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ABSTRACT The automatic detection of diseases in images acquired through chest X-rays can be useful
in clinical diagnosis because of a shortage of experienced doctors. Compared with natural images, those
acquired through chest X-rays are obtained by using penetrating imaging technology, such that there are
multiple levels of features in an image. It is thus difficult to extract the features of a disease for further
diagnosis. In practice, healthy people are in a majority and the morbidities of different disease vary, because
of which the obtained labels are imbalanced. The two main challenges of diagnosis though chest X-ray
images are to extract discriminative features from X-ray images and handle the problem of imbalanced
data distribution. In this paper, we propose a deep neural network called DeepCXray that simultaneously
solves these two problems. An InceptionV3 model is trained to extract features from raw images, and a new
objective function is designed to address the problem of imbalanced data distribution. The proposed objective
function is a performance index based on cross entropy loss that automatically weights the ratio of positive
to negative samples. In other words, the proposed loss function can automatically reduce the influence of
an overwhelming number of negative samples by shrinking each cross entropy terms by a different extent.
Extensive experiments highlight the promising performance of DeepCXray on the ChestXray14 dataset of
the National Institutes of Health in terms of the area under the receiver operating characteristic curve.

INDEX TERMS Chest X-rays, deep neural networks, cross weighted cross entropy loss, imbalanced data,

feature extraction.

I. INTRODUCTION

A chest X-ray is a quick and painless procedure that gen-
erates images of the internal form of the chest. It is widely
used to help diagnose and monitor treatment for a variety of
diseases, such as chest injury, pneumonia, emphysema, and
lung cancer [1], [2]. To obtain a diagnosis, even experienced
doctors must carefully analyze chest X-ray images. Such
a procedure is time consuming, and the correctness of the
diagnosis depends completely on the experience of the doctor.
In practice, however, there is a lack of experienced physicians
to provide a high quality of service to all patients, and many
patients may not be diagnosed and treated in time. Therefore,
it is highly desirable to develop a system that can automat-
ically diagnose certain diseases using images obtained from
chest X-rays images.

In the last several years, a large number of studies have
been devoted to image classification [3]. Of them, remarkable
progress has been made due to the development of deep neu-
ral networks [4]-[8]. Convolutional neural networks (CNN’s)

have manifested powerful abilities to extract the inner repre-
sentations of images, and have obtained significant success
in many areas of computer vision [4], [7]-[11].

CNNs have also achieved promising performance in nat-
ural image classification. A 1000-category image classifica-
tion task [3] was released in 2009. Since then, the accuracy
of computer in ranking the top five images has continually
improved. In 2016 the error rate was reduced to 5.29% [6],
which is competitive with the human-level performance.

The classification of chest X-ray images is different from
the classification of natural images. Recognizing X-ray
images is more useful than recognizing natural images in
the medical fields. Moreover, images of chest X-rays pose
new challenges because the features of diseases are very
hard to identify. Traditional methods tend to extract particular
features from chest X-ray images [12]-[15], but, they are
manually designed and ineffective. These methods focus on
regions of interest based on texture and shape features. More-
over, the regions of disease activity cannot be discriminated
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by using texture and shape as features. Diseases have latent
features that cannot be manually extracted. Nowadays, deep
neural networks, especially deep CNNs, perform well at
extracting the inner representations of images. To extract the
features of X-ray images effectively, in this study, we trained
an InceptionV3 [11] module to extract the features of
X-ray images and employ transfer learning to boost training
performance.

Another challenge posed by automatic detection of dis-
eases from chest X-ray images is that the images have imbal-
anced data distribution. Considering the recently released
ChestXray 14 dataset [1] as an example, it contains 112, 120
images from over 14 classes. Positive samples of one of the
disease categories (hernia), are the fewest in number, at 199.
By contrast, a large number of images (more than 50, 000)
show no diseases and are called negative samples. Such an
imbalanced dataset degrades the performances of many diag-
nostic algorithms because they are easily pulled toward the
negative samples. To address the problem of the imbalanced
data distribution, common solution in deep neural network
training is data augmentation, such as by cropping, rotating,
and flipping positive images. A major disadvantage of data
augmentation is the limited diversity of positive samples. It
cannot introduce new features of diseases because the “new”’
data must actually be derived from available data.

To address the above two challenges, we propose a deep
neural network called DeepCXray to diagnose diseases on
chest X-rays automatically. The proposed DeepCXray is
an end-to-end and optimized classifier that employs Incep-
tionV3 as feature extractor, and is trained using a new
objective function. The major novelty of this work lies in
the proposed objective function, called cross weighted cross
entropy loss (CW-CEL), which allows our network to over-
come the problem of too many negative samples by weighting
the ratio of positive to negative samples. Extensive exper-
iments show that our method outperforms state-of-the-art
methods on a recently released chest X-ray image database
by a considerable margin.

The remainder of this paper is organized as follows:
In Section II, we introduce some related work in feature-
extraction and imbalanced datasets. In Section III, the pro-
posed method is presented in detail. In Section IV, extensive
experiments are reported to verify the effectiveness of our
method, and the conclusions of this study are drawn in
Section V.

