ

β
xn,

4γ
β
), which

means that the channel one user faces can be approximated as
a Gaussian channel. In the following, it is revealed that such
result also holds for the RMA in which each RE is accessed
by a random number of VNs.
Lemma 1: After the multiuser detection, the channel that

one user faces can be approximated as a Gaussian channel
with certain SNR degradation, i.e.,

L jn ∼ N (
2ηjγ
β

xn,
4ηjγ
β

). (17)

The degradation factor η can be calculated by:

ηj =

l∑
i=1

ωi

1+ βkidac2
γ

f (ηj−1)
, (18)

in which,

f (x) ,
γ

β
√
2π

∫
+∞

−∞

(
1− tanh(x

γ

β
+

√
x
γ

β
ξ )
)2

× exp {−
ξ2

2
}dξ. (19)

Proof: See Appendix A.
Corollary 1: In the uniform asymptotic case, (18) can be

further simplified as:

ηj =
ω1

1+ βk1dac2
γ

f (ηj−1)

(a)
=

1
1+ βf (ηj−1)

(20)

where (a) follows from (13).
In the following, we prove that degradation factor ηj is

maximized only in the uniform asymptotic case and thus the
uniform asymptotic case is optimal in terms of throughput.
Lemma 2: For the degree distributions of RENs, the max-

imization of ηj is achieved only when there is an i∗ ∈
{1, 2, . . . , l} satisfying ωi∗ = 1.

Proof: See Appendix B.
Thereby, to derive the achievable throughput in the asymp-

totic case, we only consider the uniform asymptotic case in
the following. It can be easily seen from (18) that, there is
η1 > η0 when η0 = 0, and ηj+1 < ηj when ηj = 1.
Invoking the monotonicity of f (η), we can conclude that
η = 1

1+βf (η) has at least one solution within (0, 1]. We denote
the minimum solution as ηβ,min. As a result, invoking the
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FIGURE 3. Achievable throughput with optimized overloading factor.

MI defined in (15), the converged MI of VNs may be
expressed as

J (

√
4ηβ,minγ

β
). (21)

Then, we take the LDPC coding part into consideration,
based on which, we derive the theoretical achievable through-
put of RMA.
Theorem 1: In the RMA system with overloading factor β

and SNR γ , the asymptotic achievable throughput, denoted
by 2ac, can be calculated by

2ac = βCBIAWGNC(
γ

β
ηβ,min), (22)

in which CBIAWGNC(x) denotes the capacity of the binary
input Gaussian channel with SNR x.

Proof: Based on previous discussions, in the RMA sys-
tem with overloading factor β and SNR γ , the channel that
one user faces can be approximated as a Gaussian channel
with SNR γ

β
ηβ,min. In such a case, to guarantee the decod-

ability of LDPC codes, the maximum coding rate may be
expressed as CBIAWGNC(

γ
β
ηβ,min). Hence the conclusion fol-

lows by invoking (11).
Note that since the linear combination may happen among

the coded symbols from both different active users and an
individual user itself, the analysis result in this section is
tenable regardless of the specific user number.
Remark 2: For the given γ , different β results in different

ηβ,min and thus different achievable throughput 2ac. For fur-
ther enhancing the performance, we optimize β to maximize
the asymptotic achievable throughput. Define βopt as

βopt = argmax
β
{2ac : 2ac = βCBIAWGNC(

γ

β
ηβ,min)}. (23)

Since it is hard to obtain the explicit expressions of βopt
and 2ac, numerical results are illustrated in Fig.3, according
to which, a notable gap between the achievable throughput
and the sum capacity can be observed even with optimal
overloading. This is mainly due to that the relatively low

complexity BP algorithm achieves only local optimumwhich
leads to possible performance loss when the degrees of the
underlying graph increase [11]. In the following section,
the problem is addressed by employing the most recently
developed spatial coupling theory [11], [13], which results in
a capacity-approaching RMA schemewith reserved attractive
features of low signaling overhead and high adaptability as
the basic RMA framework.

IV. SPATIALLY COUPLED RMA
As shown in [11], the locally optimal BP algorithm generally
has a threshold lower than the globally optimal but highly
complicated MAP (maximum a posteriori) algorithm, where
the threshold is a unique parameter reflecting the tolerable
channel condition, such as erasure probability or noise level,
etc. Fortunately, it is revealed in [11] that by properly spatially
coupling individual codes, the BP threshold of the resultant
new ensemble can approach to its maximum possible value,
namely the MAP threshold of the underlying ensemble. Such
a phenomenon of ‘‘threshold saturation’’ gives an entirely
new way to approach capacity.

