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ABSTRACT This paper proposes a new division-free generalized sidelobe canceller-based adaptive beam-
former and its efficient hardware realization. A discrete cosine transform-based blocking matrix is proposed
for uniform linear array to decorrelate the input so as to achieve a faster convergence speed. A new variable
step-size least mean squares algorithm for complex input is proposed to further improve the convergence
and the steady-state performance of the adaptive beamformer. Moreover, a variable regularization scheme
is incorporated to mitigate possible signal cancellation due to possible mismatches in steering vector.
Furthermore, a statistical analysis on the mean and mean squares convergence of the algorithm is performed
and validated using Monte Carlo simulations. An efficient architecture of the proposed adaptive beamformer
is also proposed for its real-time implementation. It employs a novel division-free approach by quantizing
the normalization factor into a limited number of levels so that the division can be implemented using
canonical signed digits, resulting in multiplier-less realization. The performance of the resultant division-free
implementation can achieve similar convergence and steady-state performance as a conventional divider
approach while achieving at least 21% less hardware resources and 26.85% higher operating speed in
Xilinx Virtex7 (XC7VX330T) field programming gate array for an eight-sensor uniform linear array. Finally,
the beam can be stabilized remarkably in only 1 µs at a system clock frequency of 124 MHz.

INDEX TERMS Array processing, adaptive beamformer, variable step-size, variable regularization, approx-
imation, division-free, FPGA.

I. INTRODUCTION
Adaptive beamformers (ABFs) using sensor arrays are fre-
quently employed in a wide range of applications including
speech and acoustic processing, radio astronomy, wireless
communications [1]–[4], etc. Many adaptive beamformers
have been proposed for enhancing signals at specified direc-
tion while attenuating interference from other directions.
A commonly used adaptive beamformer is the minimum
variance distortionless response (MVDR) beamformer [5],
whichminimizes the output power subject to a unity gain con-
straint in the looking or desired direction. More linear con-
straints can be incorporated through the linearly constrained
minimum variance (LCMV) beamformer [6]. An equiva-
lent implementation, where the linear constraints can be

structurally imposed, can be realized using the generalized
sidelobe canceller (GSC) structure [7], [8]. It transforms the
minimization problem into an unconstrained one by decom-
posing the beamforming weights into a fixed nonadaptive
and an adaptive part where conventional adaptive filtering
algorithms such as the variants of least mean square (LMS)
and the recursive least squares (RLS) algorithms are applica-
ble. The RLS-based algorithms are well known for their fast
convergence speed. However, they have a higher arithmetic
complexity ofO(N 2) (whereN is the number of taps in the fil-
ter), as compared withO(N ) for the conventional LMS-based
algorithms. Moreover, special care has to be taken to avoid
ill-conditioning of covariance matrix in the implementation
of the RLS algorithms. On the other hand, LMS [9] and

64470
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-4455-6521
https://orcid.org/0000-0002-2192-7855
https://orcid.org/0000-0001-7212-4182
https://orcid.org/0000-0002-6514-0237


W. Zhao et al.: Division-Free and Variable-Regularized LMS-Based Generalized Sidelobe Canceller for Adaptive Beamforming

normalized-LMS (NLMS) [10], [11] algorithms are widely
used due to their simplicity in software and hardware imple-
mentation, despite their lower convergence speed compared
with the RLS algorithm. More efficient variants and hard-
ware structures of the LMS-like algorithms are thus continual
areas of active research. For instance, by utilizing vari-
able step-size (VSS) [11]–[15], both convergence speed and
steady-state misadjustment of the LMS-like algorithms can
be improved. Fractional evolutionary strategies [16]–[18],
as well as, fractional adaptive signal processing algorithms
based on Fractional LMS and NLMS [18]–[21] can also be
applied in terms of accuracy and convergence. In [22], a vari-
able regularized and switch mode noise constrained trans-
formation domain normalized LMS (VR-SNC-TDNLMS)
algorithmwith a fast convergence speed and reduced variance
in signal fading situations was proposed. In the context of
ABFs, the regularization can also improve the robustness of
the ABFs with mismatches in direction of arrival (DOA) [23].
This motivated us to develop an efficient hardware struc-
ture for narrowband ABFs based on the concept of the
VR-SNC-TDNLMS algorithm.

One of the key obstacles in implementing such algorithm
is the need for a fast divider to perform the normaliza-
tion required in the NLMS or TDNLMS algorithm, which
may otherwise reduce significantly the maximum through-
put of the ABF. Another issue is the implementation of
the blocking matrix (BM) in the adaptive part of the ABF.
The Griffiths-Jim (GJ) BM is widely used as it involves
only additions. However, its performance can be significantly
limited due to the resulting large eigenvalue spread of the
covariance matrix associated with the adaptive part of the
beamformers.

In summary, there is a need to develop a high perfor-
mance LMS-based algorithm and efficient hardware for
ABFs for various real-time applications. To address these
issues, we first extend the VR-SNC-TDNLMS to com-
plex value under the GSC framework. We then propose to
implement the BM using the multiplier-block (MB) tech-
nique [24], [25], which can be implemented with minimum
number of additions rather than multipliers. Moreover, for
uniform linear array (ULA), we found that a BM based
on the discrete cosine transform (DCT) leads to a struc-
ture very similar to the VR-SNC-TDNLMS algorithm with
considerably better performance than the GJ BM. As a
uniform circular array (UCA) can also be transformed
to a ULA through the phase mode [26], the proposed
approach is also applicable to UCA and frequency invari-
ant (FI) UCAs and UCCAs [27] for broadband applica-
tions. Another contribution of this paper is a division-free
implementation of the VR-SNC-TDNLMS algorithm, which
is also applicable to other LMS-like algorithms involving
normalization. The basic idea is to divide or quantize the
normalization factor, which is usually the power of the
input or related quantities, to a limited number of levels so that
the division of these fixed numbers can be implemented as

constant multiplications. Moreover, these constant mul-
tiplications can be implemented using canonical signed
digits (CSD) or sum-of-power-of-two (SOPOT) num-
bers [28], [29] resulting in multiplier-less realization.We also
found that by properly selecting these levels, the performance
of the resultant division-free VR-SNC-TDNLMS can achieve
similar convergence speed with smaller weight variations,
due to reduction of step-size adaptation noise resulting from
continuous step-size adaptation. To verify the efficiency
of the proposed approach, a pipelined architecture of the
proposed ABF is proposed and implemented in field pro-
gramming gate array (FPGA). As the delay time of division
operation is usually much longer than that for multiplication
and addition [30], while consuming more area and power,
the proposed architecture leads to much higher operating
frequency as well as lower hardware resources. Compared
to previous works in [31] and [32], which are based on LMS
algorithm, our algorithm leads to much faster convergence
speed with comparable complexity. Our architecture also out-
performs another hardware beamformer based on NC-LMS
algorithm [33] in convergence speed and resilience to DOA
mismatches.

In summary, the resultant VR-SNC GSC-based ABF pos-
sesses the following novelties and features:
• the VR SNC NLMS algorithm is extended for complex
inputs so that it can be employed in array signal process-
ing applications,

• a DCT-based blocking matrix for uniform linear array
is proposed with faster convergence speed than the con-
ventional GJ blocking matrix,

• the use of VR scheme for mitigating possible signal can-
cellation due to possible mismatches in steering vector,

• a statistical analysis on the mean and mean square con-
vergence performance is presented and validated using
Monte-Carlo simulations,

• an efficient architecture of the proposed ABF using a
novel division-free approach and CSD is proposed, and

• the proposed pipelined architecture achieves similar
convergence and steady-state performance as conven-
tional divider approach while achieving at least 21% less
hardware resources and 26.85% higher operating speed
in Xilinx Virtex7 (XC7VX330T) FPGA for an 8-sensor
ULA. Finally, the beam can be stabilized remarkably
in only one microsecond at a system clock frequency
of 124 MHz.

