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ABSTRACT Underwater image restoration is crucial for compute applications and consumer electronics.
However, restoring underwater image from a single image is an odd-ill problem due to the complicated
underwater environment. To improve the visual quality of underwater image, we propose an underwater
image restoration method. First, we present a new underwater image formation model, which takes the
properties of underwater imaging and light into account. Then, a medium transmission estimationmethod for
underwater image based on joint prior is proposed, which, respectively, predicts the medium transmissions of
three channels of an underwater image. Moreover, we replace the global background light, which is always
used in previous underwater image restoration method, with the colors of light source to correct the color
casts appeared on the degraded underwater image. The performance of the proposed method is evaluated
on the degraded underwater images taken from different scenes by qualitative and quantitative comparisons.
Experimental results demonstrate that our results look more visually pleasing and outperforms the results of
several existing methods, especial for the colors and contrast.

INDEX TERMS Underwater image restoration, underwater image enhancement, underwater image prior,
underwater imaging.

I. INTRODUCTION
The aim of underwater image restoration and enhancement
is to improve the visual quality of images captured under
different underwater scenes. In recent years, this research
area has attracted increased attention since improving the
visibility, contrast, and colors of underwater images is of
significance for many computer applications [1], [2]. Nev-
ertheless, enhancing and restoring underwater image from
a single image is still challenging due to the complicated
underwater environment.

Generally, underwater images are degraded because light
is mainly absorbed and scattered by three water constituent
particles: micro phytoplankton, colored dissolved organic
matter and non-algal particles [3]. When the light propagates
in an underwater scenario, the light received by a camera is
mainly composed of three kinds of light: direct light, forward
scattering light and back scattering light. The received light
by a camera suffers from color deviation due to the wave-
length dependent light absorption. In general, the red light
first disappears with the distance from objects, followed by
the orange light, yellow light, purple light, yellow-green light,

green light and blue light. This is the main reason why most
underwater images are dominated by the bluish or greenish
tone. Therefore, to improve the visual quality of underwa-
ter image, a method which can remove the effects of back
scattering light and wavelength dependent light absorption is
needed.

To solve this problem, a variety of methods have been pro-
posed in recent years [6]. Existing methods can be organized
into one of four broad categories: single underwater image
enhancement method, single underwater image restoration
method, deep learning-based method, and additional infor-
mation method.

Iqbal et al. [7] proposed an integrated color model and
an unsupervised color correction method to improve the
contrast and colors of underwater image. This method is to
stretch the dynamic range of the R (red), G (green) and B
(blue) channels in RGB color space, and then stretch the
dynamic range of the S (saturation) and I (intensity) in HSV
color space. Despite the overall contrast being enhanced
and color casts being reduced, some regions in the resul-
tant images are under-enhanced and introduce high noise.
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Ancuti et al. [8] proposed a fusion-based method to enhance
the visual quality of underwater images and videos. The
method of Ancuti et al. fuses a contrast improved underwa-
ter image and a color corrected underwater image obtained
from input underwater image. In the process of multi-scale
fusion, four weights are used to determine which pixel is
advantaged to appear in the final image. This method can
improve the global contrast and visibility of the degraded
underwater image. However, some regions in the resultant
images produce over-enhancement or under-enhancement.
Ancuti et al. [9] proposed a color balance and fusion method
for underwater image enhancement, which is a modified
version of their method in [8]. Ghani and Isa [10], [11]
proposed a Rayleigh-stretched contrast-limited adaptive his-
togrammethod to improve the visibility of underwater image,
which reduces pixel concentration to constrain the number
of under-enhanced and over-enhanced regions. However, this
method tends to increase noise and remains some under-
enhanced and over-enhanced regions in the resultant images.
Zhao et al. [12] enhanced underwater images by deriving
inherent optical properties. In [13], an underwater image
enhancement method based on extended multi-scale retinex
was proposed.