Il. RELATED WORK

A. COMPUTER-AIDED DIAGNOSTICS

Computer-aided diagnostics(CADs) is technology that can
be used to substantially improve the efficiency of a doctor’s
diagnosis. The relevant methods rely heavily depended on the
extracted features. Traditional features-extraction methods
are manually designed, and focus on extracting texture and
shape features [12]-[15].
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A method proposed by Jaeger et al. [15] is based on a
graph cut segmentation method. They computed a set of
texture and shape features that enabled the classification of
X-ray images as normal or abnormal using a binary clas-
sifier. Boussaid and Kokkinos [13] proposed the loopy part
model to segment ensembles of organs in medical images.
Each organ’s shape was represented by an acyclic graph
while shape consistency was enforced through inter-shape
connections. Avni et al. [12] proposed an efficient image
categorization and retrieval system based on a local patch
representation of the image content using a bag-of-visual-
words approach. These methods are all based on manu-
ally designed feature extraction. With the development of
deep learning, many CAD tools based on deep learning
have been proposed [16], [17]. Gulshan et al. [16] proposed a
deep learning-based method to construct an effective diabetic
retinopathy diagnosis system with a performance that was
comparable to that of a trained radiologist. Esteva et al. [17]
constructed a single end-to-end CNN using only pixels and
disease labels as inputs. This method outperformed 21 board-
certified dermatologists on biopsy-proven clinical images
with two critical binary classification use cases: keratinocyte
carcinomas versus benign seborrheic keratoses, and malig-
nant melanomas versus benign nevi.

B. DEEP CNNS

CNNs are inspired by biological vision mechanisms [18].
Because of their trainable filters and shared parameters, they
are quite effective in computer vision tasks. Moreover, CNNs
are an important type of neural network that have made many
breakthroughs in computer vision. The first successful appli-
cation of CNNs was in the recognition of handwritten dig-
its using the Lenet-5 [10]. After Hinton et al. [19] proposed
deep belief networks in 2006 and developed the concept of
deep learning, CNNs and deep learning developed quickly.
In 2012, Krizhevsky et al. [4] constructed a CNN to obtain
the best result in an ImageNet competition that was 8.2 — 8.7
percentage points superior to previous results. Lin et al. [20]
noted that a fully connected layer is not necessary in a con-
volution neural network, and proposed that 1 x 1 kernels
can be used instead. From then on, an increasing number
studies have focused on deep CNNs. There were two initial
solutions in deep learning. One was the VGG [5] model
architecture, and the other one was the famous inception
architecture inspired by Lin et al. [20]. He et al. [8] subse-
quently proposed residual blocks that enable a CNN to go
deeper, and Huang et al. [6] proposed dense blocks that can
be used for even deeper networks. As CNNs developed,
many studies investigated their training. ZFNet, proposed by
Zeiler and Fergus [21] enables users to visualize the inner
representation learned by convolutional layers, which can
help them adjust the parameters effectively.

CNNs are also being used in weakly supervised object
localization or visualization. Zhou et al. [22] proposed a
method that generates class activation maps (CAMs) using
the global average pooling (GAP) layers in CNNs. A CAM
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for a particular category indicates the discriminative image
regions used by the CNN to identify that category.
Wang et al. [1] proposed a method to construct a transition
layer in a neural network architecture when the model was
trained sufficiently well. They combined the transition layer
with the output to construct heatmaps for disease localization.
In our experiments, to visualize, we employed global average
pooling layer to directly calculate the heatmaps.

C. METHODS TO TRAIN IMBALANCED DATASET
With the development of deep learning, which is a data-driven
approach, imbalanced data classes have become an unavoid-
able issue for scientists particularly in medical imaging
field. Researchers have obtained promising results on some
datasets and the relevant methods can be divided into two
categories: data-level and classifier-level [23] approaches.
Data-level methods, are widely used in deep lea-
ning [24]-[27]. The most commonly used method is over-
sampling. The basic version of oversampling is called
random minority oversampling, which simply replicates ran-
domly selected samples from minority classes. It has been
shown that oversampling is effective, but it can lead to
overfitting [28]. Hence, some methods have been recently
proposed to ensure the uniform class distribution of each
mini-batch and control the selection of examples from each
class. Another popular data-level method is undersampling,
which ensures the same number of examples in each class
by reducing the number of negative samples (or other major-
ity samples) [24]. The second approach to the problem of
imbalanced data classes, classifier-level methods, include the
following: threshold-based methods, cost-sensitive learning,
one-class classification and hybrid methods. For threshold-
based methods, the most basic version simply compensates
for prior class probabilities [29]. Cost-sensitive learning
assigns a different cost to the misclassification of examples
from different classes. Cost-sensitive learning with respect to
neural networks can also be applied to the inference phase
once the classifier has been trained, such as in the threshold
moving [30] or post scaling [31] methods. This method can
be adapted to modify the learning rate so that examples of
higher cost contribute more to updating the weights [32].
In two-category classification tasks, some work has involved
a technique that recognizes positive instances instead of
discriminating between classes. Then, a new instance is clas-
sified using the reconstruction errors between input and out-
put patterns [33]-[35]. Finally, in many cases, using only
one of the above methods does not work effectively, or is
not suitable for some datasets. Combining methods from
one or both of the above-mentioned categories is a useful
approach. Recently, two-phase training was introduced and
successfully used to train a CNN for brain tumor segmenta-
tion [36]. However, these methods mentioned cannot solve
the problem of imbalanced multi-label datasets. Modifica-
tions to the cross entropy loss function are common method
to promote the effectiveness of training. Wen et al. [37]
proposed a novel loss function called center loss and
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combined it with softmax cross entropy loss to obtain highly
discriminative features for robust face recognition. In terms
of addressing imbalance in multi-label classification tasks,
Li and Wang [38] proposed RMLS. Wang et al. [1] proposed
a loss function to reduce the influence of many negative sam-
ples by balancing the errors of negative and positive samples
in the loss function. This study amplified the influence of
errors to varying degrees. However, the number of positives
in a batch is small that cause the weights to increase substan-
tially, which bring training oscillations. Hence, we proposed a
loss function that can address this problem and make training
more stable.

