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ABSTRACT The hesitant multiplicative preference relation (HMPR) was initially put forward in 2013.
Utilizing the HMPR, the decision makers can give some possible preference values from the Saaty’s
1-9 scale for pairwise comparisons over alternatives. However, until now, there is little research on the
consistency and consensus of HMPRs. In this paper, we focus on exploiting the regression method and
the feedback mechanism to improve the consistency and consensus for HMPRs and developing an efficient
group decision-making model with HMPRs. First, a regression method based on complete consistency is
developed to reduce HMPRs to multiplicative preference relations (MPRs). After that, a novel consistency
checking and revising method based on the threshold estimation method and the feedback mechanism is
given to improve the consistency level of the reduced MPRs. Then, a group consensus index is put forward
to calculate the deviation degree between the reduced MPR and the group MPR and it is utilized to develop
a consensus reaching process based on the feedback mechanism to improve the group consensus level of the
reduced MPRs. Next, a complete group decision-making model with HMPRs is developed to rank all the
alternatives and select the best one. Finally, a numerical example with respect to the investment of shared
bikes is presented to demonstrate the proposed group decision-making model and then we also compare our
proposed model with the existing one.

INDEX TERMS Hesitant fuzzy set, consistency, consensus, hesitant multiplicative preference relation.

I. INTRODUCTION
Decision making refers to a process in which the individual
decision makers (DMs) try to choose the best one from a set
of alternatives or rank all of them [1]. However, because of
the time pressure or the lack of knowledge, the individual
decision makers may not be able to provide the reason-
able decision-making results. In this case, it needs a group
of decision makers to be involved in this process, which is
called the group decision making [2]. Preference relations
in the form of pairwise comparison matrices are important
and efficient tools, which are commonly used by DMs to
give their preference information for pairwise comparisons

over alternatives [3]. Each element in a preference relation
matrix represents a DM’s preference information over two
alternatives. Because there are different types of evaluation
scales that are utilized by the DMs, the preference relations
can be mainly categorized into three types: multiplicative
preference relation [4], fuzzy preference relation (FPR) [5],
and linguistic preference relation (LPR) [6].

Based on the non-uniformly distributed 1-9 scale, Saaty
first put forward the analytic hierarchy process (AHP) [7],
which has become an important decision-making method
and has been broadly used in many fields such as military,
medical treatment, environment, and economy. In the AHP,
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the DMs make the pairwise comparisons between any two
alternatives and then select the preference values from the
non-uniformly distributed 1-9 scale to give the preference
information. All the preference information over any two
alternatives form a pairwise comparison matrix, which is
also called the multiplicative preference relation (MPR) [8].
Considering the fact that the DMs are usually uncertain when
offering the preference information, Saaty and Vargas [9] also
developed the concept of interval multiplicative preference
relation to rank the alternatives .

The concept of MPR has been paid much attention by
researchers [10]–[14]. For example, Chiclana et al. [10]
devised some induced ordered weighted geometric operators,
which are applied to aggregate MPRs. Zhang [11] introduced
a method to estimate the unknown preference values in an
incomplete MPR. Each element in the MPR only owns a
membership degree expressing the preference intensity of
an alternative over another one and cannot model the non-
membership function. To extend the modeling capability of
MPR, Xia et al. [12] gave the definition of intuitionistic
MPR based on the concept of intuitionistic multiplicative
sets (IMS) and devised some operational laws. Considering
the hesitancy information, Xia et al. combined the concept
of hesitant fuzzy sets [13] with the Saaty’s 1-9 scale and
developed the concept of hesitant multiplicative preference
relation (HMPR) [14].

Consistency and consensus have great influence upon the
decision-making results of group decision-making problems
with various preference relations, such as MPRs, FPRs, and
LPRs. The consistency refers to whether there are conflicts
among the preferences in the preference relations given by
the individual DMs. The consensus refers to the degree of
agreement among the preference relations given by a group of
DMs. The preference relations with low consistency or con-
sensus will incur unreasonable decision-making results [15].
Because of the complexity of decision-making issues, time
pressure, and lack of knowledge, DMs usually cannot pro-
vide the consistent preference relations. At the same time,
DMs usually show diverse opinions, so the preference rela-
tions provided by them also cannot achieve acceptable group
consensus level.

As for the consistency of various preference relations,
three methods have been proposed to measure the degree of
deviation between preference relations and their consistent
preference relations. They are the consistency ratio offered
by Saaty [7] based on eigenvector method, the geometric
consistency index (GCI) based on a row geometric mean
prioritization method [16], and the consistency index based
on the distance measure [17]. To improve the unacceptable
consistency level of various preference relations, a number
of studies have been presented, which are mainly divided
into two branches: programming models [18] and iterative
models [19]. For example, Tang and Meng [20] put forward
a linear goal programming model to achieve the triangular
fuzzy MPRs with the acceptable consistency level from the
inconsistent ones. He and Xu [21] introduced two automatic

iterative algorithms to modify the unacceptably consistent
LPRs until there are acceptable.

There also are many studies focusing on the consensus of
various preference relations [22]–[26]. Existing studies use
the distance or similarity between the individual preference
relations and the group preference relation to measure the
consensus for various preference relations. As a supplement,
González-Arteaga et al. [22] used the Pearson correlation
coefficient to develop a different definition of consensus for
reciprocal preference relations. Based on the definition of
consensus, many dynamic and iterative consensus reaching
models have been devised to adjust the preference relations
until they own the acceptable consensus level. The models
are mainly divided into two types: automatic model [23]
and feedback-based model [24]. Some studies developed a
new concept called the consistency/consensus level, which
considers the consistency level and consensus level at the
same time and then developed the group decision-making
models based on the consistency/consensus level to adjust the
consistency and consensus simultaneously [25], [26].

However, the existing studies are dedicated to improv-
ing the consistency and consensus for MPRs, FPRs, and
LPRs. They cannot be used to solve the group deci-
sion making problems with HMPRs. To fill the gap,
Zhang andWu [27] first normalized HMPRs by extending the
shorter elements and then developed two automatic iterative
algorithms to improve the consistency and consensus for
HMPRs. To the best of our knowledge, it is the only work
concerning the consistency and consensus of HMPRs. This
work shows some drawbacks:

(1) Normalizing the HMPRs leads to the high amounts of
computations;

(2) Two automatic iterative algorithms presented in [27]
without the involvement of the DMs result in the deviation of
HMPR from the DMs’ original opinions;

(3) The threshold of the acceptable consistency level is
usually determined by the experiences of the DMs and there
is no any theoretical basis to support the given threshold.

Thus, as a supplement, we intend to improve the existing
work from another point of view.

In this paper, we focus on the studies of the consistency and
consensus of HMPRs by reducing HMPRs into MPRs. Our
contributions are shown as follows:

(1) To reduce the computations, the concept of complete
consistency and the error analysis method is introduced to put
forward a regressionmethod to reduce the HMPRs intoMPRs
before improving their consistency and consensus.

(2) A threshold estimation method is developed to obtain
the threshold of the acceptable consistency level exploiting
the probability theory. At the same time, a novel iterative
consistency checking and revising method considering the
feedback mechanism is devised to adjust the reduced MPR
until its consistency level satisfies the threshold.

(3) An iterative consensus reaching process based on the
feedback mechanism is proposed to improve the consensus
level of the reduced MPRs. It returns the suggestions on the
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modification of the inconsistent reduced MPRs to the DMs
and uses the feedback mechanism to exploit the feedback
information from DMs to modify the inconsistent reduced
MPRs.

(4) A complete group decision-making model with the
HMPRs is devised by combining the iterative consistency
checking and revising method with the iterative consensus
reaching process. Then it is applied into the investment of
shared bikes and compared with the existing one to verify its
effectiveness.

The rest of this paper is organized as follows:
Section 2 gives brief introductions to the MPR, HMSs and
HMPRs. Section 3 describes a regression method to reduce
HMPRs into MPRs. Section 4 designs a consistency check-
ing and revising method based on the feedback mechanism
to get the acceptably consistent MPRs from inconsistent
MPRs. In Section 5, an iterative consensus reaching process
based on the feedback mechanism is proposed to adjust the
group consensus level between theMPRs and the groupMPR.
A complete group decision-making model with HMPRs is
put forward in Section 6. An illustrative example concerning
the investment of shared bikes is demonstrated and then our
proposed model is compared with the existing one [27] in
Section 7. Finally, some conclusions are drawn in Section 8.

II. PRELIMINARIES
Definition 1 [7], [14]: Given a fixed finite set X , then a
multiplicative preference relation (MPR) on X is defined as
a reciprocal matrix R =

(
rij
)
n×n ⊂ X × X satisfying the

following condition:

rij · rji = 1, rii = 1, rij ∈ [1/9, 9] , ∀i, j = 1, 2, . . . , n

(2.1)

The value of rij represents the intensity of the alternative xi
over the alternative xj. rij = 1means the indifference between
xi and xj. If rij > 1, then it means that xi is superior to xj.
If rij < 1, then it indicates that xi is inferior to xj.
Definition 2 [7], [14]: Given a MPR R =

(
rij
)
n×n, if it

satisfies the following multiplicative transitivity:

rij = rik · rkj, ∀i, k, j ∈ {1, 2, . . . , n} (2.2)

Then the MPR R is referred to as a complete consistent
multiplicative preference relation.

Motivated by the concept of hesitant fuzzy sets and the
Saaty’s 1-9 scale, Xia et al. devised the concept of hesitant
multiplicative sets (HMS) as follows [14]:
Definition 3 [14]: Let X be a fixed set, then a HMS on X

is defined mathematically as:

H = {〈x, h (x)〉 |x ∈ X} (2.3)

where h (x) = {ζ |ζ ∈ h (x)} is a set of several possible values
from the Saaty’s 1-9 scale and it represents all the possible
membership degrees of the element x ∈ X to the set H .