Inspired by the observation that the red light usually atten-
uates faster than the green light and the blue light in an under-
water scenario, Carlevaris-Bianca et al. [14] proposed a prior
that exploits the difference in attenuation among different
channels to predict the medium transmission. As a result,
the effects of light scattering in an underwater image can be
removed. Chiang and Chen [15] combined the dark channel
prior dehazing algorithm [16] with the wavelength dependent
compensation algorithm to restore underwater image. This
method can well restore the underwater images with bluish
tone and effectively remove the effects of artificial light.
Nevertheless, such a method is limited in process-
ing the underwater images with serious color casts.
Galdran et al. [17] proposed a Red Channel method,
which recovers the lost contrast of underwater image by
restoring the colors associated with short wavelengths.
Drews, Jr., et al. [18] proposed an underwater dark channel
prior based on a modification of the dark channel prior [16].
However, underwater dark channel prior does not always hold
when there are white objects or artificial light in the under-
water scenes. Li et al. [19] proposed a systematic method,
which includes an underwater image dehazing algorithm and
a contrast enhancement algorithm.

With rapid development of deep learning, deep learning-
based underwater enhancement methods have emerged in
recent years. Li et al. [20] proposed a generative adversarial
network (GAN) for simulating realistic underwater image
from in-air image. Then, based on synthetic underwater
images, Li et al. designed a Convolutional Neural Network
(CNN) structure for underwater image enhancement. This
method is effective for the underwater images like the training
samples, however it limits in other types of real underwater
images. Recently, Li et al. [21] proposed a weakly supervised

color transfer method to correct the color casts of underwater
image based on Cycle-Consistent Adversarial Networks.

Additional information methods mainly include the mul-
tiple images captured by polarization filters, stereo images,
rough depth of the scene or specialized hardware devices
[22]–[26].

Despite these recent efforts, the effectiveness and robust-
ness of the existing methods need to be further addressed.
In this paper, we restore the degraded underwater image
based on a new underwater image formation model. Unlike
previous methods which assume that the atmospheric light
is obtained from the brightest region, we assume that the
atmospheric light is the same as the colors of the light source.
Then, the global background light is estimated via an effective
color constancy method. To robustly predict the medium
transmission of scene, we joint two underwater image pri-
ors by saliency-guided multi-scale fusion technique. Further,
the medium transmissions of three color channels (RGB)
are achieved based on the optical properties of underwa-
ter imaging. Finally, with the estimated global background
light and the predicted medium transmissions, the restored
underwater image can be obtained according to a new under-
water image formation model. Extensively qualitative and
quantitative comparisons against several existing methods
are performed. Experiments demonstrate that the proposed
method not only can restore the degraded underwater image
to the relatively genuine colors and natural appearance, but
also can increase contrast and visibility. Besides, the pro-
posed method is comparable to and even outperforms several
existing methods in terms of the underwater image quality
metrics.

This paper introduces the following main contributions:
• Inspired by a new underwater image formation model
which takes the fact that wavelength dependent attenua-
tion of underwater light and color casts of underwater
image into account, the proposed method solves the
problems of low contrast and color casts of the degraded
underwater image at the meantime.

• Different from previousmethodswhich obtain the global
background light from the brightest region in an input
image, we assume the global background light is the
same with the colors of light source. In this way,
the global background light is easy to be obtained and
the color casts of an underwater image can be effective
corrected.

• In contrast to previous methods which treat the medium
transmissions of the three color channels of an under-
water image as the same, we separately predict the
medium transmissions of three color channel based
on the principle of underwater optical imaging. As a
result, the loss of contrast and color casts are better
compensated.

The rest of this paper is organized as follows. In section II,
we describe the proposed method. In section III, we carry
out extensive performance comparisons. In section IV, some
discussion and conclusion remarks are given.
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II. PROPOSED METHOD
We first introduce a new underwater image formation model.
Then, the estimation of the colors of light source is presented.
Next, we propose a joint prior, which can be used for the
medium transmission prediction. According to the medium
transmission of scene and the optical properties of underwater
imaging, we predict the medium transmissions of three color
channels of an underwater image, respectively. Last, we intro-
duce how to restore the degraded underwater image with the
obtained model parameters.

