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ABSTRACT Next generation 5G cellular networks will consist of multiple technologies for devices to access
the network at the edge. One of the keys to 5G is, therefore, the ability of devices to intelligently select
its radio access technology (RAT). There have been several proposals for RAT selection in the last few
years. Understanding the performance and limitation of these RAT selection solutions is important for their
deployment in the future 5G heterogeneous networks. In this paper, we provide a taxonomy and comparative
performance analysis of recent RAT selection algorithms, including the different network models that were
used to evaluate these works.We combine these different networkmodels to build a benchmark for evaluating
the RAT selection algorithms in a 5G environment. We implement the representative algorithms of different
approaches and cross compare them in our benchmark. From the experiments conducted, we illustrate how
the different network parameters, such as the number of base stations visible to a user and the available link
bandwidths, could impact the performance of these algorithms.

INDEX TERMS 5G heterogeneous networks, RAT selection, network models, performance evaluation.

I. INTRODUCTION
The fifth generation of cellular communication (5G) is
rapidly gaining momentum worldwide with commercial
deployments scheduled for 2020. 5G is expected to offer a
variety of novel technologies that can coexist with existing
technologies such as 3G and 4G to support diverse require-
ments of the various applications and services in the future.
Heterogeneous networks (HetNets) are built upon multiple
wireless access technologies which may include UMTS,
GSM, LTE, WiMAX, WiFi, femto as examples [1]. In Het-
Nets, mobile devices with multiple radio access technolo-
gies (RATs) are able to choose among the available base
stations (BSs). Deciding upon the kind of RAT, and which
BS mobile users should connect to is known as the RAT
selection problem. This is a topic of considerable ongoing
work within the LTE-WLAN interworking framework of the
Third Generation Partnership Project (3GPP) [2], and in 5G
research [3]–[5].

There is now an extensive body of research on RAT selec-
tion solutions in HetNets [6]–[38]. These solutions cover
a wide ranges of solution paradigms from centralized to
distributed, from one-shot to iterative game theoretic. Most
of these works, however, concentrate mainly on developing

novel RAT selection algorithms and testing them on specific
network topologies or traces. Despite a number of recent sur-
veys of RAT selection techniques [5], thorough comparative
performance evaluation of these algorithms under different
network settings have not been explored in the literature.

We extend our preliminary study in [38] to provide in
this paper a benchmark for studying impact of various net-
work models on the performances of RAT selection algo-
rithms. We mainly focus on evaluating the state-of-the-art
algorithms under diverse and realistic network models to
understand their strengths and limitation. Our benchmark
covers a wide range of network models from throughput,
connectivity between users and BSs, and BS deployment.
Using this benchmark, we evaluate and cross-compare the
performance of the RAT selection algorithms. Our studies
illustrate significant performance differences for all algo-
rithms as the various model parameters such as the number
of BSs, the number of users and the probability that a link
exists between a user and a BS are varied. Significantly,
our studies show that the expected number of BSs per user
has the most impact on the performance of RAT selection
algorithms. Our study indicates that RAT selection algorithms
should be evaluated using a range of different network model
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parameters, perhaps most importantly, the number of BSs
available to a user, in order to fully understand their
limitations.

Our key contributions are:
1) A taxonomy of existing RAT selection algorithms:

We firstly undertake a brief survey of existing RAT
selection algorithms and evaluation platforms in the
literature. Based on their attributes, we classify the
algorithms into centralized, distributed and hybrid
based approaches.We select and implement representa-
tive algorithms from each such group in order to evalu-
ate their performance using multiple metrics, including
overall efficiency, system fairness, and convergence
behavior.

2) A unified benchmark for RAT selection algorithms:We
explore different network models used in the evalua-
tion of existing works in order to propose a unified
benchmark for performance evaluation of various RAT
selection algorithms under the same computational
environment and realistic network settings. In par-
ticular, we consider two kinds of network models:
(i) a random graph based model which represents sce-
narios where users are distributed independently in
the network, and (ii) a geographical based model that
more accurately reflects real world scenarios. Our aim
is to provide a simulation benchmark for the system-
atic comparison of different approaches to the RAT
selection problem. As far as we know, such a unified
framework has not been proposed before.

3) A thorough comparative study: This paper provides the
first comprehensive evaluation of the effects of differ-
ent network topology and bandwidth models on the
performance of candidate RAT selection algorithms.
Issues addressed include user density (the number of
users per BS), link density (the number of BSs that a
user sees), and bandwidth distribution (the distribution
of link bandwidth between BSs and users). To our best
knowledge, no comprehensive performance compari-
son of existing RAT selection algorithms of this kind
has been attempted to date.

