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ABSTRACT We propose SoftCorner, which is a novel approach to estimate the worst delay (3σ delay) of a
VLSI system. SoftCorner is a modification of deterministic static timing analysis to overcome its tendency to
give pessimistic estimates of the system delays when it uses 3σ corner delays for logic gates. The basic idea of
SoftCorner is to use corner delays that are relaxed to<3σ . To select the relaxed gate delays, SoftCorner uses
the delay information obtained from the K most-critical paths and then determines the degree of relaxation,
and constructs a model that represents the probability that the delay of each logic gate is selected. This
probability model is used to guide the selection of gate delays; the worst system delay with relaxed delay
criterion can be obtained by running the selection module until the mean of the results converges. SoftCorner
can also estimate the system delay at an arbitrary percentile. In experiments, SoftCorner estimated the system
delay of benchmark circuits at 99.87th, 95th, and 85th percentiles with an average error<2% compared with
theMonte-Carlo (MC) simulation, and produced the estimates 5.89×104 times faster than theMC simulation
on average.

INDEX TERMS Statistical analysis, computer aided analysis, analysis of variance, circuit analysis, Monte-
Carlo methods, deterministic static timing analysis, process variations.

I. INTRODUCTION
As the technology further scales down, fine control in the
fabrication process becomes increasingly difficult, so the rel-
ative importance of process variations (PVs) has continuously
increased [1]. PVs impose uncertainties on device character-
istics that are affected by process parameters. As a result,
timing components such as gate delay and arrival time at the
circuit nodes become random variables. Therefore, designers
seek to obtain limits to the system delay at a given crite-
rion, such as three standard deviations (3σ ) above the mean
(i.e., 99.87 percentile), which is related to the timing yield.

Many methods to estimate system delay at the target per-
centile have been suggested. One approach is to estimate the
form of system delay distribution, then to use a cumulative
density function to determine the system delay at the target
percentile. Another approach is to obtain the system delay
at the target percentile directly, like the deterministic static
timing analysis (DSTA).

Among the methods included in the first approach to esti-
mate the system delay at the target percentile after obtaining
the distribution, Monte-Carlo (MC) is the most fundamental
and accurate. MC simulation generates random samples from
the parameter spaces and uses the samples in transistor-level
timing simulations [2]. After a large number of simulations,
estimated system delay converges closely to the system delay.
MC simulation is the most accurate method because it does
not require any assumptions about the distribution of the tim-
ing components. However, MC simulation is impractically
slow.

For this reason, many analytic model-based methods
have been proposed that do not require numerous simula-
tions [1], [3]–[8]. However, widespread use of these methods
in industry is not practical, for several reasons. First the
quantity of statistical foundry data in standardized format is
insufficient [9]. Moreover, many challenges such as analyses
of the latch-based design and interconnect analysis, which
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TABLE 1. Characteristics of the types of SSTA [19].

have been addressed in early static timing analysis (STA)
algorithms [10], [11], have not been solved [9]. Therefore,
instead of analytic model-based methods, many MC-based
methods have been proposed to reduce the complexity prob-
lem of the traditional MC simulation.

First, the use of various variance reduction sampling (VRS)
methods to increase the convergence rate when obtaining data
moments (e.g., mean and variance) has been considered as
an alternative to MC simulation [12]–[14]. Veetil et al. [13]
proposed stratification+ hybrid quasi MC (SH-QMC) which
uses different VRSs to different parameters considering the
impacts of the parameters on the circuit delay. SH-QMC
greatly reduces the number of data required to estimate
the converged moments of the distributions of the timing
components.

However, there are limitations to obtaining the distribu-
tions of the timing components using SH-QMC. The first
limitation is related to complexity. SH-QMC greatly reduces
complexity compared to MC simulation, but still requires
a lot of simulations to converge compared to DSTA and
analytic model-based methods. This disadvantage is often an
important hurdle to meeting time-to-market constraints.

In addition, SH-QMC has disadvantages related to the
accuracy. Above all, it is quite difficult to calculate the error
bound or the number of samples required to converge [15].
Also, there is the loss of accuracy in estimating the system
delay distribution caused by using the reduced number of
data. If the system delay follows a specific density function,
the parameters of the density function can be obtained using
the rapidly converged moments. However, the distribution
form of the system delay is not known, especially in modern
process technology, although the gate delay distribution is
well known to have a lognormal distribution at low volt-
age [16]. In this case, the system delay distribution can be
estimated using a histogram. However, since the histogram
is essentially a discrete function, the probability density
function (PDF) information is insufficient. This drawback is
exacerbated by a reduction in the number of data because the
histogram is more inaccurate due to the width of the bins that
expands as the number of data decreases [17], [18].

Another MC-based method was proposed in [9].
Merrett and Zwolinski [9] proposed MC static timing
analysis (MCSTA) to overcome the high computational

complexity of MC simulation. MCSTA first characterizes the
cell delays using a number of samples extracted from PVs.
Then, the numerous cell delay data are stored in variance cell
libraries (VCLs).MCSTA selects and allocates one gate delay
from the VCLs to each gate of the circuit. Using the selected
gate delays, the traditional STA is run. This method greatly
improves the efficiency compared to MC simulation, but the
memory size is huge and the search time is long because it
uses very large-sized libraries.