The rest of this paper is organized as follows. The proposed
VR-SNC GSC-based ABF will be introduced and analyzed
in Section II. Section III is devoted to the hardware archi-
tecture of the proposed ‘‘division-free’’ VR-SNC-TDNLMS
GSC. Computer simulation and comparison with other
conventional techniques will be presented in Section IV.
The hardware realization of the proposed ‘‘division-free’’
VR-SNC-TDNLMS GSC in FPGA and a brief comparison
with conventional approaches will also be presented. Finally,
conclusions are drawn in section V.
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II. ADAPTIVE GSC BEAMFORMER
A. DCT-BASED GSC BEAMFORMER WITH
ARRAY DATA MODEL
Consider an antenna array with L sensors impinged by K +1
narrow-band uncorrelated signals including one signal-of-
interest (SOI) or source signal and K interferences. The
narrow-band signal received by the antenna array at the
n-th snapshot can be written as

x(n) = s(n)+ i(n)+ ζ (n), (1)

where x(n) = [x1(n), x2(n), ..., xL(n)]T, s(n) = [s1(n), s2(n),
..., sL(n)]T, i(n) = [i1(n), i2(n), ..., iL(n)]T and ζ (n) =
[ζ1(n), ζ2(n), ..., ζL(n)]T are respectively the SOI, interfer-
ence and sensor noise vectors, (·)T is the matrix trans-
position and the subscript ‘‘i’’ denotes the component at
the i-th sensor. The sensor noise is assumed to be zero
mean white circular symmetric complex Gaussian noise with
covariance E[ζ (n)ζH(n)] = σ 2

ζ I , where (·)
H is the Hermitian

transpose. Let θ0 and θk , k = 1, ...,K , be respectively the
direction-of-arrivals (DOAs) of the source and interference,
and their corresponding steering vectors be presented by a(θ0)
and {a(θk )}Kk=1. For a uniform linear array (ULA), the steering
vector can be represented as

a(θ ) = [1, ej2π fc
−1d sin(θ ), ..., ej2π fc

−1(L−1)d sin(θ )]T, (2)

where f , c, d and θ are the carrier frequency, propaga-
tion velocity, inter-sensor spacing and DOA, respectively.
In MVDR or Capon beamformer, the ABF w(n) is chosen to
minimize the power of the output

y(n) = wH(n)x(n), (3)

subject to a unity gain constraint on the desired steering vector
a(θ0), which can be formulated as the following optimization
problem

min
w

E[|wHx(n)|2] s.t. wHa(θ0) = 1, (4)

where E[·] denotes mathematical expectation and the last
constraint ensures that the gain in the looking direction θ0 is
equal to one. The optimal solution to (4) is given by

wopt = (aH(θ0)R−1xx a(θ0))
−1R−1xx a(θ0), (5)

where Rxx = E[x(n)xH(n)] is the covariance matrix of the
sensor input vector, which can be estimated by its ensemble
average R̂xx = 1

N

∑N
n=1 x(n)x

H(n) using say N snapshots.
In the GSC, the optimal solution is decomposed into two

components, one in the subspace of the constraint and the
other orthogonal to it, which yields

wopt = wq − BHwa, (6)

where wq = a(θ0)(aH(θ0)a(θ0))−1 is the fixed beamformer to
satisfy the constraint while wa is the adaptive weight in a sub-
space spanned by the (L−1)×L BM B, which is orthogonal
to the constraint. Consequently, B has to satisfy Ba(θ0) = 0.
The basic block diagram of the GSC is illustrated in Fig. 1 and

FIGURE 1. Basic block diagram of adaptive GSC beamformer.

one can see that the signal in the looking direction is elimi-
nated by the BM B due to the orthogonality constraints so
that only the interference-plus-noise will appear at the output
of the BM. The adaptive weight wa is then used to cancel
out the signal-plus-interference component at the output of
the fixed beamformer by minimizing the output power of
ABF. Usually, the DOA of the source signal, θ0, is estimated
and is assumed to be known. To simplify the design of the
BM, which in principle depends on the looking direction θ0,
appropriate phase shift is introduced at each sensor input
so that the looking direction from the ABF point of view
always lie at zero degree. Consequently, the steering vector
of the looking direction is given by a(θ0) = [1, 1, ..., 1]T and
the fixed BF amounts to average the outputs of all sensors
though conventional beampatterns with lower sidelobes can
also be used. The orthogonality constraints then translate into
the condition that the coefficients of each row of the BM
should sum up to zero and the rows should span a subspace
of dimension of L − 1. As a result, the input signal to the
adaptive filter wa, u(n) = Bx(n), is an L − 1-th vector. The
choice of the blocking matrix in the GSC is not unique and
the following GJ BM,

B =


1 −1 0 · · · 0
0 1 −1 0 · · ·
...
. . .

. . .
. . .

...

0 · · · 1 −1 0
0 · · · 0 1 −1

 (7)

is commonly used as it requires only simple subtrac-
tions of consecutive sensor inputs. More sophisticated BM
can be derived from the eigendecomposition (EVD) of
E[u(n)uH(n)], which completely whitens u(n) so that the
LMS algorithm can be significantly accelerated. An alter-
native approach is to employ the RLS algorithm with
higher complexity. Here, we propose to implement the BM
using the MB, where its coefficients are approximated by
SOPOT coefficients. Moreover, for the commonly encoun-
tered case of ULA, it is advantageous to employ a frequency
decomposition-like BFs for the rows of B. This is because
the corresponding steering vector in (2) represents a complex
sinusoid for a given DOA θ . Thus, using such a BM is
equivalent to focusing at different angular space using its
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L − 1 rows. Accordingly, interference from each region will
mainly appear at the corresponding component of u(n). Such
decoupling greatly simplifies the selection of the appropriate
weight to annihilate the corresponding interference at the
fixed BF output, which leads to significant speed up of the
LMS algorithm through individual power normalization of
the components in u(n). An attractive choice of B is the basic
function of the DCT, except the first component which corre-
sponds to 1

L [1, 1, ..., 1]
T
=

1
L a(θ0) = wq, the region around

the looking direction. Another interpretation of this choice
of B and the subsequent component power normalization is
to view it as a decorrelation transformation which approxi-
mately pre-whitens the input u(n) to reduce the eigenvalue
spread of its covariance matrix. Consequently, the conver-
gence rate can be improved significantly as in the TDNLMS
algorithm [10]. More precisely, the (p, q) element of the
DCT-based BM reads

Bp,q =
√
2/L cos[(2q− 1)pπ/(2L)], (8)

p = 1, 2, ...,L − 1, q = 1, 2, ...,L. The problem for finding
wa can therefore be reformulated as the following uncon-
strained problem

min
wa

E[|(wq − BHwa)Hx(n)|2]

= min
wa

E[|d(n)− wH
a u(n)|

2] = min
wa

E[|e(n)|2], (9)

where d(n) = wH
q x(n) and u(n) = Bx(n). This least square

problem in wa can be solved recursively using an adaptive
filtering with desired signal d(n) = wH

q x(n) and input u(n) =
Bx(n) where the sensor input x(n) has been transformed by
the BM B. Moreover, to improve the robustness to uncertain-
ties, (9) can be modified by adding a regularization term as
follows

min
wa

E[|e(n)|2]+ ξ‖Dwa(n)‖22, (10)

where the second term represents a weighted `2 regulariza-
tion term on wa(n), ξ is the regularization parameter and
D > 0 is a positive definite weight matrix. In general, it can
be made adaptive so as to approximate different regular-
ization methods as in the conventional iterative reweighted
least squares method [34] Specifically, for `2 regularization,
D is chosen as the identity matrix. For `1 regularization,
D is chosen as diag[1/

√
|wa,1(n)| + ε, 1/

√
|wa,2(n)| + ε, ...,

1/
√
|wa,L−1(n)| + ε], where ε is a small positive num-

ber to avoid division by zero. For the smoothly clipped
absolute deviation (SCAD) penalty [35], D can be chosen
as diag[

√
pε(wa,1(n))/(wa,1(n)+ε),

√
pε(wa,2(n))/(wa,2(n)+

ε), ...,
√
pε(wa,L−1(n))/(wa,L−1(n)+ ε)], where

pε(c) =


|c|, for |c| ≤ ξ,

−
(|c|−ãξ )2

2(ã−1)ξ +
(ã+1)ξ

2 , for µ < |c| ≤ ãξ,

(ã+ 1)ξ2/2, for |c| > ãξ,

(11)

and the coefficient ã > 2 is chosen as 3.7 [35]. For this paper,
we focus on the `2 regularization so as to derive an analytical

formula for the regularization parameter and hence D = I .
The motivation of the regularization term is to avoid signifi-
cant signal cancellation when the steering vector of the SOI
(and hence the blocking matrix B) is subject to uncertainties
due to imperfections of the antenna array, etc. More precisely,
this DOAmismatch can lead to signal leakage to the adaptive
part of the ABF, which will be treated as interference leading
to signal cancellation. As this leaked source signal is of
much smaller magnitude than the fixed BF output, the resul-
tant adaptive weight will assume large magnitude. Hence,
by penalizing the `2 norm ofwa(n), undesirable signal cancel-
lation can bemitigated. As the VR-SNC-TDNLMS algorithm
in [22] offers a low complexity and efficient solution to (10)
for real-valued input, we now propose a new ABF based
on its complex generalization and present its performance
analysis. Its efficient hardware implementation is described
in Section III. The blocking matrix and multiplication can be
efficiently implemented by SOPOT and MB technique to be
presented in Section III-B.