Motivated by the above theory, in this section, we pro-
pose a novel spatially coupled RMA scheme, which naturally
produces a new superposition rateless code with a spatially
coupled graph by properly mapping the coded symbols of
different users to some specific subsets of REs. According to
the analysis, SC-RMA approaches asymptotically the chan-
nel capacity with reserved attractive features as the basic
RMA framework.

A. ACCESS PROCEDURE OF SC-RMA
To highlight its intrinsic structure, we present a proto-
graph [11] representation of SC-RMA in Fig.4, in which
the precoding parts correspond to the LDPC precoders, and
the differently colored squares denote different types of REs.
Each RE is randomly assigned a unique type value within
{1− w, 2− w, . . . ,K + w}, where w� K is a given natural
number,1 i.e., there are K + 2w types of REs in total. The
arrow denotes that the user can access the corresponding type
of REs. As a result, each type of REs can only be accessed by
a specific subset of users. In particular, for the REs with type
s, only the subset of users {Uk : |k − s| ≤ w} have access to
them, while any other users are not allowed to transmit over
them. For example, for the RE with type 1− w, only U1 has
access to it. Similarly, only the set of users {U1, . . . ,U2w+1}

have access to the RE of type w+1. Note that, since the basic
RMA allows all the active users to access the only type of
REs, it can be regarded as a special case of SC-RMA.

The access process is much alike that of the basic RMA.
Each user pseudo-randomly selects its precoded symbols
according to its RACf, and then transmits the linear sum
over the allowed types of REs and stops the transmission
once it receives an ACK from the AP. The AP also resorts

1On the other way around, in the case K << w, SC-RMA would degrade
to the basic RMA, since all the users have equal access to all the REs
approximately in such a case.
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FIGURE 4. Protograph representation of SC-RMA: each type of REs can
only be accessed by a specific subset of the users.

to the BP decoding on the spatially coupled factor graph to
retrieve the information bits. Evidently, the change brought
by the spatial coupling in the transmission process is subtle,
which brings attractive features for SC-RMA that it inherits
the low signaling overhead and high adaptability from the
basic RMA.

B. THEORETICAL ANALYSIS OF SC-RMA
In the following, we derive the achievable throughput
of SC-RMA. For the same reasons, we consider the two-stage
decoding algorithm.

First, we consider the first stage of the decoding algo-
rithm. In this stage, the subgraph in the bottom of Fig.4
is updated iteratively until the MI of VNs converge. Note
that in Section III, we have proved that the uniform REN
degree distribution is optimal in terms of throughput. In the
SC-RMA scheme, the degrees of RENs of type s, s ∈ {1 −
w, 2−w, . . . ,w} ∪ {K −w+ 1,K −w+ 2, . . . ,K +w}, are
different from RENs of other RENs since a different number
of users have access to these REs, as depicted in Fig.4.
However, as elaborated in the following, this does not affect
the performance visibly since the w� K . The converged MI
of VNs in this case can be determined as below.
Lemma 3: In the SC-RMA scheme, the channel that one

user faces can be approximated as a Gaussian channel with
certain SNR degradation. The evolution process of the degra-
dation factor can be expressed as follows:

η
j+1
k =

1
1+ 2w

w∑
i1=−w

1

1+ β(K+2w)
(1+2w)K

∑w
i2=−w f (η

j
k+i1+i2

)
,

(24)

where ηjk (k ∈ {1, 2, . . . ,K }) denotes the degradation factor
of Uk in iteration j, and η0k = 0 for k ∈ {1, 2, . . . ,K }. For the
extreme case where w

K → 0, (24) is reduced to

η
j+1
k =

1
1+2w

w∑
i1=−w

1

1+ β
(1+2w)

∑w
i2=−w f (η

j
k+i1+i2

)
. (25)

Proof: See Appendix C.
We can see that for different k ∈ {1, 2, . . . ,K }, ηjk as well

as the MI of VNs J (

√
4ηjkγ
β

), are not equal. According to the

access procedure of SC-RMA as described before, since U1
andUK suffer the least interferences, ηj1 and η

j
K will be larger

than ηjk (k ∈ {2, 3, . . . ,K−1}). However, when analyzing the
achievable throughput for SC-RMA,we only need to consider
U1 (or UK ) as described below.
Lemma 4: In the SC-RMA schemewhere all the users share

the same LDPC precoder, other users can also be reliably
decoded iff U1 and UK are reliably decoded.