Ill. DEEPCXRAY

An automatic disease diagnosis system for images from chest
X-rays can be regarded as a multi-label classification task,
where the input is a frontal-view chest X-ray image X and the
output is a 14—dimensional vector, where an element labeled
“1” denotes the presence of a certain disease, and a label
of “0” denotes the absence of it. In this study, we aim to
enable the system to learn a mapping F from X to y, F(X) —
y. We define performance index L(F(X), y) to measure the
distance between the output of model F(X) and the target y.
In this section, we presented our deep neural network, called
DeepCXray, to approximate the mapping F(X) by updating
weights W to minimize L(F(X), y).

The proposed method is shown in FIGURE 1. We first use
X-ray images as inputs to our model. The main part of this
model is based on a deep CNN architecture that enables us to
obtain the inner representations of these images. The green
cubes in the figure are CNNs that are regarded as feature
extractors. This module can use a residual block [8], the
inception module [7], a dense block [6], and/or local response
normalization [4], as shown in the middle blocks indicated by
the dashed-line. Following global average pooling, the results
of the model are generated for the diagnosis of 14 diseases.
To improve the model’s performance, we add an auxiliary
task and propose a loss function to train the model effectively.
In the new loss function, we combine the outputs with the
corresponding labels to calculate cross entropy values. The
“x” in the right dashed-line block denotes the element-wise
product.

A. NETWORK STRUCTURE

The proposed DeepCXray employs InceptionV3 [11] as fea-
ture extractor. Because the size of a medical image database
is often much smaller than that of a natural image databases,
to exploit the potential of deep neural networks and benefit
from the representative capacity of a transferable model, we
pre-trained InceptionV3 on ImageNet [3], one of the most
well-known image datasets. The original InceptionV3 had
1,000 outputs. To make this output suitable for our task,
we replaced the last layer with a layer of 14 neurons. More-
over, we experimentally found that when DeepCXray was
trained with an auxiliary task to predict a normal image,
a better prediction of the 14 diagnosis can was obtained.
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FIGURE 1. DeepCXray for multi-label classification.

InceptionV3 is a CNN architecture and is the third genera-
tion of the inception architecture. This architecture modifies
the kernel-size of convolutions in the network. The main
idea is that several small kernels can replace a large kernel.
To reduce the amount of calculation and total number of
all parameters, this study uses kernel factorization to fac-
torize large kernels into small ones. There are two kinds of
factorizations: replacing the larger kernel with several small
ones, and replacing a large convolution kernel with several
asymmetric ones. For examples, a 5 x 5 kernel can be replaced
by two 3 x 3 kernels. Alternatively, an n x n kernel can be
replaced by a 1 x n kernel followed by an n x 1 kernel.
InceptionV3 employs a global average pooling layer and
1, 000 outputs for 1, 000—category classification. However,
our task outputs 14 classes. To apply the InceptionV3 model
to this 14—category multi-classification task, we replaced the
last layer with 14 neural outputs.

We made several end-to-end binary predictions within a
single model. In this model, if the output is a vector of zeroes,
the given chest X-ray image is predicted to show no diseases.
If there are ones in the output vector, the corresponding
diseases are likely to exist. The dataset has imbalanced labels,
which result in sparse target vectors.

Because the imbalanced dataset has many negative samples
that are labeled zero, the positive samples are too few to
effectively train. Some work [39] indicated that multi-task
learning is one approach to inductive transfer that improves
generalization using the domain information contained in the
training signals of related tasks as an inductive bias. In this
study, if a sample is indicated as normal, the vector of the
target consist of all zeros; if not, there is at least one disease.
We added an auxiliary task to predict a given image as that
of a normal (disease free) chest or not to train this model
effectively. The results of the following experiments indicate
that this method can improve the performance of the model.

B. CROSS WEIGHTED CROSS ENTROPY LOSS
We note that the dataset is imbalanced. Methods to address
solve the imbalanced dataset problem consist of data-level
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and classifier-level approaches. Data-level methods, as men-
tioned above, consist of undersampling and upsampling.
These methods are not suitable for the multi-classification
tasks because a sample can belong to multiple categories, i.e.,
a minority category as well as the majority category. Under-
sampling and upsampling thus cannot balance the distribution
of such a dataset, although a method proposed in [38] consid-
ers the different labels’ relevance in a given instance.