B. COMPLEX VR-SNC-TDNLMS ALGORITHM
The update equations for the complex VR-SNC-TDNLMS
algorithm for our ABF problem are given by

e(n) = d(n)− wH
a (n)u(n), (12)

wa(n+ 1) = wa(n)+ µ(n)Du(u(n)e∗(n)− ξRwwa(n)),

(13)

where u(n) and d(n) are respectively the transformed input
and desired response of the adaptive filter wa(n), µ(n) >
0 is a variable step-size to be elaborated further below,
ξ ≥ 0 is the regularization parameter, Rw = DHD,
Du = diag[ε−11 (n), ε−12 (n), ..., ε−1L−1(n)] is an element-wise
normalization matrix where εi(n) is the estimated power
of the i-th element of u(n), ui(n), and ∗ denotes complex
conjugation. Note that in the context of ABF, the blocking
matrix serves the purpose of the transformation. If Rw and
Du are equal to the identity matrix with a constant step-
size, the weight update reduces to the conventional leaky
LMS algorithm. The normalization step can be efficiently
implementedwith the division-free approach to be introduced
in Section III-A.

The main differences between the complex and real-valued
updates are that i) the Hermitian transposition ofwa(n) is used
in (12), instead of thematrix transposition and ii) e∗(n) is used
in (13), instead of e(n). By using the output of the BF wq, i.e.
wH
q x(n), as the desired signal d(n), the adaptive filter can be

used to solve iteratively the least square problem in (9) and the
steady state (SS) misadjustment of the weight vector wa(n)
as compared to the optimal least square solution decreases
with the step-size µ(n). On the other hand, the convergence
speed increases with µ(n) while µ(n) has to be smaller than
a maximum value for ensuring stability.

The SNC scheme aims to improve the convergence rate and
SS error by using a maximum step-size mode (MSM) during
initial convergence and a noise constrained mode (NCM)
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when the algorithm is near convergence. The MSM facil-
itates fast initial convergence with a designated maximum
step-size (MSS) where the step-size is gradually reduced
in the NCM mode to reduce the excess mean square
error (EMSE) and hence misadjustment by exploring prior
knowledge of the minimum MSE. As suggested in [22],
the step-size of the SNC-NLMS algorithm is updated as
follows

µ(n) =

{
µmax λ̄ ≥ T (MSM )
α(1+ γ λ(n)) λ̄ < T (NCM )

, (14a)

λ̄(n+ 1) = b(1− β̄)λ̄(n)+ β̄ Ĵ (n)/2cδ/γ , (14b)

λ(n+ 1) = b(1− β)λ(n)+ β Ĵ (n)/2cδ/γ , (14c)

where µmax is the MSS used, α, γ and T are algorithmic
parameters, Ĵ (n) = |e(n)|2 − σ̂ 2

η is the instantaneous EMSE,
bxcb lower bounds the argument x by b, and σ̂ 2

η is a prior
estimate of the additive noise power and can be chosen as zero
if it is unavailable. λ̄(n) and λ(n) are respectively short-term
and long term estimates of the EMSE with the constant
β̄ ∈ (0, 1) considerably larger than β ∈ (0, 1). When λ̄(n)
is larger than a certain threshold T (its selection will be
discussed later in section II-D), the MSM is invoked. On the
other hand, when λ̄(n) is smaller than T , the adaptive filter
is nearly converged and the NCM is invoked. The value of
λ(n) immediately after mode switching is obtained from λ̄(n).
To avoid problem when Ĵ (n) is negative, both ¯λ(n) and λ(n)
are lower bounded by δ/γ [22]. In case of noise variance
mismatch, i.e. the prior noise variance is different from the
true one, the noise variance estimates in (14b) and (14c)
can be written as σ̂ 2

η = aσ 2
η where a is the mismatch

factor. If prior information on σ 2
η is unavailable, one can set

σ̂ 2
η = 0, which gives rise to the zero-noise-constrained (ZNC)

case. To facilitate the selection of the algorithmic parame-
ters, we briefly summarize the performance of the complex
VR-SNC-TDNLMS algorithm.The constant can be effi-
ciently realized by SOPOT to be introduced in Section III-B.
The resultant algorithm is summarized in Table 1.

We now present a statistical analysis on the performance
of the proposed ABF. We first show that under reasonable
assumptions and Gaussian inputs, the mean weight vector of
the proposed algorithm is convergent with a certain step-size
bound. Hence, the mean weight vector will converge to the
Wiener solution (or its regularized version if regularization
is imposed). After that the weight vector will vary around
its true value due to the effect of noise. The mean square
deviation of the weight vector from the desired solution is
then evaluated analytically in the mean square convergence
analysis and the stability condition for convergence will be
determined. The steady state MSE is then determined so as
to determine the algorithmic parameters such as the regu-
larization parameters, switching threshold etc, for operation.
The theoretical results will be validated via Monte-Carlo
simulation in Section IV to demonstrate the accuracy of the
statistical analysis.

TABLE 1. The DCT-based adaptive beamformer algorithm.

C. STATISTICAL ANALYSIS OF PERFORMANCE
We first examine the performance of the optimal ABF in (5)
without regularization. The minimum output power of the
ABF is given by σ 2

η = E[|wH
optx(n)|

2] = wH
optRxxwopt ,

where Rxx = E[x(n)xH(n) is the covariance matrix of the
sensor signal vector, which is assumed to be independent and
identical distributed over time. Using the expression of wopt
in (5), one gets [36]

σ 2
η = (aH(θ0)Rxxa(θ0))−1. (15)

Since the GSC is an equivalent implementation of theMVDR
beamformer, the minimum output power is also equal to σ 2

η ,
which is achieved when wa is equal to the Wiener solu-
tion w0 = R−1uu Pud , where Ruu = E[u(n)uH(n)] is the
input covariance matrix and Pud = E[u(n)d∗(n)] is the
cross-correlation vector between u(n) and d(n). The output
error at time n is thus given by

e(n) = [w0 − wa(n)]Hu(n)+ η(n), (16)

where η(n) contains the target signal corrupted by the residual
interference plus noise after adaptive beamforming. If the tar-
get signal, interference and sensor noise are independent and
identically distributed circular symmetric complex Gaussian
signals with zero mean, then η(n) will be a white circular
symmetric complex Gaussian process with zero mean and its
variancewill be equal to σ 2

η . Before proceeding to the analysis
of the proposed complex VR-SNC-TDNLMS, the assump-
tions used to facilitate the analysis are summarized below:
(A1) the step-size µ(n) is independent of the input and error

sequence;
(A2) u(n) are a sequence of independent identically dis-

tributed circular symmetric complex Gaussian random
vectors with zero-mean and covariance matrix Ruu;
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η(n) is a circular symmetric complex Gaussian random
variable with zero-mean and variance σ 2

η ;
(A3) w(n), u(n) and η(n) are statistically independent;
(A4) the elements in Du, εi(n), are uncorrelated with w(n)

and u(n) due to the recursive averaging effect of σ 2
u_i.