Proof: Once U1 (or UK ) has been correctly decoded,
other users can then be decoded in a successive interference
cancellation manner. In particular, the AP can remove the
subgraph of U1 (or UK ) from the protograph, which leads
to a situation that U2 (respectively UK−1) faces the same
interference asU1 (respectivelyUK ) does (see the protograph
in Fig. 4), indicating that U2 (respectively UK−1) can also be
successfully decoded the same way.

On the other hand, in the protograph, the subgraphs of
U1 and UK are connected to dedicated REs which have no
inputs from other users. Therefore, U1 and UK always suffer
the least interference in average and thus can be decoded
successfully w.h.p. if all other users can be reliably recovered
in the BP decoding.

Based on these lemmas, we derive the achievable through-
put for SC-RMA as follows.
Theorem 2: For SC-RMA, the asymptotic achievable

throughput 2ac can be expressed as

2ac = βCBIAWGNC(
γ

β
η∞1 ). (26)

In particular, when K →∞, w→∞ and w
K → 0, we have

lim
β→∞

2ac = lim
β→∞

(βCBIAWGNC(
γ

β
η∞1 )) =

1
2
log2(1+ γ ).

(27)

Proof: See Appendix D.
Remark 3: Although each user only takes very simple

binary modulation, RMA can still approach the Gaussian
capacity asymptotically. This is due to that the channel input
is the sum of several randomly selected symbols and the
distribution of the resultant symbol tends to beGaussianwhen
the number of selected symbols is relatively large.
Remark 4: When K → ∞, the numerical results for

achievable throughputs with given w are presented in Fig.5,
which shows that the achievable throughput increases with w
and approaches asymptotically the channel sum capac-
ity. In particular, when w = 0, the system can be
regarded as a collection of K independent RMA subsys-
tems, each of which occupies 1

K of the total REs and has
the same throughput. Therefore, it is equivalent to the basic
RMA system which has only a single type of REs (i.e., all
the users have access to all the REs). Thus from Fig.5,
we can see that the basic RMA system has the least achievable
throughput under BP decoding, and spatial coupling (w > 0)
can bring significant gain in throughput. Moreover, we note
that the gap to the capacity increases as the SNR increases,
which shows that the required w increases as SNR increases.
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FIGURE 5. Achievable throughput increases with w and approaches to
the channel sum capacity.

Moreover, when the number of users K is relatively small,
according to (24), we have

η11 =
1

2w+ 1

2w+1∑
i1=1

1

1+ i1
2w+1

K+2w
K γ

. (28)

When 2w + 1 < K (� ∞), η11 and consequently the
achievable throughput, increase with w at first and then drop
down. For further enhancing the performance in such a case,
we need to optimize w carefully, which will be elaborated
in Section V.

V. PRACTICAL DESIGN OF THE SYSTEM PARAMETERS
The main system parameters including the RACfs, the spatial
coupling pattern w, and the coding rates and degree profiles
of LDPC precoders, should be carefully designed in real
applications. However, due to the prohibitive complexity,
it is difficult to achieve a joint optimization of these system
parameters. Instead, for tractability and flexibility, here we
provide a practical two-step approach to determine the system
parameters.

First, we consider the design of RACf. Since it is a nonlin-
ear multi-variate optimization problemwith unknown dimen-
sions, the optimal analytical RACfs are hard to obtain. With
the aid of EXIT analysis, here we present an empirical but
feasible solution. In particular, from the theoretical analysis
in previous section, we know that the sum capacity could
be approached for the asymptotic case in which the aver-
age degree of RENs dRE tends to infinity. However, a large
average REN degree usually results in high decoding com-
plexity, and moreover, it also brings much difficulty in the
determination of an RACf with a large number of unknowns.
Therefore, for ease of treatment and near-optimal perfor-
mance, we choose to seek a relatively simple but practical
RACf with reduced dimensions and sufficiently large average
REN degree, i.e., ρ(x) = (1− p)+ pxd , which has only two
non-zero coefficients. With this specific RACf, the user only
needs to choose whether to transmit on certain RE, which
further greatly simplifies the access procedure. Note that for

FIGURE 6. The evolution of extrinsic information of VNs in one iteration:
the intersection point that determines the converged MI gradually
approaches some stationary point as dRE increases.