For convenience, h = h (x) is often called as a hesitant
multiplicative element (HME). Then H is the set of all the
HMEs.

Zhang and Wu [27] defined two operations for HMEs as
follows:
Definition 4 [27], [28]: Let us assume that there exist two

HMEs expressed as, h1 =
{
ζ s1 |s = 1, 2, . . . , #h1

}
and h2 ={

ζ s2 |s = 1, 2, . . . , #h2
}
with their lengths #h1 = #h2, then

h1 ⊗ h2 =
⋃

ζ
δ(s)
1 ∈h1, ζ

δ(s)
2 ∈h2

{
ζ
δ(s)
1 × ζ

δ(s)
2

}
, where ζ δ(s)1 and

ζ
δ(s)
2 are the sth least elements in h1 and h2.

Another operation is defined as hλ =
⋃

ζ δ(s)∈h

{(
ζ δ(s)

)λ}
,

where λ > 0.
Definition 5 [27], [28]: Assume that there is a fixed set

X = {x1, x2, . . . , xn}, then a HMPR is defined as a matrix
H =

(
hij
)
n×n, where hij =

{
hsij|s = 1, 2, . . . , #hij

}
is a HME

and it means all the possible preference values of xi over xj.
For i, j = 1, 2, . . . , n, hij satisfies that h

δ(s)
ij × h

δ(s)
ji = 1, hii =

1, #hij = #hji and h
δ(s)
ij < hδ(s+1)ij , hδ(s+1)ji < hδ(s)ji , where hδ(s)ij

and hδ(s)ji are the sth least values in the HMEs hij and hji.

III. REGRESSION METHOD BASED ON COMPLETE
CONSISTENCY FOR HMPRs
Motivated by the error analysis method to compute the con-
sistency levels of FPRs [29], a regression method with the
completely consistency is developed to reduce HMPRs into
MPRs in this section.

Suppose that there is a HMPR H =
(
hij
)
n×n ⊂ X × X ,

where X = {x1, x2, . . . , xn} describes a set of alternatives.
According to Definition 2, the possible preference values of
the alternative xi over the alternative xj denoted as a HME
hij (i 6= j) can be estimated through an intermediate alterna-
tive xm (m 6= i, j):

hmij = him×̃hmj (3.1)

where hmij is an estimated HME. The operations ×̃ and ÷̃ are
defined as follows:
Definition 6: Suppose that there are three HMEs h, h1, and

h2, and a real number a ∈
[
1/
9, 9

]
, then it is defined as

h1×̃h2 =
⋃

r1∈h1,r2∈h2
{r1 × r2} and h÷̃a =

⋃
r∈h

{
log9

r
a

}
.

Before using Eq. (3.1) to estimate hmij , all the alternatives
xi (i = 1, 2, . . . , n) should be divided into sets, which are
defined as

(1) A = {(i, j) |i, j ∈ {1, 2, . . . , n} ∧ (i 6= j)};
(2) PA = {(i, j) ∈ A};
(3) CA

=
(
PA
)c
;

(4) Mm
ij =

{
m 6= i, j| (i,m) , (m, j) ∈ CA},

where A is a set containing all of the paired alternatives;
PA denotes a subset of A; CA represents the complement
set of PA; Mm

ij is a set composed of all the intermediate
alternatives xm (m 6= i, j).

According to Eq. (3.1), all the estimated HMEs hmij can
be computed. To choose the optimal value from the HME
hij, a geometric estimated preference value is calculated as
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Algorithm 1 Regression Algorithm
Step 1. Choose a HME hij(i 6= j), get the set Mm

ij , and

compute hmij
(
m ∈ Mm

ij

)
using Eq. (3.1).

Step 2. Caulcuate the geometric estimated preference
value hGij using Eq. (3.2), and then get h∗ij using Eqs. (3.3)
and (3.4).
Step 3. Repeat Steps 1 and 2 until the optimal value of

each HME in H has been got, turn to Step 4.
Step 4. Use all the obtained optimal values h∗ij to form

the reduced MPR H∗ =
(
h∗ij
)
n×n

.
Step 5. End.

follows:

hGij =
∑

m∈Mmij

(#hmij )

√√√√√ #hmij∏
m 6=i,m 6=j

hmij (3.2)

where #hmij describes the total number of all the possible
preference values in each hmij .

Based on the degree of deviation between each possible
value in the HME hij and its corresponding geometric esti-
mated preference value hGij , the error between them can be
defined as follows:
Definition 7: Given any HME hij and its geometric esti-

mated preference value hGij , the error between them is mathe-
matically computed as:

εhij =
1
2

 ⋃
εij∈

(
hij÷̃hGij

) |εij|
 = 1

2

 ⋃
εij∈log9

(
hij/hGij

) |εij|

(3.3)

where εhij denotes the error, which is a set consists of several
values. Obviously, each value in the error is in the interval
[0, 1].

If there is a preference value h∗ij ∈ hij that satisfies the
following condition:

1
2

∣∣∣∣∣log9 h
∗
ij

hGij

∣∣∣∣∣ = min(εhij) (3.4)

Then it is referred to as the optimal value. Following this
principle and obtaining h∗ij for all i, j = 1, 2, . . . , n; i 6= j,

the HMPRH can be reduced into a MPRH∗ =
(
h∗ij
)
n×n

that
is known as a reduced MPR.

Based on the completely consistency and above analysis,
an algorithm that reduces a HMPR H into a MPR H∗ is
described in Algorithm 1.
Example 8: Let a HMPR be

H =


{1} {3, 5}

{
1/
7
}

{5, 7}{
1/3, 1

/
5
}

{1}
{
1/
7,
1/
9
}

{5}

{7} {7, 9} {1} {1/3}{
1/5, 1

/
7
}
{1/5} {3} {1}



Step 1: Choose the first HME h12, and utilize Eq. (3.1) to
compute all the estimated HMEs hmij as:

h312 = h13×̃h32 =
{
1, 9
/
7
}
, h412 = h14×̃h42 =

{
1, 7
/
5
}

Step 2: Use Eq. (3.2) to obtain the geometric estimated

preference value as hG12 =
4
√
1× 1× 9

7 ×
7
5 = 1.1583.

Use Eqs. (3.3) and (3.4) to obtain the optimal value h∗12
from the HME h12 as follows:

εh12 = {0.2166, 0.3328}

Thus, min(εh12) = 0.2166 and then h∗12 = 3.
Step 3: Repeat Steps 1 and 2, and obtain h∗13 = 1/7,

h∗14 = 5, h∗23 =
1/
7, h

∗

24 = 5, h∗34 = 1/3.
Step 4: Based on all the collected h∗ij and Definition 1,

the reduced MPR can be obtained as follows:

H∗ =


{1} {3}

{
1/
7
}

{5}

{1/3} {1}
{
1/
7
}

{5}

{7} {7} {1} {1/3}
{1/5} {1/5} {3} {1}

 .
Step 5: End.

IV. CONSISTENCY CHECKING AND REVISING METHOD
A. CONSISTENCY INDEX
Based on Definition 2 and Eq. (3.1), the definition of an
estimated geometricmatrix for a reducedMPR could be given
as follows:
Definition 9: Given a reduced MPR R =

(
rij
)
n×n, then its

estimated geometric matrix (EGM) that is expressed by E =(
eij
)
n×n with its element eij satisfying

eij =
(

n
⊗

m=1,m 6=i,j
rmij

) 1
2(n−2)

(4.1)

where n ≥ 3.
Theorem 10: Given a reduced MPR R =

(
rij
)
n×n, then its

EGM E =
(
eij
)
n×n is also a MPR.

Proof: It can be proven from two aspects:
(1) It should be proven that eij × eji = 1 and eii = 1 for
∀i, j ∈ {1, 2, . . . n}.

eij × eji =
(

n
⊗

m=1,m 6=i,j
rmij

) 1
2(n−2)

×

(
n
⊗

m=1,m 6=i,j
rmji

) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,j

(
rmij × r

m
ji

)) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,j
(1)
) 1

2(n−2)

= 1

If i = j, then eii =
(

n
⊗

m=1,m 6=i
rmii

) 1
2(n−2)

= 1. It completes

the proof.
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(2) It should be proven that eij ∈ [1/9, 9] for all the i, j ∈
{1, 2, . . . n}.

eij =
(

n
⊗

m=1,m 6=i,j
rmij

) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,j

(
rim × rmj

)) 1
2(n−2)

=

(ri1 × r1j) 12 ⊗ (ri2 × r2j) 12 ⊗ · · · ⊗ (rin × rnj) 12︸ ︷︷ ︸
(n−2)


1

n−2

Since rim, rmj ∈ [1/9, 9], then
(
rim × rmj

) 1
2 ∈ [1/9, 9].

Thus eij =
(

n
⊗

m=1,m 6=i,j
rmij

) 1
2(n−2)

∈ [1/9, 9], which completes

the proof.
Theorem 11: Given a reduced MPR R =

(
rij
)
n×n with its

EGM E =
(
eij
)
n×n, then the EGM E is a consistent MPR;

if rij = eij for ∀i, j ∈ {1, 2, . . . , n}, then the reduced MPR
R =

(
rij
)
n×n is a consistent MPR.