A. A NEW UNDERWATER IMAGE FORMATION MODEL
Most of underwater image restoration methods [14], [18]
directly employ the image formation model of outdoor haze
[16], [27]–[29]. Such an image formation model can be
described as:

I c(x) = J c(x)t(x)+ Ac(1− t(x)), c ∈ {r, g, b}, (1)

where I (x) is the observed image, J (x) is the desired image,
A is the global background light and t(x) = exp(−βd(x))
∈ [0,1] is the medium transmission which represents the
percentage of the scene radiance reaching the camera. β
is the attenuation coefficient and d is the depth of scene.
However, this model neglects the properties of underwater
imaging and lighting conditions, which is not always suitable
for underwater scenarios. To comply with the principle of
underwater imaging and obtain the better performance, [30]
proposed a new underwater image formation model, and can
be defined as:

I c(x) = E(x)cd + E(x)
c
bs, c ∈ {r, g, b}, (2)

where E(x)cd is the direct light and E(x)
c
bs is the back scatter-

ing light. Here, following previous methods [14], [16], [18],
it also neglects the effects of forward scattering light. The
direct light E(x)cd is further defined as:

E(x)cd = J c(x)tc(x) = J c(x) exp(−βcd(x)), c ∈ {r, g, b},

(3)

where J (x) is the underwater image without attenuation
(desired image) and t(x) = exp(−βd(x)) is the medium
transmission. According to the assumption that considering
J (x) as a general image taken from a Lambertian Surface,
J (x) can be described as the color constancy image formation
model [31]:

J c(x) = LcM c(x)Cc, c ∈ {r, g, b}, (4)

where L is the colors of light source, M (x) is the surface
reflectance which represents the restored underwater image
without attenuation and color casts, and C is the camera sen-
sitivity parameter. Here, we consider the camera sensitivity
parameter C as constant 1. Thus, J (x) can be expressed as:

J c(x) = LcM c(x), c ∈ {r, g, b}, (5)

According to the Jaffe-McGlamery imaging model [32],
[33], the back scattering E(x)cbs can be defined as:

Ecbs(x) = Ac(1− tc(x)), c ∈ {r, g, b}, (6)

where A is the global background light that may be regarded
as the light from infinity when assuming homogeneous light-
ing along the line of sight. By considering the global back-
ground light from infinity B having the same colors with the
light source L, the final underwater image formation model
can be defined as:

I c(x) = LcM c(x)tc(x)+ Lc(1− tc(x)), c ∈ {r, g, b}, (7)

Known Lc and tc(x), M c(x) can be obtained from I c(x).
Therefore, this paper focuses on the estimation of the colors
of light source Lc and the medium transmission tc(x).

B. ESTIMATING THE COLORS OF LIGHT SOURCE
Many methods assume that the global background light can
be approximated from the brightest region in the input image.
However, the assumption is not available when white objects
and artificial light exist in the underwater scenes. To address
this problem, we assume underwater image has the homo-
geneous lighting along the line of sight, and the light from
infinity has the same colors with the light source. Then,
we regard the global background light in our model as the
colors of light source. Inspired by color constancy algorithms
which estimate the colors of light source to recover the actual
surface colors of an object in a scene, we employ an effec-
tive color constancy with local surface reflectance statistics
(LSRS) [34] to estimate the colors of light source based on
its effectiveness and efficiency. More details can be found in
[34]. Other color constancy methods also can be used for the
estimation of the colors of light source.

C. JOINTING UNDERWATER IMAGE PRIORS BY
SALIENCY-GUIDED MULTI-SCALE FUSION
In recent years, some effective priors, such as dark chan-
nel prior [16] and color attenuation prior [38], have been
proposed for single image dehazing. Compared with image
dehazing research area, there are few works which focus on
underwater image priors in the research area of underwater
image restoration. Moreover, the existing priors for under-
water image show limitations when they are applied to some
underwater images captured under different scenes.

Carlevaris-Bianco et al. [14] proposed a simple prior for
underwater image enhancement by exploiting the difference
in attenuation among three color channels in an underwa-
ter image. Here, we call it intensity attenuation difference
prior (IATP). Based on IATP, the medium transmission of an
underwater scene can be estimated. First, IATP is defined as
comparing the maximum intensity of the red channel to the
maximum intensity of the green and blue channels over an
image patch, and is expressed as:

D(x) = max
x∈�,c∈r

(I c(x))− max
x∈�, c∈{g,b}

(I c(x)), (8)

where D(x) is the IATP, I c(x) is the input image and � is
the size of an image patch. According to IATP, the medium
transmission of an underwater image t(x) can be estimated
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FIGURE 1. Several examples of the inaccurate estimation of IATP.
(a) Several underwater images. (b) Medium transmissions estimated by
IATP. In the colorized medium transmissions, reddish colors represent the
pixels have higher values (i.e., these pixels are close to the camera) and
bluish colors represent the pixels have lower values (i.e., these pixels are
far away from the camera).

by:

t(x) = D(x)+ (1−max
x
D(x)), (9)

Although IATP is relatively effective for many underwater
scenes, it produces inaccurate estimation in some regions
of the medium transmission for some underwater images
captured under challenging scenes. Fig. 1 shows several inac-
curate results of the medium transmission estimated by IATP.

Drew, Jr., et al. [18] proposed an underwater dark channel
prior (UDCP) based on a modification of the traditional dark
channel prior (DCP) which is very effective for the outdoor
haze image. DCP is proposed based on statistics of exper-
iments on haze-free images, which represents most local
patches in haze-free images contain some pixels which have
very low intensities in at least one color channel. However,
Drew et al. found that the DCP is not available for many
practical underwater scenes since red channel is serious atten-
uated (approximate zero). This fact makes the information of
red channel unreliable for DCP. Thus, Drew et al. proposed
an UDCP which just considers the information provided by
the green and blue channels. UDCP represents that most local
patches in haze-free underwater images contain some pixels
which have very low intensities in at least one color channel
between the green channel and the blue channel. The medium
transmission t(x) based on UDCP can be estimated by:

t(x) = 1−min
c
(min
x∈�

(
I c

Bc
)), c ∈ {g, b}, (10)

where I c is the input image, Bc is the global background
light, and � denotes the size of an image patch. UDCP
also produces inaccurate estimation in some regions of the
medium transmission. Fig. 2 shows several inaccurate results
of the medium transmission estimated by UDCP.

We found that the use of a single prior is relatively effective
but insufficient. To improve the robustness of the proposed

FIGURE 2. Several examples of the inaccurate estimation of UDCP.
(a) Several underwater images. (b) Medium transmission estimated by
UDCP. In the colorized medium transmissions, reddish colors represent
the pixels have higher values and bluish colors represent the pixels have
lower values.

framework, we attempt to joint the above-mentioned IATP
and UDCP for medium transmission estimation. The main
idea behind the use of the joint prior is that we experi-
entially found the salient regions of the medium transmis-
sion estimated by IATP or UDCP are relatively accurate.
However, it is hard to prove this findings mathematically.
We leave this work in the future. Besides, both IATP and
UDCP assume that the red light disappear firstly. Similar
assumption can accelerate the fusion of these priors. In fact,
we can directly use other effective and accurate underwater
image restoration prior; however, there is no accurate and
robust enough prior available for challenging scenes. To our
best knowledge, the IATP and UDCP are relatively most
effective priors. To joint these two priors, a saliency-guided
multi-scale fusion scheme driven by the intrinsic properties
of input medium transmission is employed, which highlights
the salient regions in the restored results. In other word,
the salient regions in the restored results are relatively accu-
rate. Compared with other joint schemes such as single scale
fusion and choosing the maximum between inputs, the multi-
scale fusion scheme can reduce the introduction of unde-
sirable halos and noise [8]. Therefore, we use the saliency
of input medium transmissions to determine which pixel is
advantaged to appear in the final medium transmission. The
final medium transmission tf (x) can be obtained by summing
the fused contribution of all inputs, and can be expressed as:

t lf (x) =
K∑
k=1

Gl{S̄k (x)}L l{tk (x)}, (11)

where t lf (x) is the final medium transmission, l = 5 is
the number of the pyramid levels, K = 2 is the num-
ber of the input, G{S̄(x)} is the Gaussian pyramid opera-
tion which decomposes the normalized saliency weight map
S̄(x) and L{t(x)} is the Laplacian pyramid operation [39]
which decomposes the input medium transmission t(x) (i.e.,
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FIGURE 3. Some results of our saliency-guided multi-scale fusion scheme. (a) Raw underwater images. (b) Medium transmissions estimated
by IATP. (c) Normalized saliency weight maps of (b). (d) Medium transmissions estimated by UDCP. (e) Normalized saliency weight maps
of (d). (f) Fused medium transmissions by our scheme. Red boxes represent the inaccurate estimation.