4) Software library for RAT selection: We implement
in Matlab a library of different RAT selection algo-
rithms including the default association mechanism
using highest signal strength, a centralized algorithm
with local search, a wide range of game theoretic
algorithms (regret matching, reinforcement learning,
non-cooperative scheme, combined fully distributed
payoff and strategy reinforcement learning). We make
this library publicly available for reference and reuse.
The datasets and the codes that we use in this paper,
together with their descriptions, are available to access
at https://github.com/ndduong1986/RAT-Benchmark.

The rest of this paper is organized as follows. Section II
provides a thorough survey of current RAT selection tech-
niques and evaluation platforms. In Section III, we present
a unified benchmark for performance evaluation of RAT

selection algorithms. The comparative studies and discus-
sions are presented in Section IV. Section V concludes this
paper.

II. RAT SELECTION ALGORITHMS AND MODELS
A. RAT SELECTION ALGORITHMS
RAT selection algorithms can be divided into: (i) central-
ized (network controlled), (ii) distributed (user controlled),
or (iii) hybrid (user controlled with network assistance) solu-
tions.We present themost recent state-of-the-art works on the
three different approaches. We use BS to denote any network
node that connects directly to end users and offers radio
access service such as a base station in LTE network or an
access point in WiFi.

1) CENTRALIZED RAT SELECTION APPROACHES
In a centralized approach [6]–[15], all the decisions on which
RAT a user connects to are made on the network side. In order
to do this, all users need to report their local channel con-
ditions to an authorised network controller. Based on this
information, the controller calculates the optimal association
of users to RATs with respect to a network objective, and
then assigns BS to users. Using this centralized mechanism,
service providers can maintain control of network operation
to achieve some network related objectives such as network
throughput maximization [6]–[8], load balancing optimiza-
tion [9], [10], user fairness enhancement [11], etc. Centralized
approach is gaining popularity due to the emergence of future
software-defined wireless networks [13]–[15].

Centralized algorithms have been shown to be superior
than distributed solutions in term of overall network through-
put [16]. They, however, require collaboration between all
wireless BSs and users – exchanging significant communi-
cation overheads, especially for ultra-dense network deploy-
ment [39]. Furthermore, different network operators pursue
different network sharing strategies. Therefore, such close
collaboration may not be possible across multiple networks.

2) DISTRIBUTED RAT SELECTION APPROACHES
A distributed approach [17]–[23] can overcome the problem
of excessive communication overheads, by implementing the
RAT selection algorithms at the user side [5]. Most related
distributed solutions are iterative game-based algorithms (for
a survey refer to [40]). Distributed game-theoretic techniques
can be classed into: partially distributed and fully distributed
algorithms. A game-theoretic algorithm is considered to be
partially distributed if each player (e.g., user) uses informa-
tion about the other players in order to update its strategy.
While using a fully distributed algorithm, players must be
able to make decisions without knowledge of the other play-
ers (how many there are, their action and payoffs) [41].

In a partially distributed solution such as [17] and [18], for
example, to guarantee convergence, all users are assumed to
have complete knowledge of the network, including the pay-
off functions and the history of selection actions of all users.
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TABLE 1. Summary of RAT selection algorithms under consideration.

From this information, users are able to determine their
throughputs given other users’ choices. The guaranteed con-
vergence therefore comes at the cost of increased complexity,
signaling and communication load.

In contrast, a fully distributed solution such as [19]–[22],
for example, does not require the users to have such
full knowledge. Each user learns about the RAT selection
‘‘game’’ by observing only its own achieved payoffs. Despite
this very attractive property, the conventional fully distributed
algorithms in [19]–[22], however, suffer from the problems
such as slow convergence, and convergence to sub-optimal
equilibrium points, due to the lack of knowledge on global
network traffic [23].

3) HYBRID RAT SELECTION APPROACHES
In hybrid approaches [24]–[34], users select their RAT
depending on their individual observations as well as external
information provided by the network. Several works such
as [24]–[28] propose network-assisted schemes where some
global knowledge of network is broadcast to every user in
the network. Each user then uses these parameters to select
the best BS that satisfies its utility requirements. These works
however still require significant amounts of additional infor-
mation exchange between the users and the BSs.

To further reduce the signaling overhead by the broadcast
technique, the works in [32]–[34] develop low-overhead dis-
tributed algorithms in which each BS shares limited feedback
information only to its serving users to assist them in making
RAT decision. The feedback sent to the users is related only
to the local information of each BS such as the number of
connecting users [32], [33], the achievable throughput offered
by the BS [33], the BS traffic load [32] or the channel state
condition between user and BS [34]. This approach reduces
significantly the overheads in the network.