The second approach, which is theway to obtain the system
delay at the target percentiles directly, involves traditional
DSTA. Traditional DSTA estimates the 3σ point of the sys-
tem delay distribution assuming that all gate delays have
three sigma points of the gate delay distributions. However,
as the with-in die (WID) variation increases in modern tech-
nology [20], the traditional DSTA is known to cause the
overly pessimistic results [21]. Therefore, many DSTA-based
methods have been proposed to overcome these pessimistic
results. These methods are more computationally efficient
thanMC-basedmethods and aremore applicable in the indus-
try than the analytic model-based methods.

Deterministic delay models (DDMs)-based STA is a
DSTA-based algorithm [22]. DDM-based STA introduces a
formula for less extreme δ sigma point, δ < 3 compared to the
conventional 3σ corner used in DSTA. However, DDM-based
STA requires some unrealistic assumptions because it uses a
first-order model to derive the equation. For this reason, this
method causes huge error, especially when applied to recent
process technology.

We propose SoftCorner, which is a DSTA-based algorithm
that reduces pessimism by using one of the candidate corner
values for gate delay. SoftCorner has three advantages over
the previous methods: it (1) does not require considerable
simulation time as MC-based methods do; (2) requires a rea-
sonable library size because only candidates for corner values
are stored; and (3) does not require any assumptions about the
distributions of the timing components or the linearity of the
parameters on the timing components.

II. BACKGROUND
Statistical static timing analysis (SSTA) can be classified into
three categories (Table I) according to the stage in the design
flow in which it is used [19].
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Early process-specific SSTA is used when the design is
not specified. Therefore, no circuit information including the
placement and correlation information is provided. There-
fore, early process-specific SSTA is performed on generic
paths. Although it this method has the advantage of allowing
quick optimization of the design, the analysis is the least
accurate.

Early design-specific SSTA is performed after the design is
determined, but other circuit information such as placement
and correlations is not known. Therefore, it can be used in the
pre-placement design phase. This type of SSTA is the most
practical and has moderate accuracy compared to other types
of SSTA. This type of SSTA is most frequently used because
it has the advantage of being enabling quick optimizations
with reasonable accuracy.

Late design-specific SSTA can be performed when the
netlist, placement, and correlation information have all been
determined. This method has the highest accuracy, but does
not allow rapid optimization of the design. Therefore, it can-
not be used in situations where design decisionsmust bemade
early in the design phase [23].

SoftCorner is designed for use in early design-specific
SSTA. SoftCorner can be used for quick optimization dur-
ing early stages of the design flow even if placement and
correlation information are lacking. In the pre-placement
design step, only die-to-die (D2D) variation and uncorrelated
within-die (WID) variation are determined [24]. Because the
information about placement and correlation is not known
at this stage, spatially-correlated WID variation is not con-
sidered. Therefore, SoftCorner requires information on the
netlist, process variations including D2D and uncorrelated
WID components, and the user-defined target yield.

III. PROPOSED METHOD TO REDUCE PESSIMISM
OF TRADITIONAL DSTA
SoftCorner uses one of the candidate corner values stored in
the library. These candidates are less extreme than the corner
values that are used in traditional DSTA algorithm. By using
one of these candidates, SoftCorner can reduce the pessimism
of traditional DSTA method. SoftCorner consists of three
steps (Fig. 1).

In Step 1, the distributions of the gate delay and output
slew of all logic gates are obtained using MC simulation.
Because the distributions are obtained using MC simulation,
SoftCorner does not require any assumptions about the PDFs
of the timing components. From the obtained distributions,
several candidates of corner values are stored in the library.
Each candidate has a probability of being used as a delay
(or output slew) in the STA engine.

In Step 2, the probability model is determined. This prob-
ability model depends on the input netlist and the user-
defined target percentile. Step 2 consists of three processes
after reading the input netlist. During statistical timing anal-
ysis, the maximum path delay among K most-critical path
delays is a random variable KCPmax. Therefore, during
Step 2, the upper and lower bounds of the cumulative density

FIGURE 1. Flowchart of SoftCorner.

function (CDF) of KCPmax are obtained using [25] after
extracting the K most-critical paths [32]. Then the target
delay value is set using the obtained bounds. Finally, a prob-
ability model is adopted, which yields expected delay that is
equal to the target delay; this model represents the probability
that a certain a candidate will be selected as the corner value
during timing analysis.

In Step 3, one candidate is allocated differently for each
logic gate in the input circuit. For the allocation, the prob-
ability model determined in Step 2 is considered. Using the
delay and slew corner values allocated to the logic gates of the
circuit, the system delay at the target percentile is estimated
using an STA engine. The processes of each step will be
detailed in the following sections.