the medium transmission estimated by IATP tLAT (x) and
the medium transmission estimated by UDCP tUDCP(x)).
In our fusion scheme, we employ a frequency-tuned salient
region detection algorithm since it is computationally effi-
cient [40]. Firstly, the saliency weight map of input medium
transmission is calculated. Then, to yield consistent results,
the obtained saliency weight map is normalized, and can be
computed as:

S̄k (x) =
Sk (x)
K∑
k=1

Sk (x)

, (12)

where S̄(x) is the normalized saliency weight map, S(x) is the
obtained saliencyweight map, andK = 2 is the number of the
input. In recent years, there have emerged many the state-of-
the-art salient region detection algorithms [41], [42]. Some
of these algorithms also may be available in our method.
In Fig. 3, we present some results of our saliency-guided
multi-scale fusion scheme.

As shown is Fig. 3, the fused medium transmissions are
relatively more accurate when compared with the inaccurate
estimation presented on the Fig. 3(b) and Fig. 3(d). For
example, the regions of red box in Fig. 3(b) and Fig. 3(d)
are corrected in the final medium transmissions by saliency-
guided multi-scale fusion scheme where saliency weight
map determines which pixel is advantaged to appear in the
final fusion result. Because the IATP and UDCP are calcu-
lated block-by-block, we incorporate the guided filter [43] to
refine the final medium transmission to reduce the blocking
artifacts.

D. ESTIMATING THE MEDIUM TRANSMISSIONS OF
THREE COLOR CHANNELS
In most of underwater image restoration methods, the authors
assume that three color channels of an underwater image have
the identical medium transmission. However, different chan-
nels of an underwater image should have different medium
transmissions due to the different attenuation coefficient β.
In the new underwater image formation model, the medium
transmission is defined as:

tc(x) = exp(−βcd(x)), c ∈ {r, g, b}, (13)

According to [15] and [44], Eq. (13) can be rewritten as:

tc(x) = (Nrerc)d(x), c ∈ {r, g, b}, (14)

where Nrerc represents the normalized residual energy ratio.
In general water [15], [45],Nrerc can be further expressed as:

Nrerc =


0.8 ∼ 0.85 c = r
0.93 ∼ 0.97 c = g
0.95 ∼ 0.99 c = b

(15)

If one knows the depth of scene d(x), themedium transmis-
sions of three color channels can be estimated using Eq. (14)
and Eq. (15). Before, we have obtained the refined medium
transmission estimated by joint prior. So, the depth of scene
d(x) can be calculated as:

d(x) =
log(tr (x))
log(Nrer)

, (16)

where tr (x) is the refined medium transmission and Nrer
is the normalized residual energy ratio. Thus, the medium
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FIGURE 4. Restored results with our method. (a) Raw underwater images.
(b) Refined medium transmissions estimated by the proposed joint prior.
(c) Restored results by our method.

transmissions of three color channels tc(x) can be estimated
as:

tc(x) = (Nrerc)
log(tr (x))
log(Nrer) , c ∈ {r, g, b}, (17)

E. RESTORING UNDERWATER IMAGE
According to the new underwater image formation model,
the restored underwater imageM c(x) can be obtained by:

M c(x) =
I c(x)− Lc + Lctc(x)
max(τ c,Lctc(x))

, c ∈ {r, g, b}. (18)

where I c(x) is the input underwater image, Lc is the colors
of light source, tc(x) is the medium transmission, τ c is the
parameter which avoids introducing noise. Fig. 4 shows some
restored results with our method.

In Fig. 4, we just show the refined medium transmissions
obtained from joint prior because it is hard to distinguish
the medium transmissions of three color channels in color
image form. As shown in Fig. 4, the refined medium trans-
missions indicate that our method can estimate the medium
transmission (depth) of scene in a relatively accurate manner.
Moreover, our restored results are characterized by natural
colors and increased visibility.