In these hybrid approaches, although the BS may provide
some useful information, this knowledge is not guaranteed
to be perfect or reflect the global condition of the network.
Therefore, users will need to keep switching among the avail-
able BSs to discover how it would associate with the BSs to
meet its objective. This leads to a high number of exploration
times and results in a low per-user throughput.

B. ALGORITHMS UNDER CONSIDERATION
In the following, we discuss and compare the fundamental
properties of the six representative algorithms of the classes

reviewed above. These algorithms have been considered
due to their general approaches and the simplicity of their
implementation, as the focus of this research is mainly on
the development of a simulation benchmark for comparing
main approaches to the RAT selection problem. We limit
our discussion to two dominant RATs: WiFi and Cellular.
The interworking of these two well-known technologies has
been gaining an increasing attention for inter RAT offload-
ing solution in heterogeneous networks, due to their fast
deployment and scalable capabilities [4]. Other RATs could
be considered within our framework but are beyond the scope
of this study. We particularly focus on information input and
the types of data exchanged between the users and the BSs.
We summarize this discussion in Table 1.

1) ONE-SHOT ALGORITHMS
• Highest Signal Strength (HSS): This is a fully dis-
tributed approach and is the current default user asso-
ciation mechanism in the 802.11 standard. Users have
no information about the global network state. Based on
their radio conditions, they randomly select a BS among
the highest received signal strengths. To select between
WiFi and Cellular RATs, we assume a user randomly
belongs to one of the two groups of users. That is either
preferWiFi network or prefer cellular network to mobile
access with equal probabilities.

• Local Search Heuristic (LSH) in [12]: This algorithm
is based on a centralized approach, in which a controller
searches for all possible associations between users and
BSs. It assigns users to either WiFi or cellular BSs in a
way to maximize the sum of logs of the user’s through-
puts instead of the total users’ individual throughput.
This optimization method has been shown to signifi-
cantly improve the overall network throughput while
maintains the good fairness of user throughputs.

2) ITERATIVE ALGORITHMS
• Regret Matching (RM) in [17]: The motivation behind
this partially distributed scheme is to adjust the prob-
abilities over the user’s actions to be proportional to
the ‘‘regrets’’ for not having chosen alternative actions.
In RM, users are assumed to have global information
about the network including the history of which BSs
have been selected by other users. Each user can com-
pute the regrets (the changes in average payoff) that it
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would have if choosing other BSs instead of its cur-
rent selection. To select their RATs, users apply the
RM procedure [42] that assures no regret in the long
run. This algorithm converges to the set of correlated
equilibrium (CE), an optimality concept of game the-
ory that models possible correlation between players,
either implicit or explicit. This is in contrast to the
usual strategic equilibrium of Nash, where all players
act independently [42].

• RAT Selection Games (RSG) in [26]: This is a hybrid
approach, where a centralized algorithm is used to deter-
mine the global network traffic including the number of
concurrent users on each BS, and their physical (PHY)
data rates. Each BS then broadcasts these parameters to
all users in its coverage area, including those that are
not currently connected to that BS. Each user can then
estimate its expected throughput if it selected another
BS. At each time step, each user selects a BS that
provides the highest per-user throughput. This algorithm
converges to a Nash equilibrium (NE) [26].

• Enhanced Reinforcement Learning (ERL) in [33]:
This hybrid scheme allows users to estimate their pay-
offs more accurately using network-assisted feedback.
Each BS shares with its serving users, the number of its
concurrent users and the long-term achievable through-
put (computed at the BS) that a user could receive. From
this feedback, and its own observations, each user can
estimate its obtainable throughput from all other target
BSs and then compute network measured regrets. These
quantities indicate how much gain (or loss) in average
payoff a user would experience if leaving the currently
associated BS. Users then select their RATs by applying
the procedure described in [33] (which is based on the
regret principle [43]). This algorithm also guarantees
convergence to the set of CE almost surely.

• Combined Fully Distributed Payoff and Strategy
Reinforcement Learning (CODIPAS) in [20]: This is
a fully distributed solution where users do not need to
exchange their data to other users or BSs. Users adapt
their RAT selection decisions only based on their own
observation of the payoffs received from past experi-
ences. At each time step, using only this local informa-
tion, a user selects the best available BS to maximize its
payoff. This algorithm guarantees convergence to a NE.

III. A BENCHMARK FOR RAT SELECTION EVALUATION
A. OVERVIEW OF CURRENT EVALUATION PLATFORMS
1) NETWORK TOPOLOGY
There are a large number of network topologies that have
been used for wireless network simulations, including both
static and dynamic models, e.g. Kauffmann et. al. [22]. In a
static topology, users in the network are assumed to be static
and can only communicate to a fixed set of BSs. This kind
of topology is easy to deploy but does not accurately reflect
actual network environments. Dynamic topology models

represent a more realistic scenario, where users can
join or leave the network at any time, but increase the com-
plexity of the simulation model.