A. GENERATION OF LIBRARIES OF
CANDIDATES FOR CORNERS
The first step of SoftCorner is generation of libraries that
contain the candidate corner values. SoftCorner adopts the
Liberty Variation Format (LVF), which has one delay value
per load-slew combination for the logic gate [26]. Therefore,
the distributions of gate delay and output slew for the ith

output capacitance and the jth input slew are obtained using
MC simulation. The candidate corner values from these dis-
tributions of MC data are stored in the libraries (e.g., Fig. 2).
The traditional library only contains 3σ gate delay value for
the worst case (dNi,j, Fig. 2) and −3σ gate delay for the best
case. In contrast, SoftCorner storesN candidate corner values
in the library.We set d1i,j as the gate delay at the 50

th percentile
(0σ point of the standard normal distribution) and dNi,j as the
gate delay at the 99.87th percentile (3σ point of the standard
normal distribution). These values can be changed according
to the input circuits and information about process variations
(Section III.B). Use of corner values < dNi,j can reduce the
pessimism of using only the dNi,j value as traditional DSTA
does. From d1i,j to d

N
i,j, N candidates are stored in the library
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FIGURE 2. Example of a gate delay distribution at i th output capacitance
and j th input slew.

(Di,j, Fig. 2). Similarly, the set of N candidates for the corner
value of the output slew is represented as OSi,j. For all types
of logic gates, Di,j and OSi,j are stored in the library.
Because the converged MC data are used to obtain the

distributions, SoftCorner does not require any assumptions
about the distributions when it extracts any pth percentile
point (p ≤ 99.87). One of the candidates in the library is
selected and used as the corner value in STA. The candidates
are less than or equal to the traditional worst gate delay (dNi,j).
Therefore, the use of the proposed library can effectively
reduce the pessimism of traditional DSTA.

B. CREATION OF PROBABILITY MODEL
The second step of SoftCorner is to construct a probability
model for all the candidates of each logic gate. Each candidate
d i,jk has a probability P of being selected as the corner value.
For each logic gate, P depends on the number of logic gates
(depth) of the path in which the logic gate is included.

The expected delay of a logic gate decreases as depth of
the path in which the logic gate included increases. This is
because of the cancellation effect caused by the uncorrelated
WID PV components. As the depth of a path increases,
the uncorrelatedWID PV components of the logic gates in the
path are easily canceled out [27], because WID components
of all logic gates in the path rarely increase or decrease
concurrently, especially for deep paths.

To incorporate this cancellation effect, as the depth of a
path increases, SoftCorner increases the Ps of the smaller
candidates to reduce the expected value of the gate delay.
In contrast, if the logic gate is included in a short path,
SoftCorner decreases the Ps of the smaller candidates to
increase the expected value of the gate delay. In other words,
the probability model in SoftCorner follows two conditions:
(1) For logic gates included in a path that has large depth, P

must be increased for small candidates.
(2) For logic gates included in a path that has small depth,

P must be decreased for small candidates.

To reflect the above two conditions, the probability that the
C th candidate of a logic gate in a path with depthD is selected
is represented as P(C, D). The C value of dki,j is set such that
the CDF value at dki,j (Fig. 2) is equal to that at Cσ value
of a standard normal distribution. For example, C = 3 for
dNi,j because the CDF value at dNi,j was set to 99.87% which
is the CDF value of a standard normal distribution at the 3σ
point. Including another variable x which adjusts the expected
gate delay according to C and D, the probability model is
represented as (1). The sum of the probabilities at all Cs is
normalized to 1 by dividing aC(D−x) by

∑
i a
i(D−x) because

one of the N candidates must be selected.

P(C,D, x) =
aC(D−x)∑
i a
i(D−x) (1)

In (1), a is a constant and x is a variable. After a is set, the
value of x is determined by the input circuit and the user-
defined target yield. Even if SoftCorner uses an exponential
function as the probability model, other forms can be used in
a similar manner, if the conditions (1) and (2) are satisfied
and the existence and uniqueness of the solution of the model
are guaranteed (Section IV).

FIGURE 3. Probability model for x = 38 when (a) a = 0.7 and (b) a = 0.9.

a is related to the exponential property of the probability
model. The range of a is 0 < a < 1. The exponential property
of the probability model decreases as a increases (Fig. 3a, b).
Therefore, when only one logic gate is considered, a affects
the variance of the selected corner values of the gate delay.
x is related to the degree of pessimism reduction. If x is

too small, the smallest candidate (0σ ) will be selected for
all logic gates regardless of D (Fig. 4a). If x is too large,
the largest candidate (3σ ) will be selected for all logic gates
regardless of D (Fig. 4b) and, in this case, the results of
SoftCorner are the same as those of traditional DSTA. There-
fore, we can reduce the pessimism by reducing x. To make
SoftCorner also applicable to input circuits for which pes-
simism never or excessively occurs, the range of x is set to
−10 · Dmax < x < 10 · Dmax.
We should determine how much to decrease x (i.e., how

much to reduce the pessimism). In SoftCorner, the pessimism
is reduced until the expected value of KCPmax using the
probability model is equal to the target delay value calculated
using [25]. KCPmax is a random variable in statistical timing
analysis. Depending on process parameter values, the critical
path and its delay value change every run. Therefore,KCPmax
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FIGURE 4. Probability model for a = 0.8 when (a) x = −300, (b) x = 300,
(c) x = 35, and (d) x = 50.