III. EXPERIMENTS
We collect several raw underwater images which are often
used in the comparison experiments. With these images,
we evaluate the performance of our proposed method and
compare with several existing methods. In our method,
the size of image patch � is set to 9 × 9, the patch size
of guided filter is 7 × 7 and the constraint parameter τ c is

FIGURE 5. Qualitative comparison on image ‘‘divers’’. (a) Raw underwater
image with size of 1000 × 700. (b) Result of DCP [16]. (c) Result of
CAP [38]. (d) Result of IATP [14]. (e) Result of UDCP [18]. (f) Result of
ODM [19]. (g) Our result.

set to 0.3, 0.2, and 0.2 for red, green, and blue channels,
respectively. Nrer , Nrerr , Nrerg, and Nrerb are set to 0.8,
0.85, 0.97, and 0.99, respectively.

The compared methods include single image dehazing
methods (i.e., DCP [16] and CAP [38]) and single underwater
image restoration methods (i.e., IATP [14], UDCP [18] and
ODM [19]). DCPmethod is a classical single image dehazing
method. CAP method is the state-of-the-art image dehazing
method which is based on color attenuation prior for outdoor
hazy image. Our method is compared with DCP and CAP
methods in order to show that our method is more suitable for
underwater scene than the outdoor image dehazing methods.
IATP and UDCP methods are based on single underwater
image prior. The main purpose of comparing our method
with IATP and UDCP methods is to demonstrate that our
joint prior is more effective than single IATP or UDCP. ODM
method is an underwater image restoration method based on
minimum information loss. We compare our method with
ODMmethod to demonstrate the effectiveness and robustness
of our method for underwater images.

A. QUALITATIVE COMPARISON
In Figs. 5-9, we present the qualitative comparisons. Observ-
ing the qualitative comparison results, DCP and CAP meth-
ods have few effects on the raw underwater images because
the priors obtained from outdoor hazy images are not suit-
able for underwater scenes. IATP method can improve the
visual quality of images ‘‘rock’’ and ‘‘coral’’, but it shows
limitations when it is used to process the underwater images
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FIGURE 6. Qualitative comparison on image ‘‘bus’’. (a) Raw underwater
image with size of 1000 × 700. (b) Result of DCP [16]. (c) Result of CAP
[38]. (d) Result of IATP [14]. (e) Result of UDCP [18]. (f) Result of
ODM [19]. (g) Our result.

FIGURE 7. Qualitative comparison on image ‘‘fish’’. (a) Raw underwater
image with size of 1000 × 700. (b) Result of DCP [16]. (c) Result of CAP
[38]. (d) Result of IATP [14]. (e) Result of UDCP [18]. (f) Result of
ODM [19]. (g) Our result.

with greenish tone and low contrast, such as images ‘‘divers’’
and ‘‘fish’’. The poor robustness of IATP method poten-
tially reduces its practical applications. For UDCP method,

FIGURE 8. Qualitative comparison on image ‘‘rock’’. (a) Raw underwater
image with size of 1000 × 700. (b) Result of DCP [16]. (c) Result of
CAP [38]. (d) Result of IATP [14]. (e) Result of UDCP [18]. (f) Result of
ODM [19]. (g) Our result.

FIGURE 9. Qualitative comparison on image ‘‘coral’’. (a) Raw underwater
image with size of 1000 × 700. (b) Result of DCP [16]. (c) Result of
CAP [38]. (d) Result of IATP [14]. (e) Result of UDCP [18]. (f) Result of
ODM [19]. (g) Our result.

it introduces over-compensated regions, such as the back-
ground regions in images ‘‘rock’’ and ‘‘coral’’ because of the
over-estimation of the medium transmission. ODM method
can effectively remove the effects of haze in the underwater
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FIGURE 10. Color accuracy comparisons. (a) Color-checker image with six color taken in the air. (b) Color-checker
images taken at the depth of 5 meters (top) and 10 meters (bottom). (c) Results of DCP [16]. (d) Results of CAP [38].
(e) Results of IATP [14]. (f) Results of UDCP [18]. (g) Results of ODM [19]. (h) Our results.

images. Moreover, the results of ODM method look natural.
However, few details and colors of raw underwater images
are veiled by ODMmethod. Observing our results, they retain
vivid colors of the scenes and show the improved contrast and
brightness based on the accurate estimation of the medium
transmissions and the colors of light source. Compared with
the results of other methods, our results with few color casts
are more visually pleasing. To further compare the color
correction performance of different methods, we present the
compared results on two underwater color-checker images
in Fig. 10.