Wang et. al. [28] evaluate their algorithm in a randomly
deployed network, where both BSs and users are distributed
according to a homogeneous Poisson Point Process (PPP) in
a geographic region. In contrast, Ge et. al. [39] use a more
complex heterogeneous topology, where BSs are sampled
according to a non-homogeneous PPP and therefore results in
regionwith a very high density of BSs. In [6], however, the BS
density as well as user density are varied in order to study the
impact of these parameters on algorithm performance.

To model the network under different deployment strate-
gies in cellular network, Du et. al. [23] use three representa-
tive topologies scenarios including a chain-topology (treated
as the roadside cellular network BS), a nestification-topology
(represented the multimode small cells deployment) and an
overlapping-topology (reflected the conventional scenario of
partially overlapping cells) to illustrate the applicability of
their solution in many complex scenarios. Some other works
such as [6], [24], [26], and [28] validate their solutions in real-
word networks by using the collected residential data traces
via driven experiments.

Typically, most of the existing works evaluate their algo-
rithms on a selected network topology, often with a small
number of BSs and full connectivity between users and BSs.
These simple models may not reflect the realistic scenarios
of future 5G ultra-dense heterogeneous network [39].

2) BANDWIDTH ALLOCATION
Bandwidth allocation is a primary factor that significantly
affects performance of wireless network. However, most
of the prior works rely on simplifications such as uni-
form throughput among all clients and consider only a
single class of throughput model. For example, the works
in [18], [22], and [23] assume that all users connecting to
the same BS are allocated with an equal amount of band-
width. This assumption is suitable to model the throughput-
fair access technologies in WLAN environment. Other works
apply to a single class of RATs such as WiFi network
in [6] and [17] or cellular network in [27] and [28]. Only a
number of previous works [24]–[26], [32], [33], [38] look at
HetNets scenario where different RATs use different band-
width allocation techniques. Those solutions that work with
multiple RATs are more attractive due to the recent develop-
ment of HetNets.

Recently, the throughput-fair model and the proportional-
fair throughput model in [24]–[26] as well as the service
differentiation based throughput model in [23] and [27] are
becoming popular. These works however ignore the fluctuat-
ing nature of the wireless channel by assuming that the users
know the long-term average throughput that a user experi-
ences on a wireless network. Unfortunately, in practice, for
distributed or hybrid solutions, each user only knows its sam-
pled throughput (instantaneous value), from which it infers
the mean value. Inference from a limited number of samples
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always contains statistical errors. It is therefore important
to take into account the statistical errors in evaluating RAT
selection algorithms.

In the rest of this section, we propose a unified simu-
lation model to evaluate and compare the performances of
various RAT selection algorithms under the same network
environment. With our model, one could also investigate the
effect of varying various network parameters on the algorithm
performance to fully understand its limitations.

B. NETWORK TOPOLOGY
Consider a wireless network consisting of M BSs and N
users. We address two particular classes of such networks:
In the first model, associations between users and BSs are
based on generic random graph. This model resembles the
popular randomPoisson point process for users distribution in
wireless networks. In the second case, we consider correlated
association models based on geographical distance, which
better reflect real-word topology deployments.

1) RANDOM GRAPH BASED MODEL
Random graph is a popular mathematical tool to model link
connectivity, and to study the scaling capacity of wireless
networks [44]. Under a random graph model [44], users
are assumed to be located within the coverage range of
each BS (hence can potentially connect to that BS) indepen-
dently of each other with a fixed probability. Random topolo-
gies are generated by assigning a probability p that a link
(a connection from a user to a BS) is available for a certain
user independently among all pairs (user, BS). We define the
link density as the expected number of BSs (pM ), that a user
sees. Fig. 1 illustrates the generic random graph scenario.

2) GEOGRAPHICAL BASED MODEL
In this model, the connectivity and bandwidth between
BSs and users are determined by their relative geograph-
ical distances. We adopt the same network models used
in [6] and [28]. These models reflect the real world distri-
butions of BSs and users. We consider a densely deployed
networks, where a large number of small cells (e.g., Pico/

FIGURE 1. The scenario of base stations and users in a random graph
based model.