FIGURE 5. Upper and lower bounds of the CDF of KCPmax from [25].

is a random variable that has a certain distribution.
However, the exact form of this distribution is difficult to
obtain accurately even using recent methods in path-based
statistical timing analysis. However, [25] proposed a method
that uses stochastic majorization theory to obtain the upper
and lower bounds (Fig. 5, solid lines) of the CDF ofKCPmax.
In this process, the path delay is assumed to follow a normal
distribution; this assumption is reasonable in most cases,
because according to the central limit theorem, even though
delays of each logic gate delay do not follow the normal
distribution, the path delay distribution, which is the sum
of several non-normal distributions, rapidly converges on a
normal distribution [28]. The path delay distribution is well
approximated as a normal distribution as long as D > 4 [16].
To validate the normality of the path delay distribution,
we used the inverter chain with different depths, and made
quantile-quantile (Q-Q) plot [29] and Shapiro-Wilk (S-W)
test [30] which are frequently used as the normality test
(Fig. 6). For each inverter, 1000 delay values are simulated
using HSPICE. Q-Q plot means that if the quantiles of the
samples (‘+’ sign in Fig. 6) are on the quantiles of the
normal distribution (straight line in Fig. 6), the samples can
be approximated to the normal distribution. Also, the larger

the S-W test value is, the closer to normal distribution the
samples are. Fig. 6 shows that the path delay distribution is
close to normal distribution when the depth is larger than four.

With the reasonable preconditions, the upper dupper and
lower dlower bounds of the CDF of KCPmax can be obtained
(Fig. 5) even though the exact form is unknown. Among
the KCPmax values at an ideally infinite number of process
parameter value sets, the value of KCPmax at the target per-
centile is the minimum of dupper and the maximum of dlower.

SoftCorner first sets the target maximum path delay dtarg.
We will represent the KCPmax value when the gate delays
at the target yield are used as d ′lower . Because d

′
lower can be

considered as the worst case, we shifted dupper and dlower so
that dlower = d ′lower . Then we set

dtarg =
dupper + dlower

2
+ |dlower − d

′

lower |. (2)

In statistical timing analysis, dtarg differs from the actual
target percentile system delay because one path that is not
included in the K most-critical paths can be a system delay.
Therefore, a path that is not included in the K most-critical
paths can be the path with maximum delay. Therefore,
the upper and lower bounds in [25] cannot be solely used to
estimate the system delay at any percentile. SoftCorner uses
the method proposed in [25] only to determine how much to
reduce the pessimism. SoftCorner can consider other paths
that are not included in the K most-critical paths but can be
critical paths.

After setting dtarg, the x value is determined. This means
that the probability model to be used in STA engine is fixed.
x affects the Ps of the candidates and therefore affects the
expected value of the gate delay value. As x increases, the P
of the larger C at any D increases (Figs. 4c, d). For this
reason, the expected path delay increases as x is increased.
The probability model is determined so that the expected
maximum path delay using the model is equal to dtarg.
Firstly, the expected value of KCPmax, max{E[dpath,j(x)]},

is calculated using a certain x. The x value when
max{E[dpath,j(x)]} is equal to dtarg is selected. In this step,
the Newton-Raphson (NR) method is used as follows. The
k th candidate is selected considering the probability model
defined in (1). Therefore, the expected delay of a logic gate
included in the path of depth D is defined as in (3). If the
logic gate is included in more than one path simultaneously,
the minimum depth among the depths of the paths is used,
to avoid optimism.

E[dgate,i(x)] =
∑
k

P(k,Di, x) · dk , (3)

where k ∈ {(n − 1) · {3/(N − 1)}|n ∈ N, 1 ≤ n ≤ N } and
N is the number of candidate corner values. Adding up all
the E[dgate,i(x)] values of all the logic gates in the path, the
expected path delay is calculated as

E[dpath,j(x)] =
∑

i∈gates in jth path

E[dgate,i(x)]. (4)
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FIGURE 6. Q-Q plot and S-W test for the inverter chains when the depth is (a) 1, (b) 4, (c) 16, and (d) 64.

After calculating E[dpath,j(x)] for all K most-critical
paths, the maximum value is obtained, denoted as
max(E[dpath,j(x)]). The x value when max(E[dpath,j(x)]) =
dtarg is used in the probability model (1); i.e., the solution of

g(x) = max(E[dpath,j(x)])− dtarg = 0 (5)

becomes x of the probability model.
The NR method yields the solution of (5). Using the NR

method, x at the (t+1)th step can be calculated using x at the
t th step as

x t+1 = x t −
g(x t )
g′(x t )

. (6)

where g′(x t ) is the derivative of g(x t ) with respect to x, as

g(x t ) = max
(∑

i
E[dgate,i(x t )]

)
− dtarg

g′(x t ) = max
(∑

i
E ′[dgate,i(x t )]