Proof: Based on Definition 9 and Eq. (3.1), we have

ril ⊗ rlj = eil ⊗ elj

=

(
n
⊗

m=1,m6=i,l
rmil

) 1
2(n−2)

⊗

(
n
⊗

m=1,m 6=l,j
rmlj

) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,l

(
rim ⊗ rml ⊗ rlm ⊗ rmj

)) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,l

(
rim ⊗ (rml ⊗ rlm)⊗ rmj

)) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,l

(
rim ⊗ {1} ⊗ rmj

)) 1
2(n−2)

=

(
n
⊗

m=1,m 6=i,l
rmij

) 1
2(n−2)

= eij = rij

According to Definition 2, the EGM is a consistent MPR,
and the reduced MPR is also a consistent MPR if rij = eij,
which completes the proof.

Based on Theorem 11, the EGM can be referred to as the
consistent MPR of its reduced MPR.
Example 12: Suppose a reduced MPR R =

(
rij
)
n×n as

follows:

R =
(
rij
)
n×n =


1 3 1/9 5
1/3 1 1/7 1/5
9 7 1 1/3
1/5 5 3 1


Based on Eq. (3.1) and Definition 9, we have

h312 = h13 ⊗ h32 = 7/
9, h

4
12 = h14 ⊗ h42 = 25,

e12 =
(
175/

9
)1/4

h213 = h12 ⊗ h23 = 3/
7, h

4
13 = h14 ⊗ h43 = 15,

e13 =
(
45/

7
)1/4

h214 = h12 ⊗ h24 = 3/
5, h

3
14 = h13 ⊗ h34 = 1/

27,

e14 =
(
3/
135

)1/4
h123 = h21 ⊗ h13 = 1/

27, h
4
23 = h24 ⊗ h43 = 3/

5,

e23 =
(
3/
135

)1/4
h124 = h21 ⊗ h14 = 5/

3, h
3
24 = h23 ⊗ h34 = 1/

21,

e14 =
(
5/
63
)1/4

h134 = h31 ⊗ h14 = 45, h234 = h32 ⊗ h24 = 7/
5,

eh14 =
(
315/

5
)1/4

Then, the EGM E =
(
eij
)
n×n of R can be constructed as

follows:

E =



1
(
175/

9
)1/4 (

45/
7
)1/4 (

3/
135

)1/4
(
9/
175

)1/4 1
(
3/
135

)1/4 (
5/
63
)1/4

(
7/
45
)1/4 (

135/
3
)1/4 1

(
315/

5
)1/4

(
135/

3
)1/4 (

63/
5
)1/4 (

5/
315

)1/4 1


We use the Matlab software to draw ‘‘Figure of area’’ to

offer a visible description of the inconsistent MPR R and its
EGM E as shown in Fig. 1. It shows that the EGM performs
more regularly than the inconsistent MPR.

FIGURE 1. Areas of the MPR R and its EGM E .

Before giving the definition of a consistency index for a
reduced MPR, a logarithmic distance between two reduced
MPRs U and V is defined as follows:
Definition 13: Let U =

(
uij
)
n×n and V =

(
vij
)
n×n be two

any reduced MPRs, then the logarithmic distance between U
and V is defined as follows:

d(U ,V ) =
1

2n (n− 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣∣log9 uijvij
∣∣∣∣+ ∣∣∣∣log9 ujivji

∣∣∣∣)
(4.2)

Theorem 14: Suppose that there are two any reducedMPRs
U =

(
uij
)
n×n and V =

(
vij
)
n×n, then the logarithmic distance

between U and V satisfies the following three properties:
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(1) 0 ≤ d (U ,V ) ≤ 1;
(2) d (U ,V ) = 0 if and only if U = V ;
(3) d (U ,V ) = d (V ,U).
Proof:

For ∀i = 1, 2, . . . , n and ∀j = 1, 2, . . . , n, we have∣∣∣∣log9 uijvij
∣∣∣∣+ ∣∣∣∣log9 ujivji

∣∣∣∣
=

∣∣∣∣log9 uijvij
∣∣∣∣+ ∣∣∣∣log9 vijuij

∣∣∣∣
=

∣∣∣∣log9 uijvij
∣∣∣∣+

∣∣∣∣∣log9
(
uij
vij

)−1∣∣∣∣∣ = 2

∣∣∣∣log9 uijvij
∣∣∣∣

Since uij, vij ∈
[
1
/
9, 9

]
, then 2

∣∣∣log9 uij
vij

∣∣∣ ∈ [0, 4]. Thus,

0 ≤ d(U ,V ) ≤
4

2n (n− 1)
·
n (n− 1)

2
⇔ 0 ≤ d(U ,V ) ≤ 1.

According to the first property, if d(U ,V ) = 0, then uij
vij
=

1. Thus, we have uij = vij ⇔ U = V .
According to Definition 13, we have

d(U ,V )

=
1

2n (n− 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣∣log9 uijvij
∣∣∣∣+ ∣∣∣∣log9 ujivji

∣∣∣∣)

=
1

2n (n− 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣∣log9 vjiuji
∣∣∣∣+∣∣∣∣log9 vijuij

∣∣∣∣)=d(V ,U )

Based on Definition 13, the definition of a consistency
index for a reduced MPR can be given as:
Definition 15: Given a reduced MPR R =

(
rij
)
n×n and

its consistent EGM E =
(
eij
)
n×n, then a consistency index

of the MPR R is defined as CI (R) = 1 − d (R,E), where
CI (R) denotes the consistency index of the reduced MPR
R =

(
rij
)
n×n.

Obviously, the consistency index also satisfies
Theorem 14, so 0 ≤ CI (R) ≤ 1 for the reduced MPR R.
The larger the value of CI (R) is, the closer to its consistent
EGM E the reduced MPR R is.

In the practical applications, because of the large number
of alternatives, the lack of knowledge, and time pressure, the
MPRs often cannot be completely consistent. Through inves-
tigations, it can be found that MPRs with acceptable consis-
tency can also get reasonable decision-making results [30].
Thus, we give the definition of acceptable consistency for
MPRs as follows:
Definition 16: Given a reduced MPR R =

(
rij
)
n×n and

a predefined threshold value CĪ , if this reduced MPR R
owns an acceptable consistency level, then it should satisfy
CI (R) ≥ CĪ .
Theorem 17: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . . ,K ) be K

MPRs given by K DMs and G =
(
gij
)
n×n be their group

MPR, which is obtained utilizing Eq. (5.1), then we have
CI (G) ≥ min

1≤k≤K
{CI (Rk)}.

Proof: Let α = 1
2n(n−1) , then we have

CI (Rk)

= 1− d (Rk ,Ek) = 1− α
n−1∑
i=1

n∑
j=i+1

(
2

∣∣∣∣log9 rij,keij,k

∣∣∣∣)

= 1− α
n−1∑
i=1

n∑
j=i+1

(
2
∣∣log9 rij,k − log9 eij,k

∣∣)
= 1−α

n−1∑
i=1

n∑
j=i+1

(
2

∣∣∣∣∣log9 rij,k−log9
(

n
⊗

m=1,m 6=i,j
rmij,k

) 1
2(n−2)

∣∣∣∣∣
)

= 1−α
n−1∑
i=1

n∑
j=i+1

2
∣∣∣∣∣∣log9 rij,k−

n∑
m=1,m 6=i,j

log9
(
rmij,k
) 1

2(n−2)

∣∣∣∣∣∣


Let βij,k = log9 rij,k −
n∑

m=1,m6=i,j
log9

(
rmij,k

) 1
2(n−2)

, then we

have

CI (Rk) = 1− α
n−1∑
i=1

n∑
j=i+1

(
2
∣∣βij,k ∣∣) ≥ CĪ

⇔ α

n−1∑
i=1

n∑
j=i+1

(
2
∣∣βij,k ∣∣) ≤ 1− CĪ

and

α

n−1∑
i=1

n∑
j=i+1

(
2
∣∣βij,k ∣∣)

= 1− CI (Rk) .
CI (G)
= 1− d (G,E)

= 1−α
n−1∑
i=1

n∑
j=i+1

2

∣∣∣∣∣∣log9 gij−
n∑

m=1,m 6=i,j

log9
(
gmij
) 1

2(n−2)

∣∣∣∣∣∣


Since log9 gij = log9

(
K∏
k=1

(
rij,k

)ωk)
=

K∑
k=1

ωk log9 rij,k

and
n∑

m=1,m 6=i,j

log9
(
gmij
) 1

2(n−2)

=

n∑
m=1,m 6=i,j

log9
(
gim × gmj

) 1
2(n−2)

=

n∑
m=1,m 6=i,j

log9

((
K∏
k=1

(
rim,k

)ωk)
×

(
K∏
k=1

(
rmj,k

)ωk)) 1
2(n−2)

=

n∑
m=1,m 6=i,j

log9

((
K∏
k=1

(
rim,k × rmj,k

)ωk)) 1
2(n−2)

=

n∑
m=1,m 6=i,j

log9

((
K∏
k=1

(
rmij,k

)ωk)) 1
2(n−2)

=

n∑
m=1,m 6=i,j

(
K∑
k=1

ωk log9
(
rmij,k

) 1
2(n−2)

)
,
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then

CI (G) = 1−
K∑
k=1

ωk

α n−1∑
i=1

n∑
j=i+1

(
2
∣∣βij,k ∣∣)


= 1−

K∑
k=1

ωk (1− CI (Rk))

=

K∑
k=1

ωkCI (Rk) ≥ min
1≤k≤K

{CI (Rk)} ≥ CĪ

This result completes the proof of Theorem 17.
Based on Theorem 17, two Corollaries can be got easily as

follows:
Corollary 18: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . . ,K ) be K

MPRs given by K DMs and G =
(
gij
)
n×n be their group

MPR that is obtained using Eq. (5.1), then CI (G) ≥ CĪ if
CI (Rk) ≥ CĪ for ∀k = 1, 2, . . . ,K .
Corollary 19: If CI (Rk) = 1 for ∀k = 1, 2, . . . ,K , then

CI (G) = 1.
Based on Theorem 17, we can find that the consistency

level of the group MPR is certainly higher than the lowest
consistency level of all the individual MPRs. Corollary 18
implies that if all the individual MPRs satisfy acceptable
consistency condition, then their group MPR is acceptably
consistent. Corollary 19 describes that if all the individual
MPRs are consistent, then their group MPR is consistent.