Femto/WiFi BSs) are located within the coverage area of
one macro BS in a narrow area [39]. We divide the given
geographic area into smaller, non-overlapping square-shaped
areas and randomly placed a BS within the borders of each
small area. We then place a uniform random number of users
(up to λ, the maximum number of users that a BS serves) for
each BS within its area. A user is considered to be a local user
to BSs that are located in the same area of its location and to
be a non-local users to the rest of the BSs in the network.
We assume that each BS can allocate a certain portion of its
bandwidth (0 ≤ α ≤ 1), to serve other non-local users (α = 1
for the local users).

C. BANDWIDTH ALLOCATION
In this paper, we are primarily interested in user down-
link throughput and we use the same throughput models as
in [24]–[26] for different RATs.

1) THROUGHPUT-FAIR MODEL
Under this model, in the long term, a set of users connected
to the same BS receive the same per-user throughput. The
throughput for user i when connected to BS k is given by

ω̄ki =

( nk∑
i′=1

1

Rki′

)−1
, (1)

where Rki′ is the PHY rate of user i′ on BS k and nk is the
number of users connected to BS k . This model is suitable
for throughput-fair access technologies such as WiFi.

2) PROPORTIONAL-FAIR MODEL
Under this model, each user obtains a different throughput
which depends on its PHY rate, and the number of other users
sharing the same BS. The throughput of user i choosing BS k
can be expressed as

ω̄ki =
Rki
nk
. (2)

This model is suitable to model time/bandwidth-fair access
technologies such as 3G/4G cellular networks.

D. INSTANTANEOUS THROUGHPUT MODEL
The throughputs given in equations (1) and (2) are the mean
(e.g., long term average) throughputs, which can be only com-
puted at the network side. In distributed solutions, users only
sample their instantaneous throughputs, not the mean values.
At any one time, instantaneous throughput observed by the
user may vary from the mean. This issue has been considered
in [40], where the instantaneous achievable throughput of a
user is modeled as a random variable.

In this paper, we propose an instantaneous throughput
model that can be efficiently implemented for computer sim-
ulations. We assume that the throughput obtained by a user
follows a Gaussian distribution in which the mean is equal
to the throughput computed by the network and the standard
deviation is equal to the product of the noise e and the mean
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throughput ω̄. Thus, instantaneous throughput of a user i
choosing a BS k is a Gaussian random variable:

ωki ∼ N (ω̄ki , σ
2
i ),

where σi = e × ω̄ki and e ∈ (0, 1). This instantaneous
throughput model incorporates more practical considerations
of real-world networks for RAT selection.

IV. COMPARATIVE STUDIES
We now describe comparative studies of the six algorithms in
Section II-B under different network models in Section III-B.
We first use synthetic data to simulate a HetNet environment
where users are located in the coverage of two different RATs:
WiFi and LTE. For the sake of simplicity, it is assumed that
one half of the BSs are LTE base stations, while the remaining
are WiFi access points. Radio conditions between each user
and BS are classified into three levels: good, normal or bad.

Within the scope of this work, we also assume station-
ary channel conditions over the timescale of the algorithm
(i.e., all users remain static during the algorithm’s itera-
tions). Considering the impact of user mobility on the per-
formance of different RAT selection algorithms is valid but
will be addressed further in our future work. Thus, the PHY
rate from a user to a BS is assumed to be unchanged
over time in this paper. For each pair of BS k and user i,
the good/normal/bad PHY rate to Rki is modelled with equal
probabilities of 1/3. Table 2 lists the PHY rates when con-
nected alone to these BSs. This assumption will be relaxed
by using real network data in Section IV-B.

TABLE 2. PHY rates in WiFi and LTE BSs.

The mean achievable throughput ω̄ a user obtains depends
on the other users sharing the same BS, and is given in
the equations (1) and (2). When connecting to a BS, a user
observes instantaneous throughput ω modelled as a Gaussian
random number distributed according toN (µ, σ 2) withmean
µ = ω̄ and (proportional) variance σ 2

= e2 ω̄2, where we
assume the proportional noise factor is e = 0.3. Results were
obtained by averaging over 10 independent trials.

In order to compare the algorithms in term of efficiency
and fairness, we consider the following metrics:
• System utility: This is defined as the sum of all users’
average throughputs. Higher utilities thus represent
greater benefits for both operators (higher offered band-
width) and users (better per-user throughput).

• Jain’s fairness index, which is derived as

J =
(
∑N

i=1 xi)
2

N ×
∑N

i=1 x
2
i

, (3)

where xi is the average throughput of user i and N is
the number of users. Notes that J reaches the largest

value 1 indicating the best fairness of the system, which
guaranteeing the same throughput among the users.

To compare the iterative algorithms in terms of conver-
gence performance, we consider the following metrics:

• Total overheads (bits): This is the amount of data
exchanged between users and BSs. A lower overhead is
thus preferable.