)
(7)

where E[dgate,i(x t )] =
∑N

k=1 P(k,Di, x
t ) · dk ,

E ′[dgate,i(x t )] =
∑N

k=1 P
′(k,Di, x t ) · dk and P′(k,Di, x t ) is

the derivative of P(k,Di, x t ) with respect to x as

P′(C,D, x) =
−r(x) ln a · {p(x)+ q(x)}

t2(x)
. (8)

where r(x) = aC(D−x), t(x) =
∑

i a
i(D−x), p(x) = C · t(x),

and q(x) =
∑

i (−i) · a
i(D−x). The existence and uniqueness

of the solution of (5) will be proven in section IV.
We now show the range in which the result of SoftCorner

is located. Using (1), KCPmax is expected to be equal to dtarg,
because the solution of (5) is chosen as x. Even though Soft-
Corner uses the probability model that makes the expected
KCPmax equal to dtarg to determine the degree by which pes-
simism is reduced, the probability model is applied globally
to all logic gates in the circuit in the next step. Therefore,
the method can consider paths that are not included in the
K most-critical paths but that can be the most critical path.
As a result, SoftCorner usually gives KCPmax which is larger
than dtarg. In addition, because each logic gate has relaxed
candidates less than 3σ point, the result of SoftCorner is
smaller than that of the traditional DSTA. Therefore, Soft-
Corner method is more effective than both traditional DSTA
and [25].

FIGURE 7. A simple example circuit and the allocated gate delay values
(solid arrows) as corner values among the candidate corner values
(dotted arrows).

C. ALLOCATION OF DELAY AND SLEW VALUES
One of the candidates in the library is allocated to each
logic gate in the circuit (Fig. 7). The allocation is performed
considering the probability P(k , D, x) that the k th corner will
be selected (III.B). Various ways to consider the probability
P(k , D, x) may be available in the allocation step. SoftCorner
considers the probability using a seed value that is extracted
from the standard normal distribution.

The process of allocation step is as follows.
(i) We divide the range of a random variable that follows

the standard normal distribution so that each range
corresponds to a specific candidate.

(ii) For a logic gate, a random seed is generated from the
standard normal distribution.

(iii) According to the range to which the random seed
belongs, the corresponding candidate is selected and
used as the corner value for the logic gate.

In step (i), the range is divided so that both probabilities
that the seed is generated and the corresponding candidate is
selected should be same. Therefore, in the first step, a ran-
dom variable that follows the standard normal distribution is
divided into N range (Rk , 1 ≤ k ≤ N ) as

P(1,D, x) = f (R1) = f (d < r1)

P(2,D, x) = f (R2) = f (r1 < d < r2)
...

P(N ,D, x) = f (RN ) = f (rN−1 < d), (9)
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so that the CDF of the k th section, f (Rk ), is equal to P(k,D, x)
in (1), where f (x) is PDF of the standard normal distribu-
tion. Because the P(k, D, x) is determined in the previous
section III.B, rk (1 ≤ k ≤ N − 1) can be set satisfying (9).

FIGURE 8. (a) The probability of candidates of a logic gate and (b) the
standard normal distribution from which a random seed comes and the
corresponding candidate of each range.

In Fig. 8, we provide an example for N = 6 case; one
range corresponds to one candidate. In this example, if the
generated random seed d is in r1 < d < r2 , the second
candidate is selected because the probability is the same with
the probability of the second candidate, P(2,D, k3).
In this manner, the allocationmodule can simply follow the

probability model determined in III.B. Using the allocated
candidate values, the STA engine is run, and produces the
system delay at the target yield.

IV. EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF PROBABILITY MODEL
A. EXISTENCE
The existence of the solution of (5) can be proved as fol-
lows. E[dpath,j(x)] is an increasing function of x. Therefore,
a solution of (5) exists when the sign of g(x) changes from
negative to positive as x increases (Fig. 9a). To verify that (5)
satisfies the condition, we should examine the ranges of dtarg
and max(E[dpath,j]) terms in (5).

FIGURE 9. (a) The graph of g(x) and (b) the conditions of the terms
in g(x), when the solution of (5) exists.

First, dtarg is determined as the maximum value among
γ ·σi+µi values of K most-critical paths where µi and σi are
the mean and standard deviation of the ith critical path delay
[25]. γ depends onK and the correlations among theK most-
critical paths. From our experiments based on [25], γ ranged
from 2.95 to 4.5, when 10≤ K ≤ 300. In Fig. 9(b), the range
of γ and the corresponding range of dtarg are described.

Next, max(E[dpath,j(x)]) increases as x increases (Fig. 4).
When the minimum value of x = −10dmax is used, the result
is the same as KCPmax when the minimum candidate in the
library is used for all logic gates (Fig. 4a). Similarly, when the
maximum value of x = 10dmax is used, max(E[dpath,j(x)]) =
KCPmax when the maximum candidate is used for all logic
gates (Fig. 4b). The solution of (5) exists when dtarg is
between the max(E[dpath,j(x)]) value at the minimum x and
the max(E[dpath,j(x)]) value at the maximum x; i.e., for a
solution to exist, the minimum value of dtarg must be larger
than the minimum value of max(E[dpath,j]) and the maximum
value of dtarg must be smaller than the maximum value of
max(E[dpath,j(x)]) (Fig. 9b). Therefore, if the circuit satisfies
both of the following conditions, a solution to (5) exists.