Some classifier-level methods are available as well. For
instance, Wang et al. [1] proposed a loss layer called the
weighted cross entropy loss(W-CEL) to force the network to
learn positive examples by minimizing the following equa-
tion:

Lw_ceL(f(X),y)
= Bp Z —In(f (xc)) + Bn Z —In(1 —f(x)), (1)

Ye=1 ye=0
|P| + [N|
p=—7—, (2)
|P|
|P| + |N|
Pn = ———. 3)
IN|
For updates, the weights obey the following equations:
W <« W — AW, 4
—aln(f (xc)) Bln(l— (xe))
=Bp Yy —F—— (f Cpy Yy f =6
Ye=1 ye=0

where |P| and |N| are the total number of ones and zeros in
a batch of image labels. This function has a drawback. When
sampling a mini-batch, since P is sparse in general, |P| may
equal or close to zero, and then and then Bp goes to infi-
nite or very large, this will result in the training process stop
earlier or oscillating. The experiments in this study show this.

To overcome the disadvantages, we propose a loss func-
tion, called CW-CEL, which is defined as follows:

Lew—ceL(f(X), y)
=ay Y —In(fx) +ap Yy —In(l —f(x), (6)

ye=1 yc=0
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ap =1 )
|P| + |N|

ay = — VL @®)
Pl + IN|

Clearly, the parameters oy and ap are controlled in arange
between zero and one, thus give the training to be more stable.
Moreover, since oy +ap = 1, it gives a good balance between
positive and negative labels.

To weaken the influence of imbalanced labels. Wang
et al.’s proposal [1] and our method both optimize the loss
function. In contrast to our method, however Wang et al.
magnified the two terms of the cross entropy loss to some
extent, which can lead to the potential problem. The major
problem is that |P| can be very small, which leads to larger
gradients that causes the training to oscillate sharply. Our
method shrinks the two terms of cross entropy loss. When we
balance the dataset, the weights are in the range [0, 1], and
hence our loss function can avoid oscillation caused by batch
samples. The experiments in this study show that this method
works well.

C. FINE-GRAINED CROSS WEIGHTED CROSS

ENTROPY LOSS

As shown in the above equations, the range of oscillation of
the loss values can be limited to a small scale, but, the meth-
ods proposed above correct only the imbalance between neg-
atives and positives. In multi-category classification, there is
also an imbalance problem between labels. Different labels
cannot be balanced based on the methods above. To address
this problem, a weight is added to a different class output.
This method is as the follows.

Lew—ceL(f (%), )
= D oyl + Y —apin(l—f(), )

Ye=1 yc:O
P
afh = , 10
PN TP (10)
Nc
oy = . 11
S o (an

In this equation, «f, is the corresponding disease ratio in a
batch. Based upon this, each disease has different proportion,
and thus every class can be balanced to some extent by this
method.

Other classifier-level methods are available. Threshold
moving [30] and post scaling [31] can be employed to modify
the learning rate to force more costly examples to contribute
more to updating the weights. These methods focus on some
hard samples(that is, those that are difficult for the model
to discriminate). However, in multi-category classification,
a sample can belong to both the majority and the minority
categories at the same time, and these approaches cannot
address this case. These methods modify only the learning
rates, which does not make a difference with respect to the
error of each category’s. The method, CW-CEL does not
address this problem either. However, our method considers
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this problem and is designed to balance the relationship of
each label to the entire dataset.

IV. EXPERIMENTS

In this section, we present the results of experiments con-
ducted on a real-world dataset to evaluate the effectiveness
of the proposed method. The parameters of the method were
initialized using pre-trained models, and it was then trained
end-to-end using Adadelta [40] with initial learning rate
Ir = 1le — 5. We replace the last layer with a one with 15
outputs, in which we used the sigmoid function to generate
the probability for each disease and one output for the auxil-
iary task to predict normal or diseased images. We trained
the model with mini-batches of size 16. We also designed
the experiments to compare models with and without transfer
learning, and compared models with and without an auxiliary
task at the same time. All experimental trials were run on the
graphics processing unit (GPU) enabled TensorFlow compu-
tational framework on a single NVIDIA Tesla K40 running
the Ubuntu 14.04 operating system.

A. DATASETS

We tested our model on the ChestXray 14 dataset which [1] is
an imbalanced dataset of images of diseases lungs released
by the National Institute of Health. The dataset contained
14 diseases as shown in FIGURE 2, and provided more
than 112, 120 pictures from 30, 805 patients labeled using
natural language processing. The number of instance of
imaging presenting each disease are shown in the histogram
in FIGURE 3.

We split the dataset into three parts: 70% was used for train-
ing, 20% for testing, and the remaining 10% was reserved for
validation. We evaluated the performance of the models based
on the validation dataset, during training. We chose the best
checkpoint on the validation dataset and employed the model
to test the test dataset and obtained the final results. To verify
reproducibility of our results, we performed six random trials
of the experiments. The results show that the choice of the
split had an insignificant effects on performance.

Before entering the dataset into the model, we normal-
ized the pixel values of the images in the range [—1, 1].
Because some pre-trained models require three-channel pic-
tures, we converted gray images into three-channel images,
where each channel had the same value. To unify the input
size, we resized every image to dimensions of 299 x 299.