(A1) is commonly used in most analysis of VSS LMS
algorithms for mathematically tractability, which is a good
approximation if the step-size is obtained from sufficiently
smoothed measurements of the convergence status such as
instantaneous EMSE [12], [37]. (A2) is a commonly used
assumption for simplifying the evaluation of the expectations
arising from analysis [38]. (A3) is the independence assump-
tion, which is quite accurate for large filter length and small
to medium step-sizes [38] and (A4) is generally valid after
the individual power estimates of ui(n) has been stabilized,
which can be achieved with reasonable number of samples,
say 20 [22], [39].

Next, we shall first study the mean convergence of the
algorithm in subsection II-C.1 below where we shall show
that the algorithm is convergent if the step size is bound
by (21). In subsection II-C.2, the mean square convergence
behavior of the proposed algorithm is studied where a conser-
vative upper bound for the step-size to ensure convergence is
given. The excess mean square error (EMSE) at convergence
is also derived. The regularization parameter for minimiz-
ing the overall MSE for white input is then derived. The
switching threshold is determined in subsection II-D below.
The analytical statistical analysis will be further validated by
Monte-Carlo Simulation in Section IV.

1) MEAN CONVERGENCE
Wefirst assume that the algorithm is convergent and show that
the mean weight vector is equal to the regularized solution
of (10) at the steady-state. Then, we establish condition for
mean convergence. Taking expectation on both sides of (13),
one gets

E[wa(n+ 1)]=E[µ(n)]Du{Pud−(Ruu + ξRw)E[wa(n)]},
(17)

which gives at the steady state

wR = (Ruu + ξRw)−1Pud , (18)

where wR = E[w(∞)] is the desired regularized Wiener
solution of (10). To examine the convergence rate, let’s con-
sider the weight error vector v(n) = wa(n) − wR in (17)
at time n. We only focus on the NC adaptation mode, as it
reduces to the MSM when a fixed maximum designated
step-size is used. Using (13), (17) and the assumptions above,
the following difference equation in the mean weight error
vector is obtained

E[v(n+ 1)] = [I − E[µ(n)]Du(Ruu + ξRw)]E[v(n)].
(19)

Let Ũ3̃Ũ
H

be the eigendecomposition of R̄uu =

D1/2
u R̃uuD

1/2
u with R̃uu = Ruu + ξRw. Using the change of

variable V (n) = Ũ
H
D−1/2u v(n), (19) can be decoupled to

obtain the following equation in the i-th element of E[V (n)]:

E[V (n+ 1)]i = (1− E[µ(n)]λ̃i)E[V (n)]i, (20)

where λ̃i is the i-th eigenvalue of R̄uu. Thus, the mean weight
vector of the adaptive filter converges if

0 < E[µ(n)] < 2/λ̃i, i = 1, ...,L, (21)

and the maximum possible step-size is µmax = 2/λ̃max ,
where λ̃max is the maximum eigenvalue of ¯Ruu. In the MSM,
µ is chosen as a value which is close to but smaller than this
maximum value. Since the convergence rate increases with
the step-size, the MSM is always faster than the NC-mode
initially. However, at the steady state, the gradient noise dom-
inates and the step-size has to be reduced gradually. When the
mean weight vector converges, the accuracy of the estimation
is determined by the variation of the weight vector around its
true value, which we shall study below.

2) MEAN SQUARE CONVERGENCE ANALYSIS
a: DIFFERENCE EQUATION
We first multiply v(n) by its Hermitian transpose and then
evaluate the expectation of both sides. This yields the follow-
ing difference equation in the weight error covariance matrix
4vv(n) = E[v(n)vH(n)],

4vv(n+ 1) = 4vv(n)− E[µ(n)](DuR̃uu4vv(n))

+4vv(n)R̃uuDT
u )+ E[µ2(n)]DuE[u(n)e∗(n)

−ξRwwa(n))(uH(n)e(n)− ξwH
a (n)R

H
w)]D

T
u . (22)

By noting that e(n) = [w0−wa(n)]Hu(n)+ η(n) = v̂Hu(n)+
η(n), where v̂ = w0 − wR − v(n) = 1w− v(n), the last term
can be rewritten as S(n) = E[µ2(n)]Du[A(n) + Ruuσ 2

η ]D
T
u

where A(n) = A0(n) − A1(n) − A2(n) + A3(n), A0(n) =
E[u(n)uH(n)4ṽṽu(n)uH(n)], A1(n) = AH

2 (n) = ξRuu4ṽwRH
w ,

A3(n) = ξ2Rw4ww(n)RH
w with4ṽṽ(n) = 1w1wH

+4vv(n)−
v̄(n)1wH

−1wv̄H(n),4ww(n) = wRwH
R +4vv(n)+ v̄(n)wH

R +

wH
R v̄

H(n), 4ṽw(n) = 1wwH
R −4vv(n) − v̄(n)wH

R + 1wv̄
H(n)

and v̄(n) = E[v(n)].

b: STABILITY CONDITION
Similar to [22], we multiply both sides of (22) by D−1u and
take their trace to obtain the following difference equation in
the measure ϕ(n) = Tr(D−1u 4vv(n)):

ϕ(n+ 1) = ϕ(n)− {2E[µ(n)]Tr(R̃uu4vv(n))

−Tr(D−1u S(n))}, (23)

where ϕ(n) serves the role of the Lyapunov function, and
is always positive. We only need to consider those terms in
4vv(n) as the driving terms in (23) with respect to σ 2

η , wR and
1w are finite, and E[v(n)] will converge to zero if (21) is
satisfied. Furthermore, as ϕ(n) is positive, if the term inside
the brackets in (23) is positive, the system is guaranteed to
be stable. Inserting A0(n), A1(n), A2(n) and A3(n) into (22),
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one gets after some simplification the following sufficient
condition for stability

µR−TD(n) < 2Tr(R̃uu4vv(n))/τ (n), (24)

where µR−TD(n) = E[µ2(n)]/E[µ(n)] and τ (n) =

Tr(Ruu4vv(n)RuuDu) + Tr(Ruu4vv(n))Tr(RuuDu) + ξTr
(Ruu4vv(n)RwDu) + ξTr(Rw4vv(n)RuuDu) + ξ2Tr(Rw4vv
(n)RwDu). Since τ (n) depends on 4vv(n), (24) cannot be
used directly to determine a bound on µ(n) for practical
applications. Using the facts that Tr(AB) ≤ Tr(A)Tr(B)
for A,B > 0 and Tr(AB) = Tr(BA), the following upper
bound for τ (n) can be obtained

τ (n) ≤ Tr(R̃uu4vv(n))τ̃ , (25)

with τ̃ = Tr(RuuDu0u)+Tr(RuuDu)Tr(0u)+2ξTr(RwDu0u)+
ξ2Tr(RwDuRwR̃

−1
uu ) and 0u = RuuR̃

−1
uu . Consequently, a con-

servative upper bound for mean square convergence is

µR−TD(n) < 2/τ̃ (n). (26)

Compared to the real-valued case, it is found that
E[u(n)uH(n)4vv(n)u(n)uH(n)] is equal to Ruu(n)4vv(n)Ruu
(n) + Tr(Ruu(n)4vv(n))Ruu(n) instead of 2Ruu(n)4vv(n)Ruu
(n) + Tr(Ruu(n)4vv(n))Ruu(n) in the real-valued case and
hence the first term of τ (n) is Tr(Ruu4vv(n)RuuDu), rather
than 2Tr(Ruu4vv(n)RuuDu) in the real-valued case.

c: STEADY-STATE EMSE
If the algorithm converges, E[v(∞)] = 0, and the last term
in (22) reduces to S(∞) = E[µ2(∞)]Du[A(∞)+Ruuσ 2

η ]D
T
u ,

which is further evaluated to be1

S(∞) ≈ E[µ2(∞)]Du[R̃uu4vv(∞)R̃uu
+(J∗ + σ 2

min)Ruu]D
T
u , (27)

where σ 2
min = Tr(1w1wHRuu) + σ 2

η is the minimum MSE.
Substituting (27) into (22) gives the following equation for
weight error covariance at steady state

4vv(∞) ≈ 4vv(∞)− E[µ(∞)](Du[R̃uu4vv(∞)