• Convergence time (iterations): This is the number of iter-
ations required to reach convergence. Fast convergence
is desirable because in practical situations, the wireless
channel conditions can change quickly.

• Per-user switchings: This is defined to be the maxi-
mum number of switchings between RATs required by
all users to achieve convergence. A small number of
switchings is desirable because each switch occurs an
overhead.

A. RANDOM GRAPH BASED MODEL
We first report our results for the random graph case. We vary
the link availability probability p between zero and one,
and measure the performance of RAT selection algorithms
in system fairness and system utility. Figure 2 shows the
effect of link density on the performance of the six algo-
rithms described in Section II, for two different numbers
of BSs.

1) IMPACT OF LINK DENSITY ON SYSTEM FAIRNESS
Our first observation is that all the iterative algorithms are
robust and obtain very good fairness performance compared
to that of the one-shot algorithms. This is especially the case
when the link density is large (pM > 4). Among iterative
algorithms, RM, which requires global network information,
achieves the best performance. Both regret-based algorithms
(RM and ERL) achieve better fairness than the others. This
may be explained by noting that both of these algorithms
are designed to reach efficient CE points [42], [43], rather
than converging to arbitrary NE solutions such as in RSG and
CODIPAS. LSH performs worst of the iterative algorithms
in term of fairness, with a maximum of 0.85 for a low link
density of 6, since it aims to maximize network throughput
rather than fairness.

We explain this observation by the following proposition.
Proposition 1: For any constant ε > 0, under the random

BS and user association model, any user can connect to at
least one BS with probability 1− ε if

pM ≥ M
(
1− M
√
ε
)
,

where M is the number of BSs.
Proof: Let random variable Xi denotes the number of

BSs that user i sees. Thus, Xi is considered as a binomial
random variable with parameter (M , p). The probability for
Xi to be l is given by

Pr [Xi = l] =
(
M
l

)
pl (1− p)M−l
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FIGURE 2. Impact of link density on algorithm performance for the scenario using generic random graph model. (a) 150 users and 10 BSs. (b)
150 users and 30 BSs.

The probability that user i can see at least one BS can be
calculated as

Pr [Xi ≥ 1] = 1− Pr [Xi = 0] = 1− (1− p)M (4)

In order to achieve this with high probability, we want

Pr[Xi ≥ 1] ≥ 1− ε (5)

for all user i. Where ε is a pre-determined reliability thresh-
old. For example, to guarantee a 99% confidence interval,
we set ε = 1− 0.99 = 0.01. Thus, from (4) and (5), we have

1− (1− p)M ≥ 1− ε ⇔ pM ≥ M
(
1− M
√
ε
)

This completes the proof.
WithM = 10 and let ε = 0.01, we obtain pM ≥ 3.69 from

Proposition 1. We can see that the analytical result match the
simulation result reasonable well.

The above formulationmeans, under probability condition,
a user can associate with at least one BS when its link
density is higher than a certain threshold value. Accordingly,
a distributed iterative algorithm, which aims at maintaining
maximum fairness among users, can be used to obtain a high
system fairness index at an equilibrium point.

This observation has yielded a primary insight about the
impact of link density on the fairness performance of iterative
algorithms. That is an iterative game algorithm can achieve
very good fairness performance when the link density is
large enough (in such dense deployed networks). However,
under this scenario, the increase in link density does not help
to bring much higher performance in system fairness and
therefore can result in wasting network resources.

2) IMPACT OF LINK DENSITY ON SYSTEM UTILITY
In term of utility, the one-shot algorithms achieve much bet-
ter overall utility than the iterative algorithms. Interestingly,
when the link density is 18 in our simulation, the system

utility reaches its highest value. Thus, even with higher link
density, the centralized LSH algorithm could not bring better
system utility. Also, when the link density is large enough
(pM > 24), the distributed HSS algorithm can achieve
similar performance as the centralized one. Thus, in such a
densely deployed network, we do not even need a centralized
solution in order to maximize overall network throughput.

Among iterative game algorithms, RM that uses global
information of the network also achieves highest performance
in utility. ERL, which uses assisted feedback only from the
local BS, performs worse than RSG, which uses network-
assisted information from all BSs, when increasing the link
density of the network. CODIPAS, which requires the least
amount of network information, has the poorest utility. Again,
when the link density reaches 18, the game algorithms could
not improve much performance in utility metric.