B. METRIC

To assess the performance of this model using multi-class
classification, we used the area under the receiver operat-
ing characteristic (AUC). When normalized units are used,
the AUC is equal to the probability that a classifier ranks a
randomly chosen positive instance higher than a randomly
chosen negative one (assuming ‘‘positive”” ranks are higher
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FIGURE 2. Samples of 14 diseases from ChestXray14 dataset.
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FIGURE 3. Number of instance of disease in the database, which ranges
from 18262 to 199 images. There are 54556 normal images.

than “negative”). The AUC is given by

A= / - TPR(T) - (—FPR'(T))dT

= / - / - I(T' > T)- AT - fo(T)dT'dT
— P(ros) = poso) (12)

where pos is the score for a positive instance, posg the score
for a negative instance, and fy and f; are the probability
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densities, as defined in the previous section. Moreover,
the integral boundaries are reserved because a large value of
T has a lower value on the x — axis.

C. COMPARISON BETWEEN W-CEL AND CW-CEL ON
CHESTXRAY IMAGES

The proposed loss function is an improvement over Weighed
Cross Entropy Loss(W-CEL).

In the experiments, every model was trained for 23, 000
steps. We chose a model that delivered the best performance
upon the validation dataset to evaluate on the testing dataset.
In this section, we compared CW-CEL proposed in this study
with W-CEL with and without transfer learning. The results
are shown in TABLE 1.

“NT” in the table denotes the models trained without
transfer learning. We did not employ a pre-trained model
to boost this training process. When trained without transfer
learning, the models W-CEL(NT) and CW-CEL(NT) did not
converge properly. However, the models with transfer learn-
ing obtained the best performance in approximately 9, 000
steps. We evaluated the models without transfer learning
for 23,000 steps, and evaluated the models with transfer
learning obtained for 9,000 steps. The results forW-CEL
are much better than those of W-CEL(NT), and high-
lighted the effectiveness of transfer learning’s. To compare,
we trained a model with CW-CEL under the same conditions.
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FIGURE 4. The loss curves plotted here for the process of training and validation of the models trained by different methods.

TABLE 1. The comparison between W-CEL and CW-CEL. “NT” denotes that
training the model without pre-trained parameters.

Pathology W-CEL(NT) W-CEL CW-CEL(NT) CW-CEL
Atelectasis 0.6725 0.751 0.7027 0.7833
Cardiomegaly 0.6893 0.8055 0.7794 0.8674
Effusion 0.7505 0.8363 0.8076 0.8576
Infiltration 0.6462 0.6826 0.6648 0.6934
Mass 0.6405 0.7341 0.6836 0.7814
Nodule 0.5877 0.6909 0.6072 0.7264
Pneumonia 0.649 0.6967 0.6596 0.7204
Pneumothorax 0.7166 0.8417 0.7797 0.8822
Consolidation 0.7585 0.7785 0.771 0.7874
Edema 0.8318 0.8819 0.8675 0.8945
Emphysema 0.6661 0.8149 0.7401 0.8806
Fibrosis 0.7139 0.7935 0.7442 0.8295
Pleural Thickening 0.6477 0.7223 0.6846 0.7678
Hernia 0.6572 0.7894 0.7553 0.8324
AUC(Mean) 0.6877 0.7728 0.7315 0.8075

CW-CEL(NT) outperformed W-CEL(NT), whereas CW-CEL
outperform than W-CEL. From the table, it is evident that
our methods can promote 0.03 ~ 0.05 mean AUC values of
14 diseases compared to W-CEL.

To visualize the process of training, we plot the loss in the
training and validation datasets in FIGURE 4 using Tensorbo-
rad with smooth weights of 0.9. In this figure, the blue line
denotes training loss, and the orange line denotes validation
loss. FIGURES 4-a and 4-b plot the loss curve of W-CEL
without and with transfer learning respectively. FIGURES 4-
¢ and 4-d plot the loss curve of CW-CEL without and with
transfer learning respectively. The loss value of CW-CEL
was smaller than that of W-CEL by one order of magnitude.
The range of loss oscillation of CW-CEL was smaller than
that of W-CEL. When trained with W-CEL, the model was
terminated due to Inf and NaN errors at times. As an extreme
example, if |P| was zero in a batch, which was very likely
to happen to the minority categories, Bp is Inf and led to a
training error.

From FIGURES 4-a and 4-b, we see that the loss with
transfer learning was much more stable than that without
transfer learning. The latter loss can be decreased to a con-
siderably smaller value than the former. The comparison
between FIGURES 4-c and 4-d confirms this. We also see
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that the model with CW-CEL and W-CEL using transfer
learning began over-fitting the training set at almost the same
steps. We think the InceptionV3 is a delicate and complex
model with many trainable parameters. The chest X-ray
images are not sufficient to train such a model. Comparing
FIGURES 4-b and 4-d, the two models both over-fitted after a
sufficient number of steps. However, the model in FIGURE 4-
d shows a smaller degree of over-fitting.

D. COMPARISON WITH OTHER LOSS FUNCTIONS ON
CHESTXRAY IMAGES

To evaluate the learning performance of our loss function,
we designed an experiment based on the ChestXray 14 dataset,
in which we used the same architecture, InceptionV3 with
pre-trained parameters. However, the loss function was dif-
ferent. The results are shown in TABLE 2.