As shown in Fig. 10(b), compared with color-checker
image taken in the air, some colors decay due to the wave-
length dependent light attenuation and back scattering light.
As for Fig. 10(c)-(f), DCP, CAP, IATP, and UDCP methods
can not well restore the colors of underwater color-checker
images. As for Fig. 10(g)-(h), ODM and our methods change
the colors of underwater color-checker images because the
image formation models in this two methods take the selec-
tive attenuation of underwater light into consideration. In con-
trast to the results of ODM method, the colors of our results
subjectively look more close to those of the color-checker
image taken in the air.

B. QUANTITATIVE COMPARISON
To quantitatively compare the results of the above-mentioned
methods, we apply underwater color image quality evalua-
tion (UCIQE) [46] to assess the visual quality of the results

in Figs. 5-9. In addition, the patch-based contrast quality
index (PCQI) [47] is applied to evaluate the contrast varia-
tions.

UCIQE is defined as a linear combination of chroma,
saturation and contrast:

UCIQE = c1 × σc + c2 × conl + c3 × µs. (19)

where σc is the standard deviation of chroma, conl denotes the
contrast of luminance,µs represents the average of saturation,
and c1, c2, c3 are weighted coefficients. Here, we follow the
recommended weighted coefficients (i.e., c1 = 0.4680, c2 =
0.2745, c3 = 0.2576). The higher UCIQE values indicate the
image has better visual quality.

PCQI is to predict the human perception of contrast varia-
tions, which can be expressed as:

PCQI =
1
M

M∑
i=1

qi(xi, yi)qc(xi, yi)qs(xi, yi). (20)

where M represents the total number of the patches in the
image, qi, qc and qs are three comparison functions. The
higher PCQI values denotes that the image has better contrast.
Table 1 shows the comparative values in terms of the UCIQE
and PCQI. The values in bold represent the best results.

The quantitative results summarized in Table 1 show that
our method outperforms the compared methods in terms of
the average values of UCIQE and PCQI. The highest average
values of UCIQE and PCQI indicate that our method has bet-
ter visual quality and contrast improvement when compared
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TABLE 1. Quantitative results in terms of UCIQE and PCQI.

FIGURE 11. Our results. (a) Raw underwater images. (b) Restored results
by our method.

FIGURE 12. Our results. (a) Raw underwater images. (b) Restored results
by our method.

to other methods. The result of UDCP for image ‘‘coral’’
ranks first best in terms of PCQI, but there are obvious arti-
facts in the background. The highest score for image ‘‘coral’’
may be from themagnified artifacts. As can be seen in images
‘‘rock’’ and ‘‘coral’’, there are artifacts and color casts in
the background regions of the results of IATP, but these two
images rank first best in terms of UCIQE. Obviously, our
results without artifacts and color casts look more visually

FIGURE 13. Failure cases. (a) Raw underwater images with non-uniformly
lighting. (b) Restored results by our method.

pleasing. More restored results by our method can be seen
in Figs. 11 and 12.

IV. CONCLUSION AND FUTURE WORK
In this paper, we have presented an underwater image restora-
tion method based on joint prior using a new underwater
image formation model. By jointing underwater image priors
and considering the optical properties of underwater imag-
ing, the medium transmissions of three color channels of an
underwater image are estimated, respectively. In this way,
the estimated medium transmissions are more accurate and
robust than those of traditional methods, which leads to the
improved contrast and brightness of our restored results.
Based on the assumption that the global background light
is the same with the colors of light source, the color casts
of underwater image can be effectively removed based on
a new underwater image formation model. Experimental
results demonstrate the advantage of the proposed method
when compared with several existing methods.

However, the proposed method also shows some limita-
tions when it is used to restore the underwater images with
non-uniformly lighting. Fig. 13 shows two failure cases of
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our method. In Fig. 13, the visibility and contrast are
improved by our method. Meanwhile, the non-uniformly
lighting is magnified, which results in poor visual quality of
the restored results. For future work, we plan to add a non-
uniformly lighting detection and removal algorithm in our
method.
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