B. THRESHOLD ESTIMATION METHOD FOR
CONSISTENCY INDEX
The threshold of consistency index for MPRs or HMPRs
in the existing studies is determined by the experiences of
the DMs. There is no any theoretical basis to support the
reference value for the threshold. Moreover, the method for
calculating the consistency index of the reduced MPRs in our
paper is very different from that in the existing studies. Hence,
the reference value for the threshold of consistency index of
MPRs or HMPRs cannot be used in our paper. In this section,
we develop a threshold estimation method to estimate the
threshold of consistency index of the reduced MPRs.

Motivated by the definition of the consistency level of a
hesitant fuzzy preference relation gave by Liu et al. [31],
we first put forward a definition of consistency threshold of
a MPR as follows:
Definition 20: Given a reduced MPR R =

(
rij
)
n×n and its

consistent EGM E =
(
eij
)
n×n. S that the density function

of the distance d (R,E)between R and E is g (x), then the
consistency threshold CĪ of the reduced MPR R satisfies that∫ 1−CĪ
0 g(t)dt = τ , where τ is the confidence level and it is
determined by the DMs.

The confidence level τ describes the probability of the
distance d (R,E) being in the interval [0, 1− r]. It can be
seen that the confidence level τ influences the consistency
threshold. The larger the confidence level is, the smaller the
consistency threshold is. Hence, if the confidence level is set
to be too high, then the consistency index of the reducedMPR

would exceed the consistency threshold easily. Liu et al. [31]
suggested that the confidence level is set to 20%.

Although it is very difficult for the DMs to provide the
consistent MPRs in the practical application environments,
the MPRs offered by DMs are repeatedly returned to them
for adjusting. Hence, the distances between the MPRs and
the consistent ones are trending to 0. Let a random variable
X =

∣∣∣log9 uij
vij

∣∣∣+∣∣∣log9 uji
vji

∣∣∣, then X will trend to 0. Assume that

the variable X follows a normal distribution, then its density

function is g (x) = 1
√
2πσ

e−
x2

2σ2 .
Theorem 21: Let a random variable Y = d (R,E), then its

density function is

fY (y) =
4

√
2πσ

e−
8y2

σ2

where y ∈ [0, 1].
Proof: Since X =

∣∣∣log9 uij
vij

∣∣∣+ ∣∣∣log9 uji
vji

∣∣∣, then we have

Y = d(R,E) =
1

2n(n− 1)

n−1∑
i=1

n∑
j=i+1

X

=
1

2n(n− 1)
·
n(n− 1)

2
X =

X
4
.

Let FX (x) and FY (y) be the cumulative distribution
functions of the random variables X and Y , then

FY (y) = P {Y ≤ y} = P
{
X
4
≤ y

}
= P {X ≤ 4y} = FX (4y)

Taking the first derivative of FY (y) with respect to y yields

fY (y) = fX (4y) · (4y)
′

=
1

√
2πσ

e−
16y2

2σ2 · 4 =
4

√
2πσ

e−
8y2

σ2

which completes the proof of the theorem.
According to Definition 20 and Theorem 21, we have

τ =

∫ 1−CĪ

0

4
√
2πσ

e−
8y2

σ2 dy =
4

√
2πσ

∫ 1−CĪ

0
e
−

(√
8 y
σ

)2
dy

=
4σ

√
8 ·
√
2πσ

∫ 1−CĪ

0
e
−

(√
8 y
σ

)2
d

√
8y
σ

=
1
√
π

∫ 1−CĪ

0
e
−

(√
8y
σ

)2
d

√
8 y
σ

Let η =
√
8 y
σ

, then we have τ = 1
√
π

∫ 1−CĪ
0 e−η

2
dη. For

a nonnegative random variable x, its error function can be
defined as erf (x) = 2

√
π

∫ x
0 e
−η2dη [32]. Then we can get

τ = 1
√
π

∫ 1−CĪ
0 e−η

2
dη = 1

2erf (1− CĪ ).

When the value of the confidence level τ is given, the value
of 1 − CĪ can be obtained by referring to the error function
table and then the value of CĪ can be got. Here we give the
value of CĪ with the different values of the confidence level
as shown in Table 1.
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FIGURE 2. The flow chart of the consistency checking and revising algorithm.

TABLE 1. Values of the consistency threshold with different values of
confidence level.

It can be seen that the value of the consistency threshold
decreases with the increase of the value of the confidence
level.

C. CONSISTENCY CHECKING AND REVISING ALGORITHM
BASED ON FEEDBACK MECHANISM
In this subsection, based on Theorem 11, Definitions 15 and
16, we utilize the feedback mechanism to put forward a con-
sistency checking and revising algorithm that checks and then
revises the inconsistent reduced MPRs R with the involve-
ment of the DMs until CI (R) ≥ CĪ .

Fig. 2 shows that this novel consistency checking and
revising algorithm consists of three steps: the consistency
checking process, recommendation process, and feedback-
based consistency revising process. It can be seen that the
consistency checking process is in charge of checking that
whether a MPR satisfies the condition CI (R) ≥ CĪ or the
number of iterations exceeds a predefined threshold value.
The recommendation process recommends an interval for
the preference values to the DMs for guiding them to give
suitable preference values. The consistency revising process
reconstructs theMPR based on the feedback advices from the
DMs.

Based on this feedback-based consistency and revising
process shown in Algorithm 2, a theorem can be given as
follows:

Algorithm 2 Consistency Checking and Revising Algorithm
Input: A reducedMPR, a threshold for consistence level

denoted by CĪ , and a predefined threshold for the number
of iterations denoted as T (T ≥ 1).
Output: The number of iterations t , the updated MPR

R(t) = (rij)
(t)
n×n, and its CI

(
R(t)

)
.

Step 1. Let t = 0, then R(0) = (rij)
(0)
n×n;

Step 2. Using Definition 9, the EGM E (t) =
(
eij
)(t)
n×n

can be obtained;
Step 3. Utilize Definitions 13 and 15 to calculate the

consistency index of R(t) denoted by CI
(
R(t)

)
.

If CI
(
R(t)

)
≥ CĪ or t ≥ T , then turn to Step 5; otherwise,

turn to the next step.
Step 4. Return R(t) to the DM and suggest he/she to offer

an adjusted R(t+1) = (rij)
(t+1)
n×n , which satisfies

r (t+1)ij ∈

(
min

(
r (t)ij , e

(t)
ij

)
,max

(
r (t)ij , e

(t)
ij

))
.

Let t = t + 1, then turn to Step 2;
Step 5. Output t , R(t) = (rij)

(t)
n×n, its consistency index

CI
(
R(t)

)
.

Step 6. End.

Theorem 22: Let R =
(
rij
)
n×n be an any inconsistent or

unacceptableMPR, R(t) and R(t+1) be the updatedMPRs after
t and t + 1 iterations of Step 4, and CĪ = α be the threshold
for the consistency index, then we can get that CI

(
R(t)

)
<

CI
(
R(t+1)

)
for each t and lim

x→∞
CI
(
R(t)

)
≥ α.

Proof: According to Eq. (4.1), then we have

(
eij
)(t+1)

=

(
n
⊗

m=1,m 6=i,j

(
rmij
)(t+1)) 1

2(n−2)

=

(
n
⊗

m=1,m 6=i,j

(
rim × rmj

)(t+1)) 1
2(n−2)

(4.3)
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Since(
rim × rmj

)(t+1)
∈

[
min

((
rim × rmj

)(t)
, e(t)ij

)
,max

((
rim × rmj

)(t)
, e(t)ij

)]
=

[
min

((
rmij
)(t)

, e(t)ij

)
,max

((
rmij
)(t)

, e(t)ij

)]
,

then Eq. (4.3) can be transformed into

(
eij
)(t+1)

∈


min

((
n
⊗

m=1,m 6=i,j

(
rmij
)(t)) 1

2(n−2)

, e(t)ij

)
,

max

((
n
⊗

m=1,m6=i,j

(
rmij
)(t)) 1

2(n−2)

, e(t)ij

)


⇔
(
eij
)(t+1)

∈

[
min

(
e(t)ij , e

(t)
ij

)
,max

(
e(t)ij , e

(t)
ij

)]
⇔
(
eij
)(t+1)

=
(
eij
)(t)

Thus,

(rij)(t+1)

(eij)(t+1)
= (rij)(t+1) × (eji)(t+1) = (rij)(t+1) × (eji)(t)

∈

[
(eji)(t) ×min

(
(rij)(t), (eij)(t)

)
,

(eji)(t) ×max
(
(rij)(t), (eij)(t)

) ]
=

[
min

(
(rij)(t)

(eij)(t)
, 1

)
,max

(
(rij)(t)

(eij)(t)
, 1

)]

If (rij)(t)

(eij)(t)
< 1, then the above equation is transformed into

(rij)(t)

(eij)(t)
<

(rij)(t+1)

(eij)(t+1)
⇔ 2

∣∣∣∣∣log9 (rij)(t+1)

(eij)(t+1)

∣∣∣∣∣ < 2

∣∣∣∣∣log9 (rij)(t)

(eij)(t)

∣∣∣∣∣
⇔ CI

(
R(t)

)
< CI

(
R(t+1)

)
If (rij)(t)

(eij)(t)
> 1, then we have CI

(
R(t)

)
< CI

(
R(t+1)

)
.