In this experiment, we compared the results obtained by
different loss functions with the same architecture. We com-
pare the mean squared error(MSE) of the loss layer, the
CW-CEL layer, and the CW-CEL layer with an auxiliary task.
All models were trained with the same number of iterations
(approximately 9, 000 and 23, 000) with the same batch size
of 16. The results show that our loss function outperformed
the other methods. Moreover, 9, 000 steps were sufficient to
train our method. MSE(S) and CEL(S), denote the models
trained with 23,000 steps, and the results show that the
MSE loss and CEL functions required more iterations for
training. Our method needed approximately half the num-
ber of update steps. Thus, our loss function can train the
model more quickly and well. The results of CEL(S) for the
diagnosis of atelectasis, cardiomegaly, effusion and masses
were better than those of CW-CEL. However, for others
diseases, the other methods perform worse than CW-CEL.
These results indicate that our method is superior to the other
methods on classes with smaller sizes.

We also added an auxiliary task to determine whether an
image was normal in training, and removed this task when
testing. For this experiment, we trained the model for approx-
imately 9, 000 steps, the same as for CW-CEL. The results
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TABLE 2. Multi-label classification results of the proposed loss function and other loss functions on the ChestXray14 dataset. CW-CEL(AT) denotes
CW-CEL with an auxiliary task. CEL(tran.) denotes the architecture that contains a transition layer.

Pathology MSE CEL MSE(S) CEL(tran.) CEL(S) CW-CEL CW-CEL(AT) CW-CEL(AT, FG)
Atelectasis 0.6799  0.6908  0.7482 0.7810 0.7898 0.7833 0.7924 0.7838
Cardiomegaly 0.5963  0.5869  0.6547 0.8011 0.8990 0.8674 0.8935 0.8628
Effusion 0.7679 0.8384  0.8483 0.8492 0.8794 0.8576 0.8651 0.8577
Infiltration 0.6304 0.6444  0.6484 0.6696 0.6827 0.6934 0.6957 0.6936
Mass 0.5890 0.6676  0.6346 0.7795 0.8178 0.7814 0.8307 0.7801
Nodule 0.5798  0.5820  0.5461 0.7050 0.7046 0.7264 0.7549 0.7266
Pneumonia 0.6145 0.6664  0.6428 0.6402 0.6916 0.7204 0.8530 0.8326
Pneumothorax 0.6948 0.7570  0.7117 0.8118 0.8658 0.8822 0.8727 0.8583
Consolidation 0.6914  0.7560  0.7523 0.7274 0.7691 0.7874 0.7841 0.7680
Edema 0.7607  0.7761 0.8029 0.7888 0.8691 0.8945 0.9010 0.8908
Emphysema 0.6457 0.6924  0.6715 0.8097 0.8649 0.8806 0.9211 0.8686
Fibrosis 0.6148  0.6177  0.5654 0.7211 0.7505 0.8295 0.8190 0.8077
Pleural Thickening  0.6343  0.6689  0.6678 0.6858 0.7664 0.7678 0.7983 0.7729
Hernia 0.5696  0.5363  0.5740 0.7029 0.8218 0.8324 0.8728 0.8566
AUC(Mean) 0.6763  0.6772  0.6763 0.7480 0.7980 0.8075 0.8325 0.8114

show that the model trained with the auxiliary task outper-
formed the model trained without it. We give the results of
fine-grained CW-CEL. Although this model’s results were
better than the baseline [1], it did not outperform CW-CEL.
Our methods were designed to balance different labels. There
is a significant difference between the distributions of normal
and abnormal classes. However, the difference among the
distributions of diseases were insignificant. We suspect that
the fine-grained weights of CW-CEL drastically changed in
each batch owing to the changes to the number of samples in
each class. This led to unstable training.

CEL(trans.) denotes the CEL model with a transition layer.
Comparing its results with those of CEL(S), we see that the
transition layer did not improve overall multi-label classifi-
cation performance.

To evaluate the model’s reproducibility, we performed six
experiments in which we randomly split the entire dataset into
two parts: 70% for training, 10% for validation and 20% for
testing as before. We then compared the model’s AUC values
for all 14 diseases. We show the results in FIGURE 5. We also
randomly conducted statistical testing on the experiments the
six times, and the results are shown in TABLE 3. The results
shown in this table were generated by the CW-CEL(AT) in
TABLE 2. CW-CEL(mean) denotes the corresponding mean
AUC values of the diseases for six random experiments,
whereas CW-CEL(std) denotes the corresponding standard
deviation, and where the standard deviations of almost all
diseases were around at 0.01. From the FIGURE 5 and
the TABLE 3, the results show that the model’s results are
reproducible, and it is efficient.

E. COMPARISON WITH OTHER STATE-OF-THE-ART
RESULTS
We compared the per-class (AUC) of the model with
previous state-of-the-art results reported by CheXNet [2],
Yao et al. [41] and Wang et al. [1] as shown in TABLE 4.
Our DeepCXray achieved close to state-of-the-art results
on all 14 diseases classes. We obtained the best results for
pneumonia. Rajpurkar et al. [2] reported that CheXNet can
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FIGURE 5. AUC results of six experiments with randomly split datasets.