+4vv(∞)R̃uuDT
u + E[µ2(∞)]Du{R̃uu4vv(∞)R̃uu

+(J∗ + σ 2
min)Ruu}D

T
u , (28)

where we have dropped the negative term to obtain a sim-
plified upper bound of the covariance. By expressing v(n) in
the transformed coordinate: V (n) = Ũ

H
D−1/2u v(n) and using

the fact that 3̃ = Ũ
H
D1/2
u R̃uuD

1/2
u Ũ , the diagonal values of

4(∞) are found to be

[4VV (∞)]i,i =
E[µ2(∞)](J∗ + σ 2

min)01,i

2E[µ(∞)]λ̃i − E[µ2(∞)]

≈
E[µ2(∞)]

2E[µ(∞)]λ̃i
(J∗ + σ 2

min)01,i, (29)

1Due to the difference in the four order expectation of the real- and
complex valued Gaussian random vectors, the expression for the complex
case is somewhat different from their real counterparts.

where 01,i = [01]i,i is the i-th diagonal value of 01 =

Ũ
H
D1/2
u RuuD

1/2
u Ũ and the last equation is obtained as

E[µ2(∞)] is usually small as compared to E[µ(∞)] at the
steady state. Next, we note that the SS-EMSE around the
converged solution is

J∗ = Tr(4VV (∞)Ũ
H
D1/2
u RuuD1/2

u Ũ). (30)

It is the excess noise power at the ABF output due to the
adaptation process. Its value is related to the degradation due
to the adaptive filter over ideal Wiener filter. If the trans-
form/blocking matrix can approximately diagonalize Ruu,

then R̄uu = D1/2
u R̃uuD

1/2
u ≈ I , and hence Ũ is approximately

equal to the identity matrix. Thus, Ũ
H
D1/2
u RuuD

1/2
u Ũ in (30)

is approximately equal to 3̃ − ξ Ũ
H
D1/2
u RwD

1/2
u Ũ ≈ 3̃ −

ξD1/2
u RwD

1/2
u . Moreover, for diagonal dominance Rw, (30)

can be simplified to

J∗ ≈ Tr(4VV (∞)(3̃− ξD1/2
u RwD1/2

u ))

≈

L∑
i=1

[4VV (∞)]i,i(λ̃i − ξε
−1
i Rw_i,i), (31)

where Rw_i,i is the i-th diagonal element of Rw. Combin-
ing (29) and (31), the steady state EMSE J∗ is found to be

J∗ ≈ (
1
2
E[µ2(∞)]/E[µ(∞)])(J∗ + σ 2

min)φTD, (32)

where φTD =
∑L

i=1 01,i(λ̃i − ξε
−1
i Rw_i,i)λ̃

−1
i . For constant

step-size, the term E[µ2(∞)]/E[µ(∞)] is simplified equal
to µ, and the SS-EMSE of the corresponding fixed step-size
NLMS algorithm is then given by J∗ ≈ 1

2µσ
2
minφTD(1 −

1
2µφTD)

−1. For the SNC algorithm, one needs to evaluate
the term E[µ2(∞)]/E[µ(∞)] from the steady-state expected
values of µ(n), µ2(n), λ(n) and λ2(n). It is shown in the
Appendix that

E[λ(∞)] = J∗b/2, (33)

E[λ2(∞)] ≈
(1− β)
2(2− β)

(J∗ − bσ 2
η )

2

+
β

4(2− β)
(b1σ 2

η J∗ + b2σ
4
η ), (34)

E[µ(∞)] = α(1+ γ J∗b/2), (35)

E[µ2(∞)] = α2(1+ 2γE[λ(∞)]+ γ 2E[λ2(∞)]), (36)

where b1 = 2(1−b), b2 = 2+(1+b)2, J∗b is the steady-state
value of Jb(n) = E[|e(n)|2]− aσ 2

η = J (n)− bσ 2
η , and J (n) =

E[|e(n)|2] − σ 2
η is the EMSE. Here, b = a − 1 is the excess

noise mismatch factor and when b = 0, there is no noise
mismatch and Jb(n) = J (n) = E[Ĵ (n)].
Again due to the difference in the four-order expectation

of the real- and complex-valued Gaussian random variables,
the values of b1 and b2 are now b1 = 2(1 − b) and b2 =
2+ (1+ b)2, instead of b1 = 2(2− b) and b2 = 3+ (1+ b)2

in the real-valued case. Consequently, the SS-EMSE can be
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approximated as

J∗ ≈
1
2αA0σ

2
minφTD

1− γ b
2 σ

2
η −

1
2α[A0φTD + A1σ

2
minφTD]

≈
αA0σ 2

minφTD

2(1− γ b
2 σ

2
e ta)
=

1
2
α(1+ δ)σ 2

minφTD, (37)

where δ = (βb2+2(1−β)b
2

4(2−β) γ 2σ 4
η −

1
2γ bσ

2
η ) and A0 = 1 −

γ bσ 2
η +

(βb2+2(1−β)b2)γ 2

4(2−β) σ 4
η . It can be seen that the nom-

inal step-size α plays a similar role as the fixed step-size
LMS-based algorithm in controlling the SS error. For sta-
tionary scenarios, the smaller the step-size, the smaller the
SS-MSE will be. However, for tracking applications, the lag
error will increase and an optimal SS can be derived accord-
ing to the classical analysis in [38]. However, it is somewhat
difficult to apply as it requires knowledge about the weight
variations. Due to the page limitation, we would not consider
the tracking analysis here.

Since the MSE is given by JR = E[|1wHu(n)|2] + J∗
and the bias 1w is approximately given by ξR−1uu Rww0 [39],
we have the desired SS EMSE from (37) the desired SS
EMSE as

J∗ ∼= ξ2wH
0 R

H
wR
−1
uu Rww0 +

1
2
α(1+ δ)σ 2

minφTD. (38)

d: SELECTION OF REGULARIZATION PARAMETER
Using the statistical analysis above, we now derive an expres-
sion for the regularization parameter ξ to balance the bias
and variance components in the MSE deviation from the
Wiener solution. For mathematical tractability, we assume
that the input is white with a variance σ 2

u and Rw = I . Hence
Du = ε−1I is a diagonal matrix, where ε is the estimate of
input signal power σ 2

u . Thus, φTD in (32) can be simplified to
φTD = (

∑L
i=1 01,i)/λ̃, where λ̃ = λ̃i = 1 + ξσ−2u Rw_i,i ≈

1+ ξε−1Rw_i,i and the second identity follows from the fact
that the input power is assumed to be well estimated, i.e.
σ 2
u ≈ ε. Combining these results, and using Ũ ≈ I , (38)

becomes JR ≈ ξ2σ−2u ‖w0‖
2
2 +

1
2α(1 + δ)σ

2
min(L/λ̃) where

λ̃ = 1 + ξε−1. To balance the two components, we require
them to be equal, which yields

ξopt (∞) ≈

√
1
2
α(1+ δ)Lσ 2

minσ
2
u ‖w0‖

−2
2 . (39)

By noting that α(1 + δ) is the equivalent step-size at the
SS, we can use the following formula as the regularization
parameter at time n to give the same SS error

ξ (n) ≈

√
1
2
µ(n)Lσ 2

η σ
2
u ‖w0‖

−2
2 , (40)

where for simplicity we have assumed that the step-size and
regularization parameter are small so that bias components
in σ 2

min are small compared to the additive noise σ 2
η . For

other values of n, ξ (n) can be viewed as a quasi-stationary
approximation of the optimal regularization, if the step-size

changes slowly. This can better reflect the effect of the vari-
able step-sizes as compared to the one using the SS value
α(1+ δ). ‖w0‖

2
2 can be estimated from prior knowledge such

as simulations without steer vector mismatch. σ 2
u denotes

the input power which can be estimated as σ 2
u (n) = λuσ

2
u

(n− 1)+ (1− λu)uH(n)u(n) where λu is a positive forgetting
factor close to but smaller than one.