FIGURE 7. BER versus 2−1: the decoding performance improves
as dRE increases.

such an RACf, the average degree of RENs dRE = pKd ,
increases withK . This in fact gives us an opportunity to adapt
p and d to the dynamic change in K .

Now using the EXIT theory, the evolution of theMI of VNs
for different dRE can be predicted and the numerical results
are provided in Fig.6. For each specific EXIT curve, the VNs
will get moreMI after each decoding iteration when the EXIT
curve is above the black diagonal line. Otherwise, lessMIwill
they get. As a result, the MI of VNs finally converges to the
intersection point of the EXIT curve and the diagonal line,
which determines the overall decoding performance. As dRE
increases, the intersection point will gradually approach the
stationary point that corresponds to the asymptotic through-
put. Thus in practice, as a rule of thumb, in order to achieve a
good tradeoff between the throughput performance and the
decoding complexity, we can choose dRE as the one that
makes the intersection point close enough to the stationary
point, i.e., 6 or 8 as shown in the figure. This observation is
also verified by simulation results in Fig.7 in Section VI.

Second, we jointly optimize the spatial coupling pattern w
and the LDPC pre-coding parameters to maximize the
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throughput. Let {λi} (resp. {ρi}) denote the edge-degree dis-
tributions of VNs (resp. CNs) of LDPC codes.2 Let I jV→Ck
(resp. I jC→Vk ) denote the extrinsic information (EI) passed
from VNs (resp. CNs) to CNs (resp. VNs) ofUk . In the initial
case, we have

I0V→Ck = 0, I0C→Vk = 0. (29)

Invoking the Gaussian approximation [25], the variance of
the soft messages that a VN of Uk gets from the connected
CNs, can be expressed as

∑
λii(J−1(I

j
C→Vk ))

2. Therefore,
taking these information into account and invoking (24),
we have

η
j
k =

1
1+ 2w

w∑
i1=−w

1
1+ β(K+2w)(1+2w)K

∑w
i2=−w

Ak,i1,i2
(30)

in which

Ak,i1,i2 , f
(∑ λii(J−1(I

j
C→Vk+i1+i2

))2 + 4
η
j−1
k+i1+i2

γ

β

4 γ
β

)
. (31)

On the other hand, the evolution process of the EI during
the LDPC decoding can be expressed as follows (please be
referred to [25] for more details):

I j+1V→Ck =
∑

λiJ
(√

(i− 1)(J−1(I jC→Vk ))
2 + 4

η
j+1
k γ

β

)
,

I j+1C→Vk = 1−
∑

ρiJ
(√

(i− 1)(J−1(1− I j+1V→Ck ))
2
)
.

(32)

As a result, with the initial value I0V→Ck = 0, I jV→Ck may
be iteratively calculated based on (30) - (32). Furthermore,
we define Tmin as

Tmin , min
T
{T : I j+1V→C1

− I jV→C1
> 0, I jV→C1

∈ (0, 1)}.

(33)

If and only if, T > Tmin, I
j
V→C1

increases as the algorithm
iterates until it approaches 1, which means that U1 can be
reliably decoded [25]. Invoking Lemma 4, Tmin is thus the
threshold of T above which the AP can recover all the original
information reliably. Therefore, to maximize the throughput,
we may optimize system parameters to minimize Tmin as
follows:

min
{λi,R,w}

Tmin

s.t.


0 < R < 1∑

i
λi = 1

w ∈ N, w� K .

(34)

Note that, with given {w,R}, the optimization problem may
be simplified as a standard LDPC optimization problem,

2In the following, we take the LDPC codes with uniform CN degree
distributions as an example. In such a case, {ρi} is determined by {λi} and
rate R.

which can be solved based on the differential evolution (DE)
method [25]. Then the exhaustive two dimensional search
approach can be employed to find the optimized w and R.
The phenomenon that the achievable throughput increases
withw at first and then drops down, as discussed in Remark 4,
can be used to simplify the search process. The algorithm is
summarized in Algorithm 1.

Algorithm 1 Algorithm to Solve the Optimization Problem
Input:

System parameters: m, γ and K ;
Output:

Optimized parameters: {w, λi,R};
1: Initialize w = 0 and Tmin = ∞;
2: For any given R, optimize λi using the DE method to

minimize TR,w. Denote the minimal TR,w as T ∗ ;
3: if (T ∗ < Tmin) then
4: Keep {w∗,R∗, λ∗i } that corresponds to the minimal T ∗

as the candidate;
5: w = w+ 1, Tmin = T ∗ and go to step 2;
6: end if
7: return {w∗,R∗, λ∗i }.