TABLE 3. The statistic testing for six random experiments.

Pathology CW-CEL(Mean) CW-CEL(std)
Atelectasis 0.7882 0.0061
Cardiomegaly 0.8710 0.0119
Effusion 0.8620 0.0018
Infiltration 0.6957 0.0044
Mass 0.7961 0.0175
Nodule 0.7279 0.0150
Pneumonia 0.8457 0.0088
Pneumothorax 0.8652 0.0147
Consolidation 0.7916 0.0105
Edema 0.8917 0.0078
Emphysema 0.8970 0.0163
Fibrosis 0.8042 0.0165
Pleural Thickening 0.7816 0.0147
Hernia 0.8731 0.0309
Mean 0.8208 0.0126

perform as well as human radiologists for this disease (an
AUC of 0.788). Our best AUC for it is 0.8530. The results
of AUC for other five trials were 0.8558, 0.8417, 0.8310,
0.8480, 0.8451. Pneumonia was labeled for 1237 times,
which was 1% of the total number of all images. Further,
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TABLE 4. Recent state-of-the-art results reported for the 14 diseases in the ChestXray14 dataset.

Pathology Wang. etal. [1]  Yao, Li. etal. [41] CheXNet [2] DeepCXray(ours)
Atelectasis 0.7158 0.772 0.8209 0.7924
Cardiomegaly 0.8065 0.904 0.9048 0.8935
Effusion 0.7843 0.859 0.8831 0.8651
Infiltration 0.6089 0.695 0.7204 0.6957
Mass 0.7057 0.792 0.8618 0.8307
Nodule 0.6706 0.717 0.7766 0.7549
Pneumonia 0.6326 0.7130 0.7632 0.8530
Pneumothorax 0.8055 0.841 0.8932 0.8727
Consolidation 0.7078 0.788 0.7939 0.7841
Edema 0.8345 0.882 0.8932 0.9010
Emphysema 0.8149 0.829 0.9260 0.9211
Fibrosis 0.7688 0.767 0.8044 0.8190
Pleural Thickening 0.7082 0.765 0.8138 0.7983
Hernia 0.7667 0.914 0.9387 0.8728
AUC(mean) 0.7379 0.8027 0.8424 0.8325

TABLE 5. Results upon four diseases that contains the least samples.

Pathology Hernia  Pneumonia  Fibrosis  Edema
Wang. et al. [1] 0.7667 0.6326 0.7688  0.8345
Yao, Li. et al. [41] 0914 0.713 0.7670  0.8820
CheXNet [2] 0.9387 0.7632 0.8044  0.8932
DeepCXray(ours)  0.8834 0.8530 0.8190  0.9010

we removed the four diseases that contained the smallest
number of samples for a comparison. The results are shown
in TABLE 5. Our model outperformed the other models for
three of diseases, excluding disease(henia). When evaluating
the result by disease(henia), only 40 samples were labeled
as those of henia. We conclude that our model (DeepCXray)
can improve the performance for a minority category signifi-
cantly by excluding other factors. The W-CEL method in this
table is from Wang et al. [1], and our models outperformed
theirs.

F. EVALUATION OF THE PROPOSED LOSS ON

DIFFERENT ARCHITECTURES

In this section, we report the assessment of the proposed
loss function on different architectures. We performed exper-
iments on the most popular and powerful CNNS, i.e., residual
block [8], inception [7], [11], and VGG [9]. These architec-
tures have played a significant role in the development of
CNNEs.

VGGNet [9] explores the effect of the relationship between
depth and width on performance. Simonyan et al. constructed
two convolutional neural networks, VGG16 and VGG19,
and achieved state-of-the-art results on ILSRC 2014. In the
same year, Google InceptionNet [7], [11], [42], [43] was
developed, and it can reduce the amount of calculation and
the number of parameters. It has 22 layers, considerably
deeper than AlexNet [4] and VGGNet. However the number
of its parameters is only é that of AlexNet’s, even though
it performs much better. Note that InceptionNet replaces
the fully-connected layer with a global pooling layer, which
can increase the speed of model training, and can reduce
the probability of overfitting and the number of parameters
further. This vision of inception was implemented in
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FIGURE 6. Mean AUC results. The model based on our loss function can
outperform the baseline proposed by Wang et. al. [1].

InceptionV1 [7]. Subsequent, versions of inception have been
proposed. In which batch normalization and factorization on
bigger convolution kernels have been introduced. ResNet was
proposed by He et al. [8]. It allows for the transfer of the bot-
tom of the original input to the top layers, which changes the
process from one of learning the entire output to learning the
difference between the input and the output. This architecture
has enabled deep neural networks to become even deeper.
To show that our loss function can be combined with some
popular architectures, we trained different models. To elimi-
nate the influence of irrelevant factors, the parameters of all
models’ were pre-trained on the ImageNet dataset. During
the training process, we use a batch size of 16, the same
learning algorithm as before, and a learning rate initialized at
107> and updated after 9, 000 steps. The results are shown in
the TABLE 6. The results obtained by Resnet52, Resnet101,
and Resnet152 [8] show that when the architecture was
deeper, the results were better. Furthermore, The results of
VGG16 and VGG19 [9] confirm this conclusion. The results
obtained by InceptionV2 [42] and InceptionV3 [11] show
that a deeper architecture yields better performance, and
reveal that the kernel factorization can improve the mod-
els’ performance. Because these methods reduce the total
number of parameters, this makes training easier. Comparing
the results of InceptionV4 [43] with those of InceptionV3,
the former architecture was deeper than the latter, requiring
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TABLE 6. Results of combining several architectures with our loss function. Our loss function can perform stably with all kinds of architectures on this
dataset. The best results are based on InceptionV3.