(3) max(E[dpath,j(x)])min < dtarg,min, where max
(E[dpath,j(x)])min = KCPmax when the smallest candi-
date (d1i,j) is used for all logic gates and dtarg,min = dtarg
when the minimum γ value is used.

(4) max(E[dpath,j(x)])max > dtarg,max , where max
(E[dpath,j(x)])max = KCPmax when the largest candidate
(dNi,j) is used for all logic gates and dtarg,max = dtarg
when the maximum γ value is used.

Based on Conditions (3) and (4), the existence of the
solution of (5) can be simply tested before determining the
probability model. Also, the existence of the solution can be
easily satisfied by changing the range of the candidates in the
library. If the pessimism of the circuit is too severe to satisfy
Condition (3), the value d1i,j of the first candidate should be
decreased. In the same manner, in rare cases, the value of
dNi,j should be increased if Condition (4) is not satisfied due
to weak pessimism. The above two modifications to satisfy
the existence conditions can be performed without too much
extra burden of runtime.

B. UNIQUENESS
To demonstrate the uniqueness of the solution of the proba-
bility model, we should prove that (5) is a strictly monotonic
increasing function. That is, we should prove that g′(x) > 0
for all x. If (3) is a strictlymonotonic increasing function, then
(5) is also a strictlymonotonic increasing function. Therefore,
we will show the uniqueness of the solution by verifying
that (3) is a strictly monotonic increasing function. Firstly,
the derivative of (3) is

dE[dgate,i(x)]
dx

=

∑
k

− ln(a)
∑
i
(k − i)a(k+i)(D−x)(∑
i a
i(D−x)

)2 dk

=
− ln(a)(∑
i a
i(D−x)

)2 ∑k

∑
i
(k − i)a(k+i)(D−x)dk (10)

where k, i ∈ {(n− 1) · {3/(N − 1)}|n ∈ N, 1 ≤ n ≤ N }. Then
to prove that E[dgate,i(x)] is a strictly monotonic increasing
function, we should show that dE[dgate,i(x)]/dx > 0 for all x.
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In (10), − ln(a)/
(∑

i a
i(D−x)

)2
> 0 is always true because

0 < a < 1. Therefore, (11) should be proven to show that (5)
is a strictly monotonic increasing function.∑

k

∑
i
(k − i)a(k+i)(D−x)dk > 0 (11)

The sign of each term, (k − i)a(k+i)(D−x)dk , in (11) can be
positive or negative depending on the relative size of k and i
because a(k+i)(D−x)dk is always positive.

Now, we will prove (11) by showing that the sum of two
terms of (11) when (k , i) = (m, n) and (k , i) = (n,m) wherem
and n are different arbitrary elements from the set fromwhich
k and i are originated is always larger than or equal to zero as
in (12).

(m− n)a(m+n)(D−x)dm + (n− m)a(n+m)(D−x)dn > 0 (12)

Because (11) is the summation of (k − i)a(k+i)(D−x)dk for all
combinations of k and i which are from the same set, proving
(12) for all arbitrary m and n from the set can be the direct
proof of (11).

First, we assume that m > n, but the proof using the
opposite assumption is also possible in the same manner.
Becausem > n, the first and second terms of the left hand side
of (12) are positive and negative, respectively. Meanwhile,
dm > dn if m > n because we stored the candidates in
the library that way as described in Section III.A. Therefore,
the absolute value of the first term is always larger than that
of the second term as in (13). Therefore, (12) is always true
because the absolute value of the positive term is always
larger than that of the negative term.∣∣∣(m−n)a(m+n)(D−x)dm∣∣∣> ∣∣∣(m−n)a(m+n)(D−x)dn∣∣∣ (∵ dm>dn)

→

∣∣∣(m−n)a(m+n)(D−x)dm∣∣∣> ∣∣∣(n−m)a(m+n)(D−x)dn∣∣∣ (13)

Because (12) is proved as described above, (11) is also
always true. Now, we prove that dE[dgate,i(x)]/dx in (10) is
always positive. Therefore, (5) has a unique solution.

V. APPLICATION OF PROPOSED METHOD
IN DESIGN FLOW
SoftCorner can be used in the flow of early design-specific
SSTA. SoftCorner belongs to the early design-specific SSTA
methods in pre-layout verification (Fig. 10). The proposed
module has the netlist, the information of PV, and the target
yield as inputs. In addition, a timing constraint dconst is given.
Running the proposed module yields the system delay dsys at
the target percentile. The meaning of dsys is that the system
delay must be dsys to achieve the target yield. Therefore,
the design is passed if dconst ≥ dsys. Otherwise, the yield
at the timing constraint is lower than the target yield. For
that case, the design should be modified to achieve the target
yield.