VI. SIMULATION RESULTS
We first present simulation results to confirm Lemma 1.
We set that K = 6 and γ = 10dB. In the access procedure,
each active user transmits to the AP a packet of length 100 bits
without precoding. The simulation results for Bit Error Rate
(BER) performance are presented in Fig.7. Note the inflection
points in Fig.7 at2−1 = 1 (especially when dRE = 3) are due
to the unevenVNnode degree distribution among users which
leads to certain differences in their equivalent symbol power
when dRE is relatively small. As dRE increases, the inflection
points vanish gradually. According to the simulation results,
the BER performance improves as dRE increases, which
matches well with the previous theoretical analysis. Since the
performance at dRE = 6 is very close to the asymptotic case,
we then use it for the following simulations.

Then, we show simulation results for the scenario in which
the user number is relatively small. Again, we set K = 6,
i.e., there are 6 active users, and each of which transmits to the
AP a packet of 240 bits. The LDS scheme is taken as a bench-
mark [7] and the well designed signature matrix reported
in [30] is chosen for the simulation. For RMA, we choose
RACf ρ(x) = 0.5+ 0.5x2, thereby we have dRE = 6. On the
other hand, the optimized w is 0 since K is relatively small.
In the precoding part, the same regular LDPC code of rate
0.6 is adopted for these two schemes. According to the sim-
ulation results in Fig.8, RMA achieves better performances
using the same number of decoding iterations, without need-
ing to design the rather complicated signature matrix as
in LDS.

Finally, we evaluate RMA for the scenario in which there
are a relatively large number of users. In this case, we set
that the received SNR γ = 5dB. Furthermore, there are
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FIGURE 8. Performance comparison between RMA and LDS.

TABLE 1. Optimized LDPC codes and the achievable throughput for the
system with K = 100 and γ = 5dB.

FIGURE 9. BLER versus 2−1 for RMA with optimized LDPC codes for
w ∈ {0,1,2}.

K = 100 users, each of which transmits to the AP a
packet of 100 bits. By solving the optimization problem,
we obtain the optimized spatial coupling pattern w = 2 and
the corresponding optimized LDPC codes, namely, C2. For
ease of comparison, we optimize LDPC codes for the case
w ∈ {0, 1} and denote the corresponding LDPC codes as
C0 and C1 respectively. Their rates, theoretical throughput
and distribution profiles can be found in Table 1 and at the
top of next page, respectively. As discussed in Section IV, the
SC-RMA with w = 0 corresponds to the basic RMA system.
The analytical and simulation results are presented in Fig. 9.
As2−1 increases, i.e., as we increase the number of channel
uses or equivalently, REs, to beyond the EXIT thresholds
as shown in Table 1 in a rateless manner, the block error
rate (BLER) falls quickly. It also shows the BLER decreases

as w increases, which corroborates that the performance of
RMA can be further improved by proper spatial coupling.
Moreover, it makes sense to compare the practical decoding
performance with channel capacity, which is 1.0287 bits per
channel use for a received SNR γ = 5dB. The gap between
the system throughput and channel capacity get closer as
the spatial coupling get tighter, which provides simple but
sufficient clues that proper spatial coupling improves the
system performance.

VII. CONCLUSION
In this work, we have established the novel rateless multiple
access framework, which has attractive features of low sig-
naling overhead, low decoding complexity and high adapt-
ability to network traffic and channel changes. Based on the
EXIT theory, we analyzed the asymptotic achievable through-
put under BP decoding. By exploiting the recent theory of
spatial coupling, we proposed the spatially-coupled RMA
which further enhances the system performance. A prac-
tical two-step design approach for the system parameters
is provided. According to the theoretical analysis and sim-
ulation results, RMA achieves high spectrum efficiency
with high adaptability and low signaling overhead, which
makes it a viable candidate for future random massive
access.