Architecture Resnet50  ResnetlOl  Resnetl52  VGGI6  VGGI9  InceptionV2  InceptionV4  InceptionResnetV2  InceptionV3
Atelectasis 0.7737 0.7786 0.7728 0.7844 0.7805 0.7812 0.7815 0.7772 0.7924
Cardiomegaly 0.8747 0.8781 0.8824 0.9025 0.9127 0.8752 0.8269 0.8561 0.8935
Effusion 0.8545 0.8655 0.8641 0.8686 0.8705 0.8611 0.8311 0.8603 0.8651
Infiltration 0.6833 0.6814 0.6855 0.6946 0.6936 0.6895 0.6853 0.684 0.6957
Mass 0.7829 0.7961 0.7905 0.7995 0.8111 0.8131 0.7981 0.7931 0.8307
Nodule 0.6876 0.8649 0.7035 0.7195 0.7126 0.7205 0.6978 0.714 0.7549
Pneumonia 0.7681 0.7649 0.78 0.8336 0.8379 0.8325 0.8154 0.8202 0.8530
Pneumothorax 0.8573 0.8649 0.8641 0.847 0.8534 0.8565 0.8594 0.8608 0.8727
Consolidation 0.7630 0.7671 0.7584 0.7834 0.7872 0.7924 0.7548 0.7825 0.7841
Edema 0.8787 0.8871 0.8879 0.8917 0.8961 0.8868 0.8343 0.8789 0.9010
Emphysema 0.8922 0.8817 0.8949 0.8705 0.8799 0.8888 0.8767 0.8688 0.9211
Fibrosis 0.7786 0.7998 0.8089 0.7954 0.7995 0.8025 0.7923 0.7826 0.8190
Pleural Thickening 0.7559 0.7731 0.7721 0.7726 0.7716 0.7753 0.7482 0.7593 0.7983
Hernia 0.8740 0.8799 0.9195 0.8187 0.8037 0.8579 0.8214 0.8262 0.8728
AUC(Mean) 0.8018 0.8094 0.8132 0.8137 0.8150 0.8057 0.7945 0.8045 0.8325

FIGURE 7. Diagnosis visualisation based on classification activation map.

more inception modules to be added to the architecture,
rendering it more complex. A more complex model is more
challenging to train. We assumed that the scale of the
dataset was not too large to train a complex model such as
InceptionV4. From InceptionV4 to InceptionResnetV2 [43],
the results improved again. Because residual networks are
easier to train, the method incorporating inception mod-
ules with residual blocks can improve the performance of
architecture.

We show the above results in FIGURE 6. All architectures,
when combined with our loss function, outperformed the
baseline results reported by Wang et al. [1].

G. VISUALISATION BASED ON CLASSIFICATION
ACTIVATION MAP

In this dataset, there were 984 images containing diagnosis
localization ground truth bounding boxes. There were eight
kinds of diseases for which bounding boxes were available.

VOLUME 6, 2018

We employed the classification activation map(CAM) [22]
to visualize the diagnosis features. The results are shown in
FIGURE 7. For each disease, we plotted two images, one
for the raw image and ground truth (left), and the other for
the corresponding heat map obtained by CAM (right). For
example, in FIGURE 7-qa, the green bounding box indicates
the ground truth. The image to the right shows the localization
heatmap obtained by CAM. The blue bounding boxes to the
right shows the ground truth. In these heatmaps, a region with
warmer colors is more likely to be a lesion. We used a simple
threshold to segment the heat map. The original heatmap had
only one channel, and its values were integers in the range
[0, 255]. The region with values close to 255 was the region
of interest(ROI). We determined the bounding box for the
largest connected component in the threshold map with a
threshold of 200. From the examples shown in FIGURE 7,
the ROI obtained by CAM was close to the ground truth
bounding boxes.

V. CONCLUSIONS AND FUTURE WORK

In this study, a model called DeepCXRay was proposed
to diagnose diseases automatically to address two kinds of
issues in medical images. First, to effectively extract features
from X-ray images, we employed a novel CNN architecture
using InceptionV3 to extract features automatically. Because
there no dataset is large enough to train the model, we used
a model pretrained on ImageNet. Second, to address the
problems of imbalanced datasets, we developed a loss func-
tion called CW-CEL. We combined the positive and negative
weights with the cross-entropy terms to obtain state-of-the-art
results. The results of experiments show that when a dataset is
substantially imbalanced, the proposed loss function is much
more effective.

In future research, we will study heuristic methods that can
control the two terms automatically by learning algorithms
based not only on samples batches. Of course, the problem
with CADs is a sufficient amount of data are not always
sufficient for some diseases. Thus, another direction of future
work will involve constructing a suitable architecture, and
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using the limited amount of data with multiple label to train
it while avoiding over-fitting.
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