Since CI
(
R(t)

)
≤ 1, then it indicates that the sequence{

CI
(
R(t)

)}
is monotonically increasing and has an upper

bound. Thus, we have lim
t→∞

(
CI
(
R(t)

))
= sup

{
CI
(
R(t)

)}
.

Suppose that lim
t→∞

(
CI
(
R(t)

))
< α. We use Algorithm 2 to

modify the MPR R(t), then the consistency index of the
resulted MPR R(t+1) satisfies CI

(
R(t)

)
< CI

(
R(t+1)

)
for

t → ∞. Hence, it indicates CI
(
R(t+1)

)
> sup

{
CI
(
R(t)

)}
,

which contradicts that lim
t→∞

(
CI
(
R(t)

))
= sup

{
CI
(
R(t)

)}
.

Thus, we have lim
t→∞

(
CI
(
R(t)

))
≥ α.

V. CONSENSUS REACHING PROCESS
In the group decision-making problems [33], [34], there exists
a group of DMs participating the process of evaluating the
alternatives. Since the DMs are usually invited from different
specialty fields and have different levels of knowledge, they
have divergent opinions, which result in the low consensus
among the reduced MPRs. Low consensus greatly influences
on the results of group decision making problems [35]. Thus,
in this section, we develop a consensus reaching process for

the reduced MPRs. A group consensus index is first devised
to measure the degree of agreement between each reduced
MPR and their group MPR. Finally, a consensus reaching
algorithm-based feedback mechanism is designed to modify
the reduced MPR so as to reach a predefined consensus level.

A. GROUP CONSENSUS INDEX
Before providing the definition of group consensus index to
measure the degree of agreement between each MPR and the
group MPR, we define the group MPR as follows:
Definition 23: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) be K

reduced MPRs given by K DMs, ωk ∈ [0, 1] be the weight

of the kth DM satisfying
K∑
k=1

ωk = 1, then the group MPR is

obtained as:

G =
(
gij
)
n×n =

(
K
⊗
k=1

(
rij,k

)ωk)
n×n

(5.1)

where G denotes the obtained group MPR.
Theorem 24: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) be K

reducedMPRs,ω = (ω1, ω2, . . . , ωK )
T be the weight vector,

then the group MPR G =
(
gij
)
n×n is also a MPR.

Proof: Based on Eq. (5.1), we have

gij × gji =
(

K
⊗
k=1

(
rij,k

)ωk)
×

(
K
⊗
k=1

(
rji,k

)ωk)
=

K
⊗
k=1

(
rij,k × rji,k

)ωk
=

K
⊗
k=1

(1)ωk = 1,

and gii =
(

K
⊗
k=1

(
rii,k

)ωk)
=

(
K
⊗
k=1

(1)ωk
)
= 1.

Because rij,k ∈ [1/9, 9] and ωk ∈ [0, 1], then we have

gij =
K
⊗
k=1

(
rij,k

)ωk
∈ [1/9, 9] .

According to Definition 1, the group MPR G =
(
gij
)
n×n is

a MPR, which completes the proof.
A closeness matrix (CM) between each reduced MPR Rk

and group MPR G =
(
gij
)
n×n is defined as follows:

Definition 25: Let Rk =
(
rij,k

)
n×n (k = 1, 2, . . .K ) be K

MPRs and G =
(
gij
)
n×n be group MPR, then the closeness

matrix (CM) between Rk =
(
rij,k

)
n×n and G =

(
gij
)
n×n is

constructed as follows:

CM (Rk ,G) =
(
cij,k

)
n×n =

(
1
2

∣∣∣∣log9 rij,kgij
∣∣∣∣)

n×n
(5.2)

where cij,k ∈ [0, 1].
Based on Definition 25, the definition of group consensus

index for MPRs can be given as follows:
Definition 26: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) be K

MPRs and G =
(
gij
)
n×n be their group MPR, then the group

consensus index matrix of Rk =
(
rij,k

)
n×n is constructed as

follows:

GCM (Rk) =
(
zij,k

)
n×n =

(
1− cij,k

)
n×n (5.3)

where zij,k ∈ [0, 1].
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FIGURE 3. The process of consensus reaching algorithm based on feedback mechanism.

Then the group consensus index of the alternative xi,k in
the MPR Rk =

(
rij,k

)
n×n can be computed as:

GCI
(
xi,k
)
=

n∑
j=1

zij,k
/
n (5.4)

Therefore, the group consensus index of Rk =
(
rij,k

)
n×n is

calculated as follows:

GCI (Rk) =
n∑
i=1

GCI
(
xi,k
)/

n =
1
n2

n∑
i=1

n∑
j=1

zij,k (5.5)

whereGCI (Rk) ∈ [0, 1]. IfGCI (Rk) = 1, then it means that
the kth DM shows full consensus with the group DM. The
larger the value of GCI (Rk) is, the closer to the group DM
the kth DM is.

In the real decision-making problems, the DMs should
determine a threshold GCĪ for the group consensus index in
advance.
Definition 27: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) be K

reduced MPRs, G =
(
gij
)
n×n be the group MPR, as well as

GCI (Rk) be the group consensus index of Rk , then Rk owns
an acceptable consensus if GCI (Rk) ≥ GCĪ , where GCĪ ∈
[0, 1] denotes the threshold of the acceptable group consensus
index.

In the practical group decision-making problems [36], the
DMs, who give theMPRswith higher group consensus index,
are assigned with larger weights. Based on this principle,
the weight of each DM is defined as follows:
Definition 28: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) be K

reduced MPRs, then the weight ωk of kth DM is computed as

ωk =
GCI (Rk )
K∑
k=1

GCI (Rk )
(k = 1, 2, . . . ,K ) where

K∑
k=1

ωk = 1.

B. CONSENSUS REACHING ALGORITHM BASED
ON FEEDBACK MECHANISM
Based on the above definitions, a new consensus reaching
algorithm based on feedback mechanism is designed to make

all the DMs achieve an acceptable consensus. This algorithm
is composed of three parts, which are the consensus checking
process, the identification and recommendation process, and
the feedback-based consensus revising process, as shown
in Fig. 3.

The consensus checking process is in charge of checking
whether the group consensus index (GCI) of each MPR Rk
satisfies GCI (Rk) ≥ GCĪ . If yes, it means that the MPR
has an acceptable consensus level and it does not need to be
revised further. Otherwise, it turns to the identification and
recommendation process, which aims to locate all the pairs
of alternatives whose group consensus indexes (GCI) satisfy
the following equation:

Lk =
{ (
xi,k , xj,k

)
|GCI

(
xi,k
)
< GCI (Rk)∧

zij,k < GCI (Rk)

}
(5.6)

where Lk means the set of pairs of alternatives whose group
consensus indexes are lower than that of Rk .

Then, it offers some suggestions to modify the preference
value rij,k for the pair of alternatives

(
xi,k , xj,k

)
∈ Lk .

The modification of the preference value rij,k is
suggested as:

S.i) If log9
rij,k
gij
> 0, then the kth DM should decrease rij,k

to r
′

ij,k ∈
[
min

(
rij,k , gij

)
,max

(
rij,k , gij

)]
;

S.ii) If log9
rij,k
gij
< 0, then the kth DM should increase rij,k

to r
′

ij,k ∈
[
min

(
rij,k , gij

)
,max

(
rij,k , gij

)]
.

S.iii) if log9
rij,k
gij
= 0, then the kth DM does not need to

modify rij,k .
The feedback-based consensus revising process uses the

feedback advice on the preference value rij,k from the kth DM
tomodify theMPRRk whose group consensus index becomes
larger.

According to the above discussions, a complete consensus
reaching algorithm based on feedback mechanism is devised
as follows:
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Algorithm 3 Consensus Reaching Algorithm

Input: MPRs Rk =
(
rij,k

)
n×n (k = 1, 2, . . . ,K ) offered

by K DMs DMk (k = 1, 2, . . . ,K ), the weight vector of
DMs, ω = (ω1, ω2, . . . , ωK )

T , the predefined threshold
GCĪ of acceptable group consensus index, the maximum
number of iterations, lmax ≥ 1.
Output: The number of iterations, l, the modifiedMPRs

R(l)k =
(
r (l)ij,k

)
n×n

, their group MPR G(l) =
(
g(l)ij
)
n×n

,

the group consensus indexesGCI
(
R(l)k

)
for eachMPRR(l)k

and GCI
(
G(l)

)
for the group MPR G(l).

Step 1. Let l = 0, then we have R(0)k =
(
r (0)ij,k

)
n×n

and

ω(0) =
(
ω
(0)
1 , ω

(0)
2 , . . . , ω

(0)
K

)T
;

Step 2. Use Definition 23 to fuse all the individualMPRs
R(l)k =

(
r (l)ij,k

)
n×n

into their group MPR G(l) =
(
g(l)ij
)
n×n

,

where G(l) =
(
g(l)ij
)
n×n
=

(
K
⊗
k=1

(
r (l)ij,k

)ωk)
n×n

.

Step 3. Utilize Definition 25 as well as Eqs. (5.3), (5.4),
and (5.5) to calculate the group consensus index matrix of
R(l)k denoted as GCM

(
R(l)k

)
, the group consensus index

GCI
(
x(l)i,k

)
of alternative x(l)i,k in R(l)k , and the group con-

sensus index GCI
(
R(l)k

)
. If GCI

(
R(l)k

)
≥ GCĪ for ∀k =

1, 2, . . . ,K or l ≥ lmax, then turn to Step 7; otherwise, turn
to Step 4.