In any network deployment scenarios, it is important to
have mechanisms for associating users to BS so that the
available network resources is efficiently used. From the per-
spective of a single user, increasing network density is always
beneficial for increasing individual data rate. However, this
might not be optimal from a network-wide viewpoint. In the
following, we explore the answer to the question what is the
condition for maximizing network throughput. We show in
Proposition 2 that even a centralized algorithm (which has
complete information regarding the network) could not bring
better network throughput when the link density reaches a
certain value.
Proposition 2: For any constant ε > 0, under the random

BS and user associationmodel, total throughput is maximized
if

pM ≥
M
β

(
1− M
√
ε
)
,

where M is the number of BSs, β is a probability that a user
obtains a good radio condition to a BS.
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Proof: For simplicity, we assume that a user can obtain a
good radio condition to a BSwith a fixed probability of β. It is
obvious that the network can obtain the maximize throughput
if every user can see at least one BS that offers the highest
PHY rate (meaning that every user can potentially connect to
at least one BS with good radio condition). The probability
that a link with good radio condition is available for a certain
user is pβ. Let random variable Yi denotes the number of BSs
with good radio conditions that user i can sees. According to
binomial distribution,

Pr [Yi = l] =
(
M
l

)
(pβ)l (1− pβ)M−l

The probability that user i can see at least one BS with good
radio condition can be calculated as

Pr [Yi ≥ 1] = 1− Pr [Yi = 0] = 1− (1− pβ)M (6)

Similarly, to achieve this with high probability, we want

Pr[Yi ≥ 1] ≥ 1− ε (7)

for all user i. Thus, from (6) and (7), we have

1− (1− pβ)M ≥ 1− ε ⇔ pM ≥
M
β

(
1− M
√
ε
)

When this condition is satisfied, a solution that maximizes
the sum of throughput of all the users can be implemented
by using a centralized algorithm, such as LSH. The network
then can achieve its maximize throughput and hence higher
link density does not necessarily provide higher aggressive
throughput. This completes the proof.

Let β = 1/3 according to the simulation setting, Theo-
rem 2 is satisfied for the condition of pM ≥ 11.07. This result
again matches with what we observe in the simulation.

In summary, we observe a similar trend in performance
for all algorithms with varying link densities. When the link
density is small, increasing the link density of the network
brings significant difference in algorithm performance both
in fairness and utility. Once the link density reaches a certain
threshold, which is 4 in terms of fairness as in Fig. 2(a) and
18 in terms of utility as in Fig. 2(b) in our simulation, all
the algorithms reach their limits. Then, higher link density
does not necessarily provide higher performance in either
fairness or utility and can thus result in wasted network
resources. This suggests that neither the number of BSs, nor
the probability that a link exists between a user and a BS,
has a significant effect on the performance of RAT selection
algorithms. It is the link density that is important.

3) CONVERGENCE PERFORMANCE OF ITERATIVE
ALGORITHMS
The probability p that a link is available between a user and
a BS significantly affects the convergence rate of iterative
game-based algorithms. Fig. 3(a) shows the impact of varying
p on the convergence speed of RM. As p increases, the con-
vergence rate is observed to improve rapidly. We can also
observe a similar impact of the value of p for other schemes

(RSG, ERL and CODIPAS). This confirms an obvious prop-
erty of iterative game-based algorithms: themore information
you have, the better the solution.

We now fix pM = 4 and evaluate the convergence perfor-
mances of the four iterative algorithms. Figure 3(b) compares
the amount of data exchange (overheads) between users and
BSs for different algorithms. Physical quantities such as SNR,
PHY rate and throughput are quantized to 4 bit precision.
The details of the calculations of the information exchange
for each algorithm are summarized below. Here τ denotes the
number of iterations to convergence.
• RM: Each user reports its SNR to the connecting BS and
records its payoff and PHY rate (12×A bits). Each user
also records the PHY rates and the actions taken by other
(A− 1) users in each iteration (8A(A− 1) bits). Thus the
total overhead is (8A2 + 4A) × convergence time (bits)
∼ O(τA2).

• RSG: Each user reports its SNR to the BS and records
its payoff (8× A bits). Then each user records the PHY
rates of all the users from each BS (4 × A2 bits). The
total overheads are (4A2+8A)×convergence time (bits)
∼ O(τA2).

• ERL: Apart from the mean achievable throughput
(4 bits), Each user records the number of users sharing
the same BS (4 bits) and its mean achievable throughput
(4 bits). The total overheads are 8A× convergence time
(bits) ∼ O(τA).

• CODIPAS: Each user receives its payoff directly from
its associated BS. The total overheads are just 4A ×
convergence time (bits) ∼ O(τA).

As illustrated in Fig. 3(b), ERL is the best algorithm
in terms of to minimizing overheads. CODIPAS, although
requiring less information to make a decision, needs higher
overhead because of its slower convergence speed (larger τ ).
Both ERL and CODIPAS require an order of magnitude less
information exchange than RSG and RM, especially when the
number of users is large. The reason is that their complexity is
linear whereas the complexity of RSG and RM is quadratic.