A user can use SoftCorner to determine the yield of the
design at the pre-defined dconst . First, the user enters the
expected yield as the user-defined target yield input. If dsys =
dconst , the expected yield is the yield at dconst . If dsys < dconst ,

FIGURE 10. Application of SoftCorner in the design flow.

the yield at dconst is larger than the expected yield. In this case,
the yield at dconst can be obtained by re-running SoftCorner
with the increased expected yield until the condition dsys =
dconst is satisfied. Otherwise, if dsys > dconst , the yield at
dconst is smaller than the expected yield. Therefore, the yield
at dconst can be obtained by re-running SoftCorner with the
decreased expected yield until the condition dsys = dconst is
satisfied.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT
In this section, SoftCorner was compared with the vari-
ous benchmark methods. Two MC-based methods and two
DSTA-based methods were used as the benchmark methods.
SH-QMC [13] and MCSTA [9] were used as MC-based
benchmark methods. These methods first estimate the distri-
bution of the system delay and obtain the system delay at the
target percentiles. Therefore, we ran these methods including
MC simulation until from the first to the third moments
of the distribution converge. Traditional DSTA and DDM-
based STA [22] were used as the DSTA-based benchmark
methods. Also, SoftCorner directly estimates the values at
the target percentiles, so we ran it until the mean values of
the simulation results converged. We compared the errors
and runtime that occur when estimating the system delays
at the several target percentiles. The errors were evaluated
by comparing the results with the converged MC simulation
results.

In experiments, 7-nm predictive technology model-multi
gate (PTM-MG) [31] was used as the transistor model. The
variations of the gate length, oxide thickness, fin thickness,
and fin height were considered. For D2D variations, the 3σ
values of the process parameter distributions were set to
18% of their mean values. For random WID variations, the
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FIGURE 11. Upper and lower bounds of KCPmax at the (a) 99.87th and
(b) 90th percentiles which are lower than the real percentile point of
system delay (MC simulation results).

3σ values were set to 6% of their mean values. For tra-
ditional DSTA, the 3σ point of the gate delay distribution
was used as the gate delay value to estimate the 3σ point
of the system delay distribution. In SH-QMC, the param-
eter s was set to 2.5; this is the standard for selecting the
critical parameters. Among the four process parameters, two
were assumed to be critical, one was assumed to be moder-
ately critical, and one was assumed to be non-critical. For
MCSTA, 10,000 instances for each logic gate were included
in VCL. For SoftCorner, a of the probability model was set
to 0.7 and can be changed as long as the existence of the
solution is guaranteed. Also, with reference to [25], 300 paths
were extracted to obtain the bounds of KCPmax. The exper-
iments were performed on ten ISCAS 85 and three ISCAS
89 benchmark circuits. We implemented SoftCorner and the
benchmark methods in C++ language on Intel(R) Xeon (R)
E5-2690 @ 2.90 GHz.

B. ACCURACY COMPARISON
SoftCorner uses the upper and lower bounds of KCPmax
in Step 2 to determine the probability model. MC simula-
tion results were generally larger than the upper and lower

FIGURE 12. (a) Estimated path delay at the 99.87th percentile with
different depths using DSTA and the proposed method, and (b) their
percentage error compared to MC simulation. The proposed method uses
different K most-critical paths to compare the errors according to
K values.

bounds (dupper and dlower in Section III.B) obtained from [25]
(Figs. 11a, b). This difference is due to paths that are not
included in the K most-critical paths but can have maximum
path delay in some PV samples. SoftCorner successfully
considered those paths because it just uses the bounds to
determine the degree of pessimism reductions, then applies
that probability model to the whole circuit.

The variable of the probability model is determined by K
most-critical paths of the input circuit. Therefore, if the prob-
ability model is applied to the whole circuit, it can result in
the error in estimating the path delay especially for the paths
which are not included in the K most-critical paths. However,
applying the probability model, which is determined based
on the K most-critical paths, to the whole circuit does not
affect critical error in estimating the system delay. To val-
idate that, we estimated the path delay at 99.87 percentile
using DSTA and the proposed method compared to MC
simulation (Fig. 12). We first made a circuit which consists
of several inverter chain with different depth from 1 to 64.
Then, we found the probability model following SoftCorner
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TABLE 2. Comparison of accuracy of estimating the system delay at the 99.87th percentile.

algorithm using different K values. The probability model
was applied to every logic gate, and the every path delay was
estimated at the 99.87th percentile (Fig. 12a). Compared to
MC simulation results, we have plotted the path delay error
in Fig. 12b. The error of estimated path delay decreases as K
value increases. However, the proposed method shows much
smaller error compared to DSTA for all path depths and for
all K values. Even though the error is large especially for the
short path, the error of long path delay is much important
to estimate the system delay compared to that of short path
because long path delays are more likely to be the system
delay.