Step 4. Locate the set of pairs of alternatives using Eq.
(5.6) as follows:

L(l)k =


(
x(l)i,k , x

(l)
j,k

)
|GCI

(
x(l)i,k

)
< GCI

(
R(l)k

)
∧

z(l)ij,k < GCI
(
R(l)k

) 
Step 5. Use S.i, S.ii, and S.iii to give suggestions on the

modification of preference values for
(
x(l)i,k , x

(l)
j,k

)
∈ L(l)k .

Step 6. Adopt the feedback advices on preference values(
x(l)i,k , x

(l)
j,k

)
∈ L(l)k to reconstruct R(l+1)k =

(
r (l+1)ij,k

)
n×n

,
we utilize Definition 28 to update the weight of each DM

as ω(l+1)k =
GCI

(
R(l)k

)
K∑
k=1

GCI
(
R(l)k

) (k = 1, 2, . . . ,K ).

Let l = l + 1 and turn to Step 2.
Step 7. Output the number of iterations, l, the modified

MPRs R(l)k =

(
r (l)ij,k

)
n×n

(k = 1, 2, . . .K ), their group

MPR G(l) =
(
g(l)ij
)
n×n

, the group consensus indexes

GCI
(
R(l)k

)
for the MPRs R(l)k .

Step 8. End.

Algorithm 3 is an iterative process and its convergence is
discussed in Theorem 29.
Theorem 29: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) be

MPRs, GCĪ denote the threshold for their group consensus
index,

{
R(l)k

}
denote a sequence of MPRs that are generated

in Algorithm 3, andGCI
(
R(l)k

)
be the group consensus index

of R(l)k , then GCI
(
R(l)k

)
< GCI

(
R(l+1)k

)
for ∀k .

Proof: According to Definition 23,

G(l+1) =
(
g(l+1)ij

)
n×n
=

(
K
⊗
k=1

(
r (l+1)ij,k

)ωk)
n×n

.

Then we have
r(l+1)ij,k

g(l+1)ij

= r (l+1)ij,k ×
K∏
t=1

(
r (l+1)ji,t

)ωk
. Since r (l+1)ij,k ∈[

min
(
r (l)ij,k , g

(l)
ij

)
,max

(
r (l)ij,k , g

(l)
ij

)]
, then the equation can be

transformed into

min
(
r (l)ij,k , g

(l)
ij

)
×

K∏
t=1

(
min

(
r (l)ji,t , g

(l)
ji

))ωk
≤

r (l+1)ij,k

g(l+1)ij

≤ max
(
r (l)ij,k , g

(l)
ij

)
×

K∏
t=1

(
max

(
r (l)ji,t , g

(l)
ji

))ωk
Since g(l)ji =

K∏
t=1

(
r (l)ji,t
)ωk

, then we have

min
(
r (l)ij,k , g

(l)
ij

)
× g(l)ji ≤

r (l+1)ij,k

g(l+1)ij

≤ max
(
r (l)ij,k , g

(l)
ij

)
× g(l)ij . (5.7)

Assume that r (l)ij,k < g(l)ij , then

r (l)ij,k × g
(l)
ji <

r (l+1)ij,k

g(l+1)ij

< g(l)ij × g
(l)
ji

⇔
r (l)ij,k

g(l)ij
<

r (l+1)ij,k

g(l+1)ij

< 1

⇔ 0 < c(l+1)ij,k =
1
2

∣∣∣∣∣log9 r
(l+1)
ij,k

g(l+1)ij

∣∣∣∣∣<c(l)ij,k= 1
2

∣∣∣∣∣log9 r
(l)
ij,k

g(l)ij

∣∣∣∣∣
Based on Definition 26, z(l)ij,k < z(l+1)ij,k < 1. According

to Eqs. (5.4) and (5.5), then GCI
(
R(l)k

)
< GCI

(
R(l+1)k

)
.

If r (l)ij,k > g(l)ij , it can be proven in the same way, which
completes the proof.
Theorem 30: Let Rk =

(
rij,k

)
n×n (k = 1, 2, . . .K ) denote

the reduced MPRs and G be their group MPR. Assume that{
R(l)k

}
and

{
G(l)

}
be the sequences of the reduced MPRs

and their group MPRs that are obtained by Algorithm 3.
If min

1≤k≤K
{CI (Rk)} ≥ CI , then we have

min
1≤k≤K

{
CI
(
R(l+1)k

)}
≥ min

1≤k≤K

{
CI
(
R(l)k

)}
≥ CI .

Proof: For any k = 1, 2, . . . ,K , we have

r (l+1)ij,k ∈

(
min

(
r (l)ij,k , g

(l)
ij

)
,max

(
r (l)ij,k , g

(l)
ij

))
,

According to Theorem 17, then we have

CI
(
R(l+1)k

)
≥ min

{
CI
(
R(l)k

)
,CI

(
G(l)

)}
.
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FIGURE 4. The flowchart of the complete group decision-making model.

Moreover, CI
(
G(l)

)
≥ min

1≤k≤K

{
CI
(
R(l)k

)}
, then we have

min
1≤k≤K

{
CI
(
R(l+1)k

)}
≥ min

1≤k≤K

{
CI
(
R(l)k

)}
,

which implies that

min
1≤k≤K

{
CI
(
R(l+1)k

)}
≥ min

1≤k≤K

{
CI
(
R(l)k

)}
≥ CI .

Theorem 30 implies that the consistency index of each
MPR is still acceptable after it is updated using Algorithm 3.
According to this theorem, it is feasible to put forward a
complete group decision-making model that is composed of
the consistency and consensus of HMPRs.

VI. COMPLETE GROUP DECISION-MAKING
MODEL WITH HMPRs
In this section, a complete group decision-makingmodel with
HMPRs is put forward to rank all the alternatives in the
complex decision-making problems.

As demonstrated in Fig. 4, the complete group decision-
making model consists of four parts: the regression process,

the consistency checking and revising process, the consensus
reaching process, and also the ranking process, respectively.
Theorem 30 shows that it is rational to place the consistency
checking and revising process before the consensus reaching
process in the complete group decision-making model. The
methods for the regression process, consistency checking and
revising process, and consensus reaching process have been
shown in Sections 3, 4, and 5. The ranking process aims
to rank all the alternatives and then select the optimal one.
It first utilizes the multiplicative geometric (MG) operator
(Eq. (5.1)) to aggregate all the preference values in each
row of the group MPR and then we can obtain the overall
preference degree of each alternative, xi (i = 1, 2, . . . , n).
Finally, all the alternatives can be ranked based on their
overall preference degrees and then the optimal one can be
selected.

According to Fig. 4, we combine Algorithms 1, 2, and 3 to
develop a complete algorithm, which ranks all the alternatives
and selects the optimal one from group decision-making
problems with HMPRs.
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Algorithm 4 Complete Group Decision-Making Algorithm

Input: HMPRs Hk =
(
hij,k

)
n×n (k = 1, 2, . . . ,K )

given byK DMsDMk (k = 1, 2, . . . ,K ), theweight vector
of DMs, ω = (ω1, ω2, . . . , ωK )

T , a threshold CĪ for
the consistence index, a threshold GCĪ for the acceptable
group consensus index, and the maximum number of iter-
ations, lmax ≥ 1.
Output: The ranking of all the alternatives and the

optimal one.
Step 1. Choose a HME hij,k (i 6= j) from Hk , get the set

Mm
ij,k , and calculate hmij,k

(
m ∈ Mm

ij,k

)
using the following

equation:

hmij,k = him,k×̃hmj,k (6.1)

Step 2. Utilize the following equation:

hGij,k =
∑

m∈Mmij,k

(#hmij,k )

√√√√√ #hmij,k∏
m 6=i,m 6=j

hmij,k (6.2)

to calculate the geometric estimated preference value hGij,k
and then obtain h∗ij,k satisfying the following equation:

1
2

∣∣∣∣∣log9 h
∗
ij

hGij

∣∣∣∣∣ = min(εhij) (6.3)

where

εhij =
1
2

 ⋃
εij∈

(
hij÷̃hGij

) |εij|
 = 1

2

 ⋃
εij∈log9

(
hij/hGij

) |εij|

(6.4)

Step 3. Repeat Steps 1 and 2 until the optimal value of
each HME in Hk has been obtained, then turn to Step 4.
Step 4. Use all the collected

h∗ij,k (i, j = 1, 2, . . . , n; i 6= j) to form the reduced

MPR H∗k =

(
h∗ij,k

)
n×n

. Let l = 0, then

R(0)k = (r (0)ij,k )n×n = H∗k =
(
h∗ij,k

)
n×n

.
Step 5. Use the following equation:

eij,k =
(

n
⊗

m=1,m 6=i,j
rmij,k

) 1
2(n−2)

(6.5)

to obtain the EGM E (l)k =
(
e(l)ij,k

)
n×n

.

Step 6. Utilize the following equation:

CI
(
R(l)k

)
= 1− d

(
R(l)k ,E

(l)
k

)
= 1−

1
2n (n− 1)

n−1∑
i=1

n∑
j=i+1

×

(∣∣∣∣∣log9 u
(l)
ij,k

v(l)ij,k

∣∣∣∣∣+
∣∣∣∣∣log9 u

(l)
ji,k

v(l)ji,k

∣∣∣∣∣
)

(6.6)

Algorithm 4 (Continued.) Complete Group
Decision-Making Algorithm

to calculate the consistency index CI
(
R(l)k

)
of R(l)k .