Figs. 3(c) and 3(d) show the comparison of the algorithms
in terms of convergence time and per-user switchings. It can
be seen that ERL achieves the fastest convergence rate among
all algorithms. Here ERL even outperforms RM and RSG.
This can be explained by the fact that the network feedback
in ERL is more accurate than the user observed throughput
in RM and RSG. Although RM obtains a smaller number
of per-user switchings than the other algorithms, it requires
a longer time to converge. RM also exchanges significantly
higher overheads, as we explained earlier with respect to
Fig. 3(b). CODIPAS performs poorest in both speed and per-
user switchings metrics due to its lack of global information
about network conditions.

B. GEOGRAPHICAL BASED MODEL
To accurately emulate real-work network deployment,
we consider an HetNets environment where WiFi BSs and
users are located within the coverage area of one macro LTE
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FIGURE 3. (a) Impact of probability of link availability on convergence time of Regret Matching; Convergence performance comparison of iterative
algorithms on: (b) Total overheads, (c) Convergence time; (d) Per-user switching.

FIGURE 4. (a) Impact of user density on system fairness; (b) Impact of user density on system utility; (c) Impact of bandwidth distribution on system
fairness; (d) Impact of bandwidth distribution on system utility.

BS at the center of the network. We use real network data,
in particular the measured CQI, from a tier-1 LTE operator to
simulate user’s PHY rates to the macro LTE BS. In addition
to LTE data, we also use the received SNR collected from
several WiFi BSs across a university campus, in setting up
users’ PHY rates to WiFi BSs. These values are then con-
verted to a PHY data rate (which we assume to be constant
over time) based on the mapping table of the corresponding
technology, and are fed to our simulation. Simulation parame-
ters of theWiFi and the LTE network are set according to [33].
Figs. 4(a) – 4(d) show the impact of the user density (num-
ber of user per BS) and bandwidth distribution (portion of
bandwidth to serve non-local user) on the performance of the
algorithms when using the geographical based model.

1) IMPACT OF USER DENSITY
In this setup, we fix the total number of BS in the network to
5 BSs (composed of 1 LTE BS and 4 WiFi BSs) and enable a
share portion of bandwidth α = 0.3 on each BS. We vary the
user density from 10 to 50. The simulation results are shown
in Figs. 4(a) and 4(b).

These figures show that iterative algorithms are quite
robust to changes in user density in terms of achieving system
fairness, when compared to LHS and HSS. However, the total
utility of the network is reduced for all the algorithms as the
user density is increased. The reason for this behavior is that
rational users running RAT selection algorithms select their
BS in order to maximize their own payoffs, which tend to
reduce the payoffs of other users connected to the same BS.
For example, a user connecting to a BS of low PHY rate could
obtain a high payoff when the number of users on that BS is
small.

2) IMPACT OF BANDWIDTH DISTRIBUTION
In this setup, we fix the total number of BS in the network to
11BSs (composed of 1 LTEBS and 10WiFi BSs) and the user
density to 20 users/BS. We vary the bandwidth distribution α
on each BS from 0.2 to 1. The simulation results are shown
in Figs. 4(c) and 4(d).

These figures show that increasing α improves both utility
and fairness. This can be explained by the fact that increasing
α is equivalent to increasing the BS density. Thus users have
more options to select their preferred BSs that offer the higher
PHY rates, which also results in them obtaining better per-
user throughputs. Therefore, the overall utility and system
fairness improve.

V. CONCLUSION
In this article, we start with a brief review of existing RAT
selection algorithms and evaluation platforms.We then inves-
tigate the impact of different aspects of network models on
the performances of representative algorithms from different
approaches via a unified benchmark. Our aims are to com-
pare the performance of various algorithms under the same
computational environment and to investigate the effect of
various network parameters such as link density, user density
and link bandwidth distribution on their performances. The
unified evaluation benchmark in this article can serve as a
reference for researchers, network developers, or engineers.
Both the benchmark and the codes are publicly available for
reference purposes.

We have studied two particular classes of networks: In the
first case, we model random associations between users and
base stations in a similar way to the popular random Poisson
point process model for the distribution of users in a wireless
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network. In the second case, we use a correlated association
model based on geographical distance that are observed in
real world deployments. Simulation results reveal that among
all the important network parameters that influence the per-
formance of RAT selection algorithms, the number of base
stations that a user can connect to has the most significant
impact. This finding provides some guidelines for the proper
design of RAT selection algorithms for future 5G.
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