D. SWITCHING THRESHOLD AND VSS
PARAMETER SELECTION
We now summarize the selection of the switching threshold T
and other VSS parameters such as β, β̄, α, δ and γ . Using the
approach in [39], the threshold T can be chosen to ensure
that the MSM has converged for mode switching with a high
probability:

T =
1
4
µmaxcf + κ1, (41)

where 1 =
√

β
2(2−β) ((σ

2
η_max −

1
8µmaxcf )+ σ

4
η_max), cf =

σ 2
minφTD and κ is a constant and appropriate values are around

4 to 5, which correspond to around 99.99% and 99.9999%
confidence that the MSM has converged. If the input statistic
is unknown, the upper bound of cf with σ 2

η replaced by its
maximum value σ 2

η_max can be used. Simulation results to be
presented in Section IV show that it works well in practice.
Typical values for selecting the other algorithmic parame-
ters are summarized in Table 2, which will be presented
in Section III-B.

TABLE 2. SOPOT coefficients of the parameters in D-VR-SNC-NLMS GSC
adaptive beamformer.

III. DIVISION-FREE VR-SNC-TDNLMS ABF AND
ITS HARDWARE REALIZATION
A. DIVISION-FREE VR-SNC-TDNLMS ABF
Due to the high-speed requirement of ABF, efficient hard-
ware realization is highly desirable. In particular, pipelined
architecture is very attractive due to its high data throughput.
To overcome the long delay time in computing the error term
e(n) = d(n)−wH

a (n)u(n) in updatingwa(n+1) of the conven-
tional LMS algorithm, the delayed updating technique [40] is
frequently used where the delayed input u(n − D) and error
e(n − D), with an appropriate positive integer D, are used
instead of their values at the (n + 1)-th time instant. This
technique is also adopted in our pipelined implementation,
which leads to the following delayed VR-SNC-TDNLMS
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(D-VR-SNR-TDNLMS) update

wa(n+ 1) = wa(n)+ µ(n)Du(u(n− D)e∗(n− D)

−ξRwwa(n)). (42)

One of the key obstacles in implementing this and
other algorithms involving normalization is the need for
a fast divider to perform the normalization required in
the NLMS or TDNLMS algorithm. The reason is that the
throughput of a pipeline is limited by the component with
the largest delay. Consequently, most previous works usually
focused on the basic LMS algorithm and its simple vari-
ant [41]–[43] for high-speed operation.

To address the normalization problem in NLMS-based and
related algorithms, we propose a new division-free approach
where the normalization quantity is quantized to a limited
number of levels so that the division of these fixed set of
numbers can be implemented as constant multiplications.
Moreover, these constant multiplications can be implemented
using canonical signed digits (CSD) or sum-of-power-of-
two numbers [28] resulting in multiplier-less realization.
We found that by properly selecting these levels, the per-
formance of the resultant division-free VR-SNC-TDNLMS
can achieve similar convergence speed as the original algo-
rithm. Moreover, a smaller weight variation is observed as
the step-size remains constant around each level, which helps
to reduce adaptation noise arising from continuous step-size
adaptation.

More precisely, suppose that the sensor signals are in nor-
malized fixed-point format with a magnitude less than one.
Then

|ui(n)|2 = ‖bT
i x(n)‖

2
2 ≤ ‖bi‖

2
2‖x(n)‖

2
2 = L, (43)

since bi, the i-th row of the DCT matrix, has unit norm. As its
power is limited to L, it makes sense to quantize its value
to a set of reconstruction levels ŝj, j ∈ {1, ..., q}, where
q is the total number of discrete levels in approximating
the normalization constant. The quantization process can be
written as

ŝj = Q[εi], j ∈ {1, ..., q}, (44)

where εi is the estimated power of the i-th element for per-
forming the normalization. From simulation, we found that
4L levels give a good tradeoff between hardware resource
required and performance in terms of average deviation of
the discretized value to its true value. Since ŝj, j ∈ {1, ..., q},
is a set of constants, their reciprocals can be computed offline
as fixed point number ŝ−1j , j ∈ {1, ..., q}. Consequently,
the division is now replaced by a constant multiplication from
one of these values. The quantization operation in (44) can
be conveniently performed by a quantizer, where the input
is successively compared with a set of thresholds arranged
in a tree-like structure to determine which region it belongs
to. Once the desired region is determined, the pre-stored
reciprocal ŝ−1j can be forwarded to a multiplier for approx-
imating the division. In contrast to a division, it only requires

dlog2 qe comparisons and one multiplication operation. With
increasing number of discrete levels, more comparators and
hardware are used while the average deviation decreases
accordingly. From our experimental results, a uniform quan-
tizer with q chosen as 4L is a good tradeoff as there is
no significant improvement beyond this value in reducing
the approximation error by further increasing the number of
discrete levels.

Next, we examine the updates for the step-size and regular-
ization parameter to facilitate efficient hardware implemen-
tation. From (14)-(16), one can see that the step-size update
requires multiplications with constants such as µmax , α, γ ,
β̄/2, (1 − β̄), β/2 and (1 − β). Since they are constant
multiplications, they can be efficiently implemented using
hardware shifts and additions by representing the constants
as SOPOT or CSD to be detailed below. On the other hand,
we can see from (40) that updating ξ (n) requires the division
by ‖w0‖

2
2 which is assumed to be a constant prior value and a

square root operation. Since ‖w0‖
2
2 is a constant, its reciprocal

can be precomputed and implemented as a multiplication.
Moreover, it can be lumpedwith other constants in the expres-
sion and implemented as a SOPOT or CSD for multiplier-less
realization. The square root operation on the other hand can
be realized efficiently using the coordinate rotation digital
computer (CORDIC) method [44].

B. PIPELINED HARDWARE IMPLEMENTATION
We now describe the pipelined implementation of the pro-
posed D-VR-SNC-TDNLMS ABF. It is divided into six
processing units and the data flow diagram is illustrated
in Fig. 2. Since the normalized step size update and the reg-
ularization coefficients computation units work simultane-
ously, the beamformer system works in a five-stage pipelined
manner. The hardware structures and functionalities of these
processing units will be briefly summarized below.

1) BLOCKING MATRIX COMPUTATION UNIT
For efficient hardware implementation of a general BM,
we explore the fact that all the constant multiplications can be
expressed as canonical signed digit (CSD) or sum-of-power-
of-two (SOPOT). More precisely, the constant coefficient are
approximated by the following CSD representation

λ =
∑M−1

k=0
ak · 2bk , (45)

where M is the number of terms used in the coefficient
approximation, ak ∈ {−1, 0, 1}, bk ∈ {−lk , ...,−1, 0, 1, ..., uk},
and lk and uk are positive integers and their values determine
the dynamic range of each coefficient. The larger the numbers
M , lk , and uk , the more accurate the SOPOT approxima-
tion will be. In practice, the number of nonzero terms is
usually kept to a small number to satisfy the given specifi-
cation [28] so that each multiplication can be implemented
by limited shifts and additions (or subtractions). There-
fore, all the constant multipliers in D-VR-SNC-TDNLMS
ABF can be replaced with limited shifters and adders only.
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FIGURE 2. Data flow diagram of the proposed beamformer architecture.

FIGURE 3. Basic structure of blocking matrix (BM) computation unit.

To further reduce the adders required for SOPOT in the
BM, the multiplier-block (MB) technique proposed in [24]
is employed. MB technique is an efficient technique for
reducing the number of additions in multiplying a variable
input with a set of fixed coefficients in CSD or SOPOT
representations. The basic principle of the MB is to reuse
the intermediate results generated in realizing a group of
the coefficients in order to reduce the adders for the other
coefficients. Fig. 3 illustrates the realization of this unit. The
triangle represents the constant multiplier. In each sub unit for
computing ui(n), it costs a few adders, shifters and an adder
tree. The number of adders and shifters inMB directly depend
on the accuracy of SOPOT approximation. For instance, if the
wordlength ofB is 14-bit, the realization of this unit usingMB
can save 29.5% of adders. Meanwhile, the number of stages
in one adder tree is directly dependent on the sensor number,
blog2 Lc.