APPENDIX A
PROOF OF LEMMA 1
The proof mainly follows the approach used in [27]. First, (3)
can be equivalently formulated as

yt = cxn +
∑

n′∈V(t)\n

cxn′ + zt . (35)

Define

Wt =
∑

n′∈V(t)\n

cxn′ , (36)

and

9ι(yt )=
∑

{xn′ }n′∈V(t)\n

∏
n′∈V(t)\n

p(xn′ )
1
√
2π

e−
(yt−Wt )2

2 (yt−Wt )ι,

(37)

for ι ∈ {0, 1}. For the asymptotic case in which dt →∞ and
thereby c→ 0, we have

p(yt |xn = a, {L jn′−→t }n′∈V(t)\n)

=

∑
{xn′ }n′∈V(t)\n

∏
n′∈V(t)\n

p(xn′ )
1
√
2π

e−
(yt−Wt−ac)2

2

(a)
=

∑
{xn′ }n′∈V(t)\n

∏
n′∈V(t)\n

p(xn′ )
1
√
2π

e−
(yt−Wt )2

2

×

(
1+ (yt −Wt )ac+ o(c)

)
= 90(yt )+91(yt )ac+ o(c), (38)
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C2 for w = 2 : λ(x) = 0.3552x19 + 0.0010x17 + 0.14x9 + 0.3473x2 + 0.1565x1

C0 for w = 0 : λ(x) = 0.3863x19 + 0.0337x17 + 0.1444x8 + 0.3206x2 + 0.1150x1

C1 for w = 1 : λ(x) = 0.4748x14 + 0.0024x7 + 0.0021x5 + 0.0082x4 + 0.3623x2 + 0.1502x1

where (a) follows from the Taylor series expansion.
Hence,

L j+1n←−t = log
p(yt |xn = 1, {L jn′−→t }n′∈V(t)\n)

p(yt |xn = −1, {L
j
n′−→t }n′∈V(t)\n)

= log(1+
291(yt )c

90(yt )−91(yt )c
)

=
291(yt )c

90(yt )−91(yt )c

≈ 2
91(yt )
90(yt )

c. (39)

Then the expectation and the variance of L jn←−t can be calcu-
lated by

E(L j+1n←−t )

=

∫
+∞

−∞

2
91(yt )
90(yt )

cp(yt |xn, {L
j
n′−→t }n′∈V(t)\n)dyt

(a)
=

∫
+∞

−∞

91(yt )dyt + 2
∫
+∞

−∞

92
1 (yt )

90(yt )
dytc2xn + o(c2)

(b)
= 2

∫
+∞

−∞

92
1 (yt )

90(yt )
dytc2xn + o(c2) (40)

and

var(L j+1n←−t ) = 4
∫
+∞

−∞

92
1 (yt )

90(yt )
dytc2 + o(c2), (41)

where (a) follows (38) and (b) follows from that91(yt ) is odd
function.

Thereby, the expectation and the variance of L j+1n , defined
in (9), can be calculated by

E(L j+1n ) =
∑
t∈Q(n)

E(L j+1n←−t ) = 2ηj+1xn
∑
t∈Q(n)

c2 + o(c2)

(42)

and

var(L j+1n ) =
∑
t∈Q(n)

var(L j+1n←−t ) = 4ηj+1
∑
t∈Q(n)

c2 + o(c2),

(43)

in which ηj+1 ,
∫
+∞

−∞
E
(
92
1 (yt )

90(yt )

)
dyt where the expectation is

taken over different dt . Note that
∫
+∞

−∞
E
(
92
1 (yt )

90(yt )

)
dyt varies in

j since9ι(yt ) depends onWt at iteration j as indicated in (36)
and (37).

According to the central limit theorem, when num-
ber of nodes in Q(n) tends to infinity, the distribution

of L j+1n−→t tends to be Gaussian. In this case, based on (13),
we have

∑
t∈Q(n) c

2
=

γ
β
and thereby,

L j+1n ∼ N (
2ηj+1γ
β

xn,
4ηj+1γ
β

). (44)

Moreover, by invoking (14), when symbol xn is passed
through a Gaussian channel with SNR ηj+1γ

β
, the distribu-

tion of the LLR will be identical to (44). Therefore, for
RMA, the channel that one user faces can be approximated
as a Gaussian channel with an SNR degradation factor
of limj→∞ η

j.
At last, we calculate ηj+1. By invoking the central limit

theorem again, we have Wt ∼ N (µWt , σ
2
Wt
), and

9ι(yt ) = E
( 1
√
2π

e
−(yt−Wt )2

2 (yt −Wt )ι
)
. (45)

Consequently,

92
1 (yt )

90(yt )
=

1
√
2π

(yt − µWt )
2

(1+ σ 2
Wt
)
5
2

exp
[
−

(yt − µWt )
2

2(1+ σ 2
Wt
)

]
, (46)

and ηj+1 can be calculated as

ηj+1 = E(
1

1+ σ 2
Wt

) =
l∑
i=1

ωi

1+ σ 2
Wt |dt=kida

. (47)

Furthermore, since σ 2
Wt |dt=kida

can be viewed as the esti-
mation variance of the binary inputs of the related equiv-
alent Gaussian channels in the form of y =

√
ηj
γ
β
x + z

where z ∼ N (0, 1), i.e., σ 2
Wt
= (kida − 1)c2Ez

(
(1 −

tanh(ηj γ
β
+

√
ηj
γ
β
z))2

)
, thus we can get (18) after some

manipulation.