The data on y-axis corresponding to ‘‘MC’’ and
‘‘Proposed’’ legend of Fig. 11 are listed on the ‘‘MC’’ and
‘‘Proposed’’ columns of Table II, respectively, to validate
the accuracy of the proposed method compared with other
methods. Estimated system delays at the 99.87th percentile
were compared for the proposed method and the benchmark
methods (‘Delay’ column in Table II). Also, the percentage
errors of the estimated system delays compared to MC simu-
lation are shown (‘Error’ column in Table II). Mean absolute
percentage errors are shown in the last row of Table II.
Among the MC-based algorithms, SH-QMC estimated the
target system delay most accurately (1.30% mean absolute
percentage error). MCSTA selects random delay values from
VCLs in gate level. Therefore, the probability that all the
logic gates simultaneously selects the extreme values of the
logic gate delay distribution among 10,000 instances in VCL
is very low. Therefore, estimated system delay was ∼6.6%
lower than MC simulation results. Among the DSTA-based
algorithms, SoftCorner showed the most accurate results
(2.04% average error). DSTA showed overly pessimistic
results as expected because it assumes that all logic gates have

TABLE 3. Comparison of accuracy of estimating the system delay at the
95th and 85th percentiles.

3σ values of gate delay distributions. DDM-based STA uses
δ < 3 to use δσ points of gate delay when estimating the 3σ
value of system delay distribution. However, this method has
limitations in accuracy especially when the recent technology
is used because the method is based on the first-order model
and uses several unrealistic assumptions. The accuracy of
SoftCorner was comparable with that of SH-QMC which
is the most accurate MC-based method. SoftCorner can
estimate other percentile points with high accuracy. When
the target percentiles were 90th and 85th, SoftCorner esti-
mated the system delays percentiles with 1.31% and 1.49%
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FIGURE 13. Accuracy and variance of SoftCorner (Dotted line: system delay at target percentiles, black bar: histogram of the results of SoftCorner, white
bar: histogram of the system delay distribution). Circuit: c1908 / target percentiles: (a) 99.87%, (b) 95%, and (c) 85%.

FIGURE 14. Runtime comparison.

mean absolute percentage errors compared to MC simulation
results (Table III).

SoftCorner has variations on estimation results. The rea-
son that the variation occurs is that SoftCorner determines
the probability model, and a certain selected corner value
changes at every run. However, because the expected value of
the maximum among the K most-critical paths is set as dtarg,
the variation is not large and not critical. The histogram of the
results of SoftCorner and MC simulation to present the mean
and standard deviation of the results of SoftCorner overlap
(Fig. 13). When the c1908 circuit was used and the target
percentile was 99.87, the mean of the results of SoftCorner
was 37.27 ps with 0.41% error compared to the MC simula-
tion results (Fig. 13, dotted line). The standard deviation (s.d.)
of the results of SoftCorner was 0.12 ps which is the much
smaller value than its mean value. Similarly, when the target
percentiles were 95 and 85, the mean values of the results
of SoftCorner were 35.42 ps (s.d. = 0.08 ps) and 34.95 ps
(s.d. = 0.13 ps), respectively. The mean and standard devia-
tion of theMC results were 34.41 ps and 0.84 ps, respectively.
Therefore, the proposed method converges much faster than
MC simulation because of the smaller standard deviation
of the results from SoftCorner. In other words, SoftCorner
provides the estimation results at the target percentile much
faster than MC simulation.

C. RUNTIME COMPARISON
All methods reduced runtimes compared to that of MC
(Fig. 14). Firstly, MCSTA reduced the runtime to 1.37×10−2

times that of MC simulation on average; this reduction occurs
because MCSTA replaces the HSPICE timing model with the
VCL. It was efficient to reduce the runtime for one simulation
at the expense of accuracy. DDM-based STA greatly reduced
the runtime to 3.67× 10−10 times, compared to MC simula-
tion, but DDM-based STA uses impractical assumptions, so it
is not applicable especially in modern technology. SH-QMC
greatly reduced the number of simulations, but it still required
much longer runtime compared to other benchmark methods;
the reason is that SH-QMC is an MC-based algorithm and
does not reduce the runtime for one simulation. SoftCorner
reduced runtime to 5.90 × 10−4 times that of SH-QMC and
to 1.89× 10−5 times that of MC simulation.

VII. CONCLUSION
This paper has presented SoftCorner, which is a novel
DSTA-based statistical timing analysis method that uses less-
extreme corner values than existing methods. SoftCorner can
be used for the users who want to estimate the system delay
at an arbitrary target percentile. SoftCorner first uses MC
simulation data to develop libraries that contain the candidate
corner values. Therefore, SoftCorner does not require any
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assumptions about the distribution forms of the timing com-
ponents. Depending on the input circuit and the target yield,
SoftCorner constructs the probability model and uses it to
guide allocation of different corner values for different logic
gates. Experiments verified the effectiveness of SoftCorner
by comparing the accuracy and the runtime of SoftCorner
with other benchmarkmethods. SoftCorner estimated the sys-
tem delays at 99.87th, 95th, and 85th percentiles with average
errors of 2.04%, 1.31%, and 1.49% respectively with respect
to MC simulation results. This was comparable to the most
accurate MC-based benchmark method, SH-QMC. However,
because SH-QMC is an MC-based method, it required much
longer runtime than SoftCorner. SoftCorner consumed only
5.90× 10−4 times as much runtime as SH-QMC.
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