2) SIGNAL POWER AND STEP SIZE UPDATE UNIT
This unit computes recursively the power of ui(n) as

εi(n+ 1) = (1− λµ)εi(n)+ λµ|ui(n)|2

= εi(n)+ λµ(|ui(n)|2 − εi(n)). (46)

Here, 0 < 1− λµ < 1 is a forgetting factor. Fig. 4 shows the
power updating unit which requires L−1 constant multipliers
with coefficient λµ, 2(L − 1) adders and (L − 1) complex

FIGURE 4. Structure of signal power and step size update unit.

multipliers for forming |ui(n)|2, which can be implemented
as 2(L − 1) real multiplications and (L − 1) additions. For
hardware simplicity, λµ is represented as SOPOT coefficients
so that the constant multiplication can be implemented by
shifts and additions. The output is stored in a register to
facilitate the next update. The step-size is also updated in
this unit according to (14a)-(14c). In the NCM mode, one
comparator is required. In addition, since the VSS scheme is
decided by comparing the short-term EMSE λ̄(n) against the
threshold T , another comparator is also required. One com-
plex multiplication is required to form |e(n)|2, which requires
two real multiplications and one addition. Five adders are also
required to update the step-size. The coefficients for constant
multipliers implemented are summarized in Table 2.

3) NORMALIZED STEP SIZE UPDATE UNIT
This unit computes the normalized step-size for the
i-th element of the weight update equation in (42)

fi(n) = µ(n)/εi(n). (47)

As shown in Fig. 5, a uniform quantizer is used to quantize
εi(n) to log2(q) bits so as to select the appropriate value of ŝ

−1
j ,

j ∈ {1, ..., q} to be multiplied toµ(n). A small look-up table is
used to store ŝ−1j . The input power εi(n) is sequentially sent to
the reciprocal approximation unit and rounded result serves
as the address to the ROM for retrieving ŝ−1j . This value will

VOLUME 6, 2018 64479



W. Zhao et al.: Division-Free and Variable-Regularized LMS-Based Generalized Sidelobe Canceller for Adaptive Beamforming

FIGURE 5. Structure of normalized step size update unit, and
q = 8. D: register; >>: right shift; <<: left shift.

be multiplied to µ(n) to form the normalized step-size for
the i-th component. The size of ROM directly depends on the
wordlength and the number of the discretized levels, which
will be introduced in Section IV-C.

4) REGULARIZATION COEFFICIENT COMPUTATION UNIT
This unit computes the regularization parameter according
to (40) and its structure is shown in Fig. 6. L complex-valued
multipliers, an adder tree, a real-valued constant multiplier
and a square root operation are required to compute ξ (n).
3L complex-valuedmultipliers, 2L adders, and L registers are
used in this unit.

FIGURE 6. Basic structure of blocking matrix (BM) computation unit.

5) ADAPTIVE WEIGHT COMPUTATION UNIT
This unit updates the adaptive weight vector according to (42)
in which fi(n−D)e∗(n−D) and hence wai(n+ 1) are formed
and its structure for the i-th weight vector is shown in Fig. 7.

6) PREDICTED ERROR COMPUTATION UNIT
This unit computes the predicted error e(n) = d(n) −
wH
a (n)u(n) using L complex multipliers and an adder tree

is used to accumulate the final result as shown in Fig. 8.
The small grey rectangle stands for one time delay.

FIGURE 7. Structure of signal power and step size update unit.

FIGURE 8. Structure of normalized step size update unit, and q = 8.
D: register; >>: right shift; <<: left shift.

IV. SIMULATION AND IMPLEMENTATION RESULTS
Simulation results are now presented to evaluate the perfor-
mance of the proposed D-VR-SNC-TDNLMSABF and other
state-of-the-art methods. An 8-sensor ULA with sensors sep-
arated by half wavelength with far-field scenario is consid-
ered. The SOI is located at 0◦, while the two interferences are
fixed at 60◦ and -30◦. The signal to noise ratio (SNR) tested
are 10 dB and 20dB, and the signal to interference (SIR)
ratio is set to -10dB. All results are obtained by averaging
over 100Monte-Carlo simulations. Using the proposed archi-
tecture, a Verilog described fixed-point GSC beamformer
is also designed. To evaluate performance of the hardware
realization, a Matlab simulation model is studied, and the
model is completely consistent with the hardware imple-
mentation. By utilizing the random search algorithm [45],
the SOPOT coefficients of the parameters as shown in Table 2
are obtained. The number of quantization levels for the power
normalization is 4L = 32, and the square root operation is
realized by the CORDIC IP CORE from Xilinx [46].

A. SINR PERFORMANCE COMPARISON
The signal to interference and noise (SINR)

SINR(n) = 10 log(
σ 2
s |w

H(n)a(θ0)|2

wH(n)Rζ ζw(n)
) (48)

is used as the performance measure and σ 2
s denotes the

signal power and Rζ ζ is the covariance matrix of the
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FIGURE 9. The SINR learning curves of different adaptive beamformer algorithms without steering vector mismatch. NC-LMS (ss1) and NC-LMS (ss2)
correspond to the NC-LMS algorithm using initial step-sizes 1/[10(L− 1)] and 1/[5(L− 1)], respectively. All the algorithms are using the DCT-based
blocking matrix except SNC-TDNLMS (GJ-BM) where the GJ blocking matrix is used.

interference plus noise. The algorithms tested included
1) LMS, 2) NC-LMS [11], 3) NLMS, 4) RLS,
5) SNC-TDNLMS, 6) VR-SNC-TDNLMS in floating point
arithmetic and 7) VR-SNC-TDNLMS in fixed point arith-
metic. The algorithm parameters are chosen as follows: the
step size for the LMS and NLMS is 0.002 and 1/[4(L − 1)]
respectively so as to achieve the same SS SINR and the
forgetting factor for RLS is 0.999. For the NC and SNC
scheme,α,β, β̄ and γ are chosen respectively as 0.0004, 0.01,
0.05 and 20. The maximum step size for the SNC scheme is
1/(L − 1).

a: EXPERIMENT 1
This experiment is carried out for Gaussian distributed white
input in SNC-TDNLMS under different SNRs. Both the sig-
nal and interferences are of zero mean and unit variance. The
EMSEs and SINRs with a noise variance mismatch factor
ranging from 0.9 to 1.1 are summarized in Table 3. The
theoretical SS-EMSE can be obtained from (37). By substitut-
ing the optimal beamforming vector in the SINR expression
in (48), one gets the following analytical optimal SS-SINR

SINRopt = 10 log(σ 2
s a

H(θ0)R−1ζ ζ a(θ0)). (49)

TABLE 3. Comparison of the steady state EMSE and SINRs for white
gaussian input.

It can be seen that the deviation between the simulated and
theoretical results in EMSE are within 2dB, which is mainly
caused by the approximations used in the analysis of the last
term in (22). The SINR achieved by the proposed algorithm is
also within 2dB of the theoretical optimal value of theWiener
filter.

b: EXPERIMENT 2
This experiment examines the effect of using different num-
ber of discrete levels for the input power εi(n) on the proposed
VR-SNC-TDNLMS algorithm. L/2, L, 2L, 4L and 8L dis-
crete levels are evaluated and compared with the SINR per-
formance obtained by using floating point division. Table 4
shows that the deviation decreases as the number of discrete
levels increases. The situation of L = 8 and L = 16 are
stimulated. Considering the complexity in hardware imple-
mentation, 4L discrete levels are adopted in the following
experiments.

TABLE 4. Average deviations of different number of discrete levels.

c: EXPERIMENT 3
This experiment studies the performance of various algo-
rithms for sinusoidal sources without mismatch at 10 dB
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FIGURE 10. The SINR learning curves of different adaptive beamformer algorithms with steering vector mismatch. NC-LMS (ss1) and NC-LMS (ss2)
correspond to the NC-LMS algorithm using initial step-sizes 1/[10(L− 1)] and 1/[5(L− 1)], respectively. All the algorithms are using the DCT-based
blocking matrix except SNC-TDNLMS (GJ-BM) where the GJ blocking matrix is used.

and 20 dB SNR. The frequencies of the desired signal and
interferences are 100 Hz, 200 Hz and 300 Hz, respectively.
The learning curves of SINR are shown in Fig. 9. All the
algorithms are using the DCT-based blocking matrix except
SNC-TDNLMS (GJ-BM) where the GJ blocking matrix is
used. To evaluate the sensitivity of the NC-LMS algorithm
to the initial step-size used, two initial step-sizes denoted
by (ss1: 1/[10(L − 1)]) and (ss2: 1/[5(L − 1)]) are simu-
lated. The case ss1 corresponds to smaller step-size while
ss2 corresponds to a larger step-size. It can be seen that the
convergence performance of the NC-LMS is considerably
degraded by the use of a smaller step-size (ss1). On the other
hand, the SNC-based method has much faster convergence
speed than the NC-based one due to the initial MSM and
the NC-LMS method is quite sensitive to the initial step-size
used. To achieve the same SINR, the LMS and NLMS algo-
rithms are much slower than the SNC-TDNLMS algorithm.
The RLS algorithm is seen to have a slightly faster speed
than the SNC-based algorithm initially, its performance is
rather sensitive to noise and interference, probably due to
ill-conditioning. This can be improved by using the QR
decomposition (QRD)-based RLS algorithm. Due to page
limitation, the results are omitted. It can be seen that for the
SNC-TDNLMS algorithm, using the conventional GJ-based
BM is much slower than the DCT-based BM during ini-
tial convergence, probably due to the decorrelation effect of
the DCT. The performances of the VR-SNC-TDNLMS and
SNC-TDNLMS algorithms are almost identical.