APPENDIX B
PROOF OF LEMMA 2
Based on the edge degree distribution of RENs, defined
in (16), E(dt ) can be expressed as

E(dt ) =
l∑

i1=1

ωi1
ki1∑l

i2=1
ωi2
ki2

ki1da =
da∑l

i2=1
ωi2
ki2

, (48)

based on which, we have

da = E(dt )
l∑

i2=1

ωi2

ki2

(a)
=
γ

c2

l∑
i2=1

ωi2

ki2
(49)

where (a) follows from (12).
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Thereby, the degradation factor ηj+1 can be calculated by:

ηj+1 =

l∑
i1=1

ωi1

1+
βki1dac

2

γ
f (ηj)

=

l∑
i1=1

ωi1

1+ ki1βf (ηj)
∑l

i2=1
ωi2
ki2

. (50)

The optimal {ωi} refers to the one that maximizes ηj+1 for the
given ηj.
For clarity, we define τ , βf (ηj). The problem to optimize
{ωi} may be expressed as

max
{ωi}

l∑
i1=1

ωi1

1+ τki1
∑l

i2=1
ωi2
ki2

s.t.


∑l

i1=1
ωi1 = 1,

ωi1 >= 0.
(51)

Then we prove that the optimal solution is the uniform distri-
bution by induction.
First, we consider the case that l = 2. Evidently, when

(ω1, ω2) = (1, 0) or (0, 1), we have

2∑
i1=1

ωi1

1+ τki1
∑2

i2=1
ωi2
ki2

=
1

1+ τ
(52)

for any ki and τ . Define

M(x) =
x

1+τk1( xk1 +
1−x
k2

)
+

1− x

1+ τk2( xk1 +
1−x
k2

)
−

1
1+τ

.

(53)

Therefore, M(x) = 0 has at least two solutions: x = 0 and
x = 1. Furthermore, we have

M′(x = 0) =
−τ ( k1k2 − 1)2

k1
k2
(1+ k1

k2
τ )(1+ τ )2

< 0. (54)

Because of the properties of quadratic equations, M(x) <
1

1+τ for 0 < x < 1, which proves the lemma for l = 2.
Assume that the lemma is correct when l = l∗.
Then we prove that it is correct when l = l∗+1 by contra-

diction. If it is not correct, the optimal solution of (51)must be
achieved in the case that ωi 6= 0 for any i ∈ {1, 2, . . . , l∗+1}.
Otherwise, it reduces to the case l = l∗ which has been
proved correct. To find the optimal {ωi} for l = l∗ + 1,
the following optimization problem can be formulated:

min
{ωi}

l∗+1∑
i1=1

−ωi1

1+ τki1
∑l∗+1

i2=1
ωi2
ki2

s.t.


∑l∗+1

i1=1
ωi1 = 1

−ωi1 < 0.
(55)

The optimal solution satisfies the following KKT condi-
tions [31]: for i ∈ {1, 2, . . . , l∗ + 1},

−1

1+ τki
∑l∗+1

i2=1
ωi2
ki2

+
1
ki

l∗+1∑
i1=1

i1τωi1
1+ τki1

∑l∗+1
i2=1

ωi2
ki2

−µi + ϕ = 0, (56)
l∗+1∑
i1=1

ωi1 = 1, µiai = 0, − ωi + a2i = 0, (57)

where µi, ϕ, ai are auxiliary variables introduced by the
KKT conditions [31].

Since ωi 6= 0 for i ∈ {1, 2, . . . , l∗ + 1}, we have a2i 6= 0.
Thus, µi = 0 and

−ki
1+ τki

∑l∗+1
i2=1

ωi2
ki2

+

l∗+1∑
i1=1

i1τωi1
1+ τki1

∑l∗+1
i2=1

ωi2
ki2

+ kiϕ = 0,

(58)

for i ∈ {1, 2, . . . , l∗ + 1}. Therefore, for any i, i′ ∈
{1, 2, . . . , l∗ + 1}, we have

−ki
1+ τki

∑l∗+1
i2=1

ωi2
ki2

+ kiϕ =
−ki′

1+ τki′
∑l∗+1

i2=1
ωi2
ki2

+ ki′ϕ.