If CI
(
R(l)k

)
≥ CĪ or l ≥ lmax, then turn to Step 9;

otherwise, turn to the next step.
Step 7. Return R(l)k to the kth DM and suggest he/she to

offer an adjusted R(l+1)k = (rij,k )
(l+1)
n×n , which satisfies

r (l+1)ij,k ∈

(
min

(
r (l)ij,k , e

(l)
ij,k

)
,max

(
r (l)ij,k , e

(l)
ij,k

))
(6.7)

Let l = l + 1, then turn to Step 5;
Step 8. Utilize Definition 23 to aggregate all the MPRs

R(l)k =
(
r (l)ij,k

)
n×n

(k = 1, 2, . . .K ) into a group MPR G(l),
where

G(l) =
(
g(l)ij
)
n×n
=

(
K
⊗
k=1

(
r (l)ij,k

)ωk)
n×n

(6.8)

Step 9. Utilize Eq. (5.3) to compute the group consensus
index matrix GCM

(
R(l)k

)
=

(
z(l)ij,k

)
n×n

of R(l)k , where

GCM (R(l)k ) =
(
z(l)ij,k

)
n×n

=

(
1− c(l)ij,k

)
n×n
=

(
1
2

∣∣∣∣∣log9 r
(l)
ij,k

g(l)ij

∣∣∣∣∣
)
n×n

(6.9)

Utilize Eq. (5.4) to compute the group consensus index
GCI

(
x(l)i,k

)
of the alternative x(l)i,k in R

(l)
k , where

GCI
(
x(l)i,k

)
=

 n∏
j=1

z(l)ij,k

 1
n

(6.10)

Utilize Eq. (5.5) to compute the group consensus index
GCI

(
R(l)k

)
, where

GCI
(
R(l)k

)
=

 n∏
i=1

n∏
j=1

z(l)ij,k

 1
n2

(6.11)

If GCI
(
R(l)k

)
≥ GCĪ for ∀k = 1, 2, . . . ,K or l ≥ lmax,

then turn to Step 13; otherwise, turn to Step 11.
Step 10. Locate the set of pairs of alternatives using Eq.

(5.6) as follows:

L(l)k =


(
x(l)i,k , x

(l)
j,k

)
|GCI

(
x(l)i,k

)
< GCI

(
R(l)k

)
∧ z(l)ij,k < GCI

(
R(l)k

) (6.12)

Step 11. Use S.i, S.ii, and S.iii to offer suggestions on the
modification of preference values for

(
x(l)i,k , x

(l)
j,k

)
∈ L(l)k .

VII. AN ILLUSTRATIVE EXAMPLE AND
COMPARISON ANALYSIS
In this section, we first give a numerical example to show the
process of proposed group decision-making model. Then we
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Algorithm 4 (Continued.) Complete Group
Decision-Making Algorithm

Step 12. Use the feedback advices on preference values(
x(l)i,k , x

(l)
j,k

)
∈ L(l)k to reconstruct R(l+1)k =

(
r (l+1)ij,k

)
n×n

,
and utilize Definition 28 to update the weights of the
DMs as:

ω
(l+1)
k =

GCI
(
R(l)k

)
K∑
k=1

GCI
(
R(l)k

) (k = 1, 2, . . . ,K ) (6.13)

Let l = l + 1 and turn to Step 9.
Step 13. Use the MG operator (Eq. (5.1)):

g(l)i∗ = MG
(
g(l)i1 , g

(l)
i2 , . . . g

(l)
in

)
=

n
⊗
j=1

(
g(l)ij
) 1
n
(i = 1, 2, . . . , n) (6.14)

to fuse all the preference values in each row of the group
MPR G(l) =

(
g(l)ij
)
n×n

and then get the overall preference

degrees g(l)i∗ of the alternatives xi (i = 1, 2, . . . , n).
Step 14. Rank all the alternatives xi (i = 1, 2, . . . , n)

based on their overall preference degrees
g(l)i∗ (i = 1, 2, . . . , n) and then select the optimal one.
Step 15. End.

compare the proposed group decision-making model with
the group decision-making model which was put forward by
Zhang andWu [27] to validate the effectiveness of our model.

A. AN ILLUSTRATIVE EXAMPLE
Example 31: In recent years, with the quick development of

Internet Plus and mobile payment, the bicycle-sharing comes
into people’s daily lives. It becomes more and more popular
and has been reported by The New York Times and Financial
Times. A large number of shared bikes can be easily found
in the streets or roads of cities and people can utilize their
smart phones to scan the QR (Quick Response) code on the
shared bikes to unlock them. The price of renting a shared
bike is very low, about 1 RMB per hour.Moreover, people can
park the shared bikes almost anywhere they like. Therefore,
the emerging of bicycle-sharing makes people be very easy to
travel and shared bikes have become one of the most popular
means of the public transports in China. The 2017 Internet
Trends Report delivered by Mary Meeker shows that the
on-demand bike transportation in China is second only to
cars and two-thirds of bike riders use bike-sharing programs
three or more times per week.

There are many different types of bike-sharing brands in
Chinese market, such as mobike, UBIKE, OFO, Hellobike,
bluegogo, UniBike, and youon. Assume that there exists an
investment company that plans to invest one of bike-sharing
brands. There are four possible alternatives to be considered,
which are listed as: (1) x1 is mobike; (2) x2 is bluegogo; (3) x3
is OFO; (4) x4 is youon. Four DMs DMk (k = 1, 2, 3, 4) are

called to compare these four types of bike-sharing brands
concerning the criterion growth analysis by using the Saaty’s
1-9 scale and the weight vector isω =

(
1
/
4, 1

/
4, 1

/
4, 1

/
4
)
.

The DMs provide their quantitative assessment information
in the form of HMPRs as follows:

H1 =


{1} {3, 5} {1/9, 1/7} {5}

{1/3, 1/5} {1} {1/5} {7}
{9, 7} {5} {1} {3}
{1/5} {1/7} {1/3} {1}

 ,

H2 =


{1} {1/3} {1/9, 1/7} {3}
{3} {1} {1/7, 1/5} {5}
{9, 7} {7, 5} {1} {1/7}
{1/3} {1/5} {7} {1}

 ,

H3 =


{1} {3, 5} {1/5} {3}

{1/3, 1/5} {1} {1/7} {9, 7}
{5} {7} {1} {1/9}
{1/3} {1/9, 1/7} {9} {1}

 ,

H4 =


{1} {3} {1/9} {5, 7}
{1/3} {1} {1/7, 1/5} {7}
{9} {7, 5} {1} {3}

{1/5, 1/7} {1/7} {1/3} {1}


To depict the process of Algorithm 4, the involved steps are

shown as follows:
Step 1: Choose the HME h12,1 from R1, achieve the set

Mm
12,1 = {3, 4}, use Eq. (6.1) to calculate hm12,1

(
m ∈ Mm

12,1

)
as h312,1 = h13,1×̃h32,1 =

{
5
9 ,

5
7

}
, h412,1 = h14,1×̃h42,1 ={

5
7

}
.

Step 2: Use Eq. (6.2) to compute the geometric estimated
preference value hG12,1 as:

hG12,1 =
3

√
5
9
×

5
7
×

5
7
= 0.6569.

Then, we use Eqs. (6.3) and (6.4) to get the optimal value
h∗12 from the HME h12 as follows:

εh12,1=
1
2


⋃

ε12,1∈log9
(
h12,1/hG12,1

) |ε12,1|
={0.3456, 0.4619} .

Thus, min(εh12,1) = 0.3456. Then h∗12,1 = 3.
Step 3:Repeat Steps 1 and 2 until the optimal value of each

HME in Hk has been obtained.

h∗13,1 = 1/7, h∗21,1 = 1/3, h∗13,2 = 1/7, h∗23,2 = 1/5,

h∗12,3 = 3, h∗23,3 = 7, h∗14,4 = 5, h∗23,4 =
1/
5

Step 4: Use all the collected h∗ij,k (i, j = 1, 2, . . . , n; i 6= j)

to form the reduced MPR H∗k =
(
h∗ij,k

)
4×4

. Let l = 0, then

R(0)k = (r (0)ij,k )4×4 = H∗k =
(
h∗ij,k

)
4×4

.

R(0)1 = H∗1 =


{1} {3} {1/7} {5}
{1/3} {1} {1/5} {7}
{7} {5} {1} {3}
{1/5} {1/7} {1/3} {1}

 ,
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R(0)2 = H∗2 =


{1} {1/3} {1/7} {3}
{3} {1} {1/5} {5}
{7} {5} {1} {1/7}
{1/3} {1/5} {7} {1}

 ,

R(0)3 = H∗3 =


{1} {3} {1/5} {3}
{1/3} {1} {1/7} {7}
{5} {7} {1} {1/9}
{1/3} {1/7} {9} {1}

 ,

R(0)4 = H∗4 =


{1} {3} {1/9} {5}
{1/3} {1} {1/5} {7}
{9} {5} {1} {3}
{1/5} {1/7} {1/3} {1}

 .
Step 5: Use Eq. (6.5) to compute the EGM, namely the

consistent MPR, of each reduced R(0)k as:

E (0)
1 =


{1} {0.8452} {1} {1.7321}

{1.1832} {1} {0.5774} {1}
{1} {1.7321} {1} {5.9161}

{0.5774} {1} {0.1690} {1}

 ,

E (0)
2 =


{1} {0.8091} {1.0878} {0.4295}

{1.2359} {1} {1.9680} {0.7121}
{0.9193} {0.5081} {1} {4.7867}
{2.3286} {1.4043} {0.2089} {1}

 ,

E (0)
3 =


{1} {0.8801} {1.8444} {0.8265}

{1.1362} {1} {1.4317} {0.3549}
{0.5422} {0.6585} {1} {5.2068}
{1.2099} {2.8173} {0.1921} {1}

 ,

E (0)
4 =


{1} {0.7937} {1} {1.6266}

{1.2599} {1} {0.5422} {1}
{1} {1.8444} {1} {6.2997}

{0.6148} {1} {0.1587} {1}

 .
Step 6: Utilize Eq. (6.6) to compute the consistency index

CI
(
R(0)k

)
of R(0)k :

CI
(
R(0)1

)
= 0.6982, CI

(
R(0)2

)
= 0.5218,

CI
(
R(0)3

)
= 0.4739, CI

(
R(0)4

)
= 0.6839.