B. PERFORMANCE UNDER DOA MISMATCH
In this experiment, the robustness of different methods with
DOA mismatch is examined under different SNRs. The true
desired signal is assumed to 1◦ while the looking direction

of the array is 0◦. The other settings are identical to those
in the last experiment without mismatch. Fig. 10 shows the
learning curves of SINR of different methods. Although the
NLMS algorithm converges faster than the LMS algorithm,
it is sensitive to the mismatch and degrades substantially.
With appropriate initialization, NC-LMS performs compa-
rably with the SNC-TDNLMS using GJ-BM. It should be
noted that the appropriate initialization of NC-LMS requires
certain experimentation and should be chosen carefully. The
performance of the RLS method degrades significantly since
the blocking matrix could not completely eliminate the SOI.
More advanced techniques such as regularized RLS algo-
rithm [47], [48] are necessary to mitigate the adverse effect
of DOA mismatch and interested readers are referred to
the literature for details. Thanks to the DCT transformation,
the SNC-based algorithm using DCT-BM performs better
than the GJ-BM. It can be seen from the comparison between
the VR-SNC-TDNLMS and SNC-TDNLMS algorithms in
the sub-plots that the VR scheme can slightly improve the
steady state SINR performance.

C. HARDWARE IMPLEMENTATION
This architecture has been simulated and synthesized using
Xilinx ISE 14.7 and successfully implemented on Xilinx
Virtex7 (XC7VX330T) FPGA. The wordlength of all the
variables are fixed at 22-bit. Eight sensors are considered
in this implementation example, and the number of quan-
tization levels for the power normalization is 4L = 32,
thus the ROM size is 5 × 22 bits. By utilizing the random
search algorithm [45], the SOPOT coefficients of the param-
eters in Table 2 are obtained. In this FPGA implementa-
tion, the square root operation is realized by the CORDIC
IP CORE from Xilinx [46]. The synthesized results are
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TABLE 5. Proposed architecture implementation results.

summarized in Table 5. In contrast to the conventional struc-
ture using divider, our proposed structure can achieve higher
working frequency. Meanwhile, the number of DSP blocks
in the proposed division-free D-VR-SNC-TDNLMS ABF is
reduced by around 22% over the conventional approach using
hardware divider. From the simulation presented above, it is
found that both methods give similar convergence and steady
state performances. For the experiment 3 without mismatch,
it can be seen in Fig. 9 that the performance of our proposed
D-VR-SNC-TDNLMS ABF with 22-bit wordlength has a
similar performance as its floating point counterpart. In terms
of the performance with DOAmismatch, it is noted in Fig. 10
that the proposed fixed point VR-SNC-TDNLMS algorithm
has similar performance as its floating point counterpart.
Moreover, it can be seen that the proposed algorithm con-
verges in about 150 iterations, which suggests that at a clock
frequency of 124 MHz, the beam can be stabilized in around
1 microsecond. This impressive speed makes the proposed
ABF and complex VR-SNC-TDNLMS algorithm valuable
tools for real-time adaptive signal processing.

V. CONCLUSION
A novel ABF based on a new complex VR-SNC-TDNLMS
algorithm and its efficient hardware architecture is presented.
It possesses fast initial convergence speed and low steady
state error due to the use of the SNC-based variable step-
sizes. It also effectively mitigates signal cancellation due to
steering vector mismatches through the use of variable regu-
larization. A DCT-based BM is also introduced to improve
the convergence speed in ULA. The division required in
the normalization step is simplified by a new division-free
approach which significantly increases the maximum oper-
ating speed and reduces hardware resources. The proposed
ABF and architecture compare favorable with conventional
approaches and is applicable to general adaptive filtering
using LMS-like algorithms involving normalization, which
makes it a valuable tool for real-time applications.

APPENDIX
Using assumption (A1) and (13), the following difference
equations of the mean step-size and mean multiplier E[λ(n)]
are obtained

E[µ(n)] = α(1+ γE[λ(n)]), (50)

E[λ(n+ 1)] = (1− β)E[λ(n)]+ βJb(n)/2, (51)

where Jb(n) = E[|e(n)|2] − aσ 2
η = J (n) − bσ 2

η , and J (n) =
E[|e(n)|2] − σ 2

η is the EMSE. Here, b = a − 1 is the excess
noise mismatch factor and when b = 0, there is no noise
mismatch and Jb(n) = J (n) = E[Ĵ (n)].
We now evaluate the steady-state expected values of µ(n),

µ2(n), λ(n), λ2(n) and get from (43) and (44) the following

E[µ(∞)] = α(1+ γ J∗b/2), (52)

E[λ(∞)] = J∗b/2, (53)

where J∗b is the steady-state value of Jb(n). Similarly,
E[µ2(n)] and E[λ2(n)] are evaluated as follows

E[µ2(n)] = α2(1+ 2γE[λ(n)]+ γ 2E[λ2(n)]), (54)

E[λ2(n+ 1)] = (1− β)2E[λ2(n)]+ β(1− β)E[λ(n)](J (n)

−bσ 2
η )+

β2

4
(2J2(n)+ b1σ 2

η J (n)+ b2σ
4
η ),

(55)

where b1 = 2(1−b), b2 = 2+ (1+b)2 and we have used the
fact that E[|Ĵ (n)− bσ 2

η |
2] = E[|e(n)|4]− 2aσ 2

η J (n)+ a
2σ 4
η

= 2(E[|vH (n)u(n)+ η|2])2 − 2aσ 2
η J (n)+ a

2σ 4
η

= 2(E[|vH (n)u(n)|2]+ σ 2
η )

2
− 2aσ 2

η J (n)+ a
2σ 4
η

= 2(J2(n)+ 2σ 2
η J (n)+ σ

4
η )− 2aσ 2

η J (n)+ a
2σ 4
η

= 2J2(n)+ (4− 2a)σ 2
η + (2+ a2)σ 4

η

= 2J2(n)+ 2(1− b)σ 2
η + (2+ (1+ b)2)σ 4

η .
For simplicity, we have assumed that the bias due to the regu-
larization is small so that it is ignored in the above expression.
For real-valued input, the corresponding result leads

E[λ2(n+ 1)] = (1− β)2E[λ2(n)]+ β(1− β)E[λ(n)](J (n)

−bσ 2
η )+

β2

4
(3J2(n)+ b1σ 2

η J (n)+ b2σ
4
η ),

(56)

where b1 = 2(2 − b), and b2 = 3 + (1 + b)2. As the
desired steady-state EMSE is usually small for VSS algo-
rithms, we can then ignore the term J2(n) in (48). Using (47)
and (48), we have

E[µ2(∞)] = α2(1+ 2γE[λ(∞)]+ γ 2E[λ2(∞)]), (57)

E[λ2(∞)] ≈
(1− β)
2(2− β)

(J∗ − bσ 2
η )

2

+
β

4(2− β)
(b1σ 2

η J∗ + b2σ
4
η ), (58)

where J∗ = Tr(4vv(∞)Ruu) is the steady-state value of J (n).
(53), (58), (54) and (57) correspond to (32)-(35) in the

manuscript.
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