(59)

However, there are no such {ωi}, which results in a contradic-
tion. Thus we complete the proof.

APPENDIX C
PROOF OF LEMMA 3

Proof: Let L j(k,n)←−(t,s) denote the LLR passed from
REN t of type s to VN n of Uk in iteration j. Based on (39),
it can be approximated as

L j(k,n)←−(t,s) = 2
91(yt )
90(yt )

c. (60)

Then based on (40)-(41), its expectation and the variance can
be calculated by

E(L j(k,n)←−(t,s)) =
2

φ
j
s
c2xk,n, var(L j(k,n)←−(t,s)) =

4

φ
j
s
c2

(61)

in which,

φjs , 1+
1

2w+ 1

N
K
T

K+2w

w∑
i1=−w

f (ηjs+i1 )

= 1+
β(K + 2w)
(1+ 2w)K

w∑
i1=−w

f (ηjs+i1 ). (62)

Let Q(k, n) denote the set of indices of RENs that are
connected to VN n of Uk . Let L

j+1
(k,n) denote the overall LLR

that VN n ofUk get from the connected RENs. Based on (61),
its expectation and the variance can be calculated by

E(L j+1(k,n)) = 2xk,n
γ

(1+ 2w)β

w∑
i1=−w

1

φ
j
k+i1

,

var(L j+1(k,n)) = 4
γ

(1+ 2w)β

w∑
i1=−w

1

φ
j
k+i1

. (63)
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The distribution of L j+1(k,n) tends to be the Gaussian distri-
bution as the number of nodes in Q(k, n) tends to infinity.
Thereby, with SC-RMA, the channel that one user faces can
also be approximated as a Gaussian channel. In particular,
the degradation factor ofUk in iteration n+1 can be calculated
by:

η
j+1
k =

1
1+ 2w

w∑
i1=−w

1

φ
j
k+i1

. (64)

Based on (62),(64), we have

η
j+1
k =

1
1+ 2w

w∑
i1=−w

1

1+ β(K+2w)
(1+2w)K

∑w
i2=−w f (η

j
k+i1+ji

)
.

(65)

APPENDIX D
PROOF OF THEOREM 2

Proof: At first, we consider the subgraph in the bottom
part of Fig.4. Based on the previous analysis, the soft message
that VN n of U1 gets from the connected RENs, denoted
by L∞(1,n), can be approximated as

L∞(1,n) =
2η∞1 γ

β
x1,n + 2

√
η∞1 γ

β
z, (66)

in which z ∼ N (0, 1). Thereby, to guarantee the decod-
ability, the maximum pre-coding rate that U1 can take is
CBIAWGNC(

γ
β
η∞1 ).

Then based on Lemma 4, the overall achievable system
throughput 2ac can be expressed as

2ac = βCBIAWGNC(
γ

β
η∞1 ). (67)

In the initial case, we do not have any MI of the VNs,
i.e., η0k = 0(k ∈ {1, 2..,K }). Based on (62), we have

φ0s =



1+
(s+ w)β
2w+ 1

f (0) (s < w)

1+ βf (0) (w ≤ s ≤ K − w)

1+
(K + w+ 1− s)β

2w+ 1
f (0) (s > K − w),

(68)

in which f (0) can be calculated by f (0) = γ
β

according
to (19). Then we have

η11 = lim
w→∞

1
2w+ 1

2w+1∑
i1=1

1

1+ i1
2w+1γ

=

∫ 1

0

1
1+ ξγ

dξ

=
ln(1+ γ )

γ
. (69)

Thereby, we have

2ac = βCBIAWGNC(
γ

β
η∞1 ) ≥ βCBIAWGNC(

γ

β
η11)

(a)
= βCBIAWGNC(

ln(1+ γ )
β

)

(b)
≥ β(

1
2 ln 2

ln(1+ γ )
β

+ A1(
ln(1+ γ )

β
)2), (70)

where (a) follows from (69) and (b) follows from [32]. Here
A1 is certain constant. When β →∞, we have

2ac ≥ β
1

2 ln 2
ln(1+ γ )

β
=

1
2
log2(1+ γ ). (71)

Furthermore, based on the information theory [33],
we have

2ac ≤
1
2
log2(1+ γ ). (72)

Thus we complete the proof.
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