The value of CĪ is set to 0.85 in this paper. Because
CI
(
R(0)k

)
< 0.85, each R(0)k should be modified in the next

step.
Step 7: Return R(0)k to the kth DM and suggest he/she to

provide an adjusted MPR R(1)k = (rij,k )
(1)
4×4 using Eq. (6.7) as:

R(1)1 =


1 1.2761 0.8286 2.3856

0.7836 1 0.5019 2.2000
1.2069 1.9925 1 5.3329
0.4192 0.4545 0.1875 1

 ,

R(1)2 =


1 0.6188 0.7098 1.4577

1.6160 1 1.2608 2.4273
1.4089 0.7932 1 2.9292
0.6860 0.4120 0.3414 1

 ,

R(1)3 =


1 1.3041 1.5155 1.2612

0.7668 1 1.1738 1.6840
0.6599 0.8519 1 4.1877
0.7929 0.5938 0.2388 1

 ,

R(1)4 =


1 1.2351 0.8222 2.3013

0.8097 1 0.4738 2.2000
1.2162 2.1108 1 5.6398
0.4345 0.4545 0.1773 1

 .
Step 8: Use Eq. (6.5) to compute the EGM, namely the

consistent MPR, of each reduced R(1)k as:

E (1)
1 =


1 1.1567 0.7316 1.8767

0.8645 1 0.7194 1.4956
1.3668 1.3900 1 1.8848
0.5328 0.6686 0.5305 1

 ,

E (1)
2 =


1 0.7625 0.7894 1.3293

1.3114 1 0.9874 1.7174
1.2668 1.0128 1 1.4101
0.7523 0.5823 0.7092 1

 ,

E (1)
3 =


1 0.9916 0.8240 1.9322

1.0084 1 0.8268 1.4766
1.2136 1.2095 1 1.0453
0.5176 0.6772 0.9567 1

 ,

E (1)
4 =


1 1.1608 0.6990 1.8840

0.8615 1 0.7139 1.4938
1.4306 1.4008 1 1.8987
0.5308 0.6694 0.5267 1

 .
Step 9: Utilize Eq. (6.6) to compute the consistency index

CI
(
R(1)k

)
of R(1)k :

CI
(
R(1)1

)
= 0.9147, CI

(
R(1)2

)
= 0.9344,

CI
(
R(1)3

)
= 0.8794, CI

(
R(1)4

)
= 0.9124

Because CI
(
R(1)k

)
≥ 0.85 for all the k = 1, 2, 3, 4, all

the reduced MPRs R(1)k satisfy the condition of acceptable
consistency.

The Matlab software is used to draw ‘‘Figure of area’’
as shown in Figs. 5-8, which gives a visible description of
the inconsistent MPRs R(0)k (k = 1, 2, 3, 4), the acceptably
consistent MPRs R(1)k (k = 1, 2, 3, 4), the EGM, namely the
consistent MPRs, E (1)k (k = 1, 2, 3, 4). Figs. 5-8 depict that
the more consistent the MPRs are, the more regular their
‘‘Figure of area’’ perform.
Step 10: Utilize Eq. (6.8) to fuse all the reduced MPRs

R(1)k =
(
r (1)ij,k

)
4×4

into a group MPR G(1), where

G(1)
=


1 0.8915 0.9185 1.5347

1.1217 1 1.0205 2.1328
1.0888 0.9799 1 3.6965
0.6516 0.4689 0.2705 1
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FIGURE 5. Areas of R(0)
1 , R(1)

1 , E(1)
1 .

FIGURE 6. Areas of R(0)
2 , R(1)

2 , E(1)
2 .

FIGURE 7. Areas of R(0)
3 , R(1)

3 , E(1)
3 .

FIGURE 8. Areas of R(0)
4 , R(1)

4 , E(1)
4 .

Step 11: Utilize Eq. (6.9) to compute the group consensus
index matrix GCM

(
R(1)k

)
=

(
z(1)ij,k

)
4×4

of R(1)k , where

GCM (R(1)1 ) =


1 0.9184 0.9766 0.8996

0.9184 1 0.8385 0.9929

0.9766 0.8385 1 0.9166

0.8996 0.9929 0.9166 1

 ,
GCM (R(1)2 ) =


1 0.9169 0.9414 0.9883

0.9169 1 0.9519 0.9706
0.9414 0.9519 1 0.9471
0.9883 0.9706 0.9471 1

 ,

GCM (R(1)3 ) =


1 0.9134 0.8860 0.9553

0.9134 1 0.9681 0.9462
0.8860 0.9681 1 0.9716
0.9553 0.9462 0.9716 1

 ,
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GCM (R(1)4 ) =


1 0.9258 0.9748 0.9078

0.9258 1 0.8254 0.9929
0.9748 0.8254 1 0.9039
0.9078 0.9929 0.9038 1

 .
Utilize Eq. (6.10) to compute the group consensus index

GCI
(
x(1)i,k

)
of the alternative x(1)i,k in R(1)k , where

GCI (x(1)1,1) = 0.9315,GCI (x(1)2,1) = 0.9166,

GCI (x(1)3,1) = 0.9106,GCI (x(1)4,1) = 0.9364

GCI (x(1)1,2) = 0.9488,GCI (x(1)2,2) = 0.9465,

GCI (x(1)3,2) = 0.9468,GCI (x(1)4,2) = 0.9686

GCI (x(1)1,3) = 0.9183,GCI (x(1)2,3) = 0.9426,

GCI (x(1)3,3) = 0.9419,GCI (x(1)4,3) = 0.9577

GCI (x(1)1,4) = 0.9362,GCI (x(1)2,4) = 0.9147,

GCI (x(1)3,4) = 0.9014,GCI (x(1)4,4) = 0.9349

Utilize Eq. (6.11) to compute the group consensus index
GCI

(
R(1)k

)
, where

GCI (1)1 = 0.92,GCI (1)2 = 0.95,

GCI (1)3 = 0.94,GCI (1)4 = 0.92

BecauseGCI
(
R(1)2

)
> 0.95,R(1)2 does not need to bemod-

ified. GCI
(
R(1)1

)
, GCI

(
R(1)3

)
, and GCI

(
R(1)4

)
are lower

than 0.95, turn to the next step.
Step 12: Locate the set of pairs of alternatives using

Eq. (6.12) as follows:

L(1)1 =


(
x(1)2,1, x

(1)
1,1

)
,
(
x(1)2,1, x

(1)
3,1

)
,(

x(1)3,1, x
(1)
2,1

)
,
(
x(1)3,1, x

(1)
4,1

) 
L(1)3 =

{(
x(1)1,3, x

(1)
2,3

)
,
(
x(1)1,3, x

(1)
3,3

)}
L(1)4 =

{(
x(1)2,4, x

(1)
3,4

)
,
(
x(1)3,4, x

(1)
2,4

)
,
(
x(1)3,4, x

(1)
4,4

)}
Step 13: Use S.i, S.ii, and S.iii to offer suggestions on

the modification of preference values for
(
x(1)i,k , x

(1)
j,k

)
∈ L(1)k

and use the feedback on preference values from the DMs to
construct R(2)k =

(
r (2)ij,k

)
4×4

, where

R(2)1 =


1 0.8915 0.8286 2.3856

1.1217 1 1.0205 2.2000
1.2069 0.9799 1 3.6965
0.4192 0.4545 0.2705 1

 ,

R(2)3 =


1 0.8915 0.9185 1.2612

1.1217 1 1.1738 1.6840
1.0888 0.8519 1 4.1877
0.7929 0.5938 0.2388 1

 ,

R(2)4 =


1 1.2350 0.8222 2.3013

0.8097 1 1.0205 2.2000
1.2162 0.9799 1 3.6965
0.4345 0.4545 0.2705 1

 .

Utilize Eq. (6.13) to update the weight of DMs as:

ω(2) = (0.2471,0.2548,0.2515,0.2466)T

Step 14: Utilize Eq. (6.8) to fuse all the reduced MPRs
R(2)k =

(
r (2)ij,k

)
4×4

(k = 1, 2, 3, 4) with the weight vector ω(2)

into a group MPR G(1) =
(
g(1)ij

)
4×4

, where

G(2)
=


1 0.8803 0.8159 1.7767

1.1360 1 1.1156 2.1092
1.2257 0.8964 1 3.5947
0.5628 0.4741 0.2782 1


Step 15: Utilize Eqs. (6.9), (6.10), (6.11) to compute the

group consensus index GCI
(
R(2)k

)
, where

GCI (2)1 = 0.98, GCI (2)2 = 0.96,

GCI (2)3 = 0.97, GCI (2)4 = 0.97

Because GCI
(
R(2)k

)
> 0.95 for ∀k = 1, 2, 3, 4, then it

turns to the next step.
Step 16: Utilize Eq. (6.14) to aggregate all the preference

values in each row of the group MPR G(2) =
(
g(2)ij

)
4×4

and obtain the overall preference degree g(2)i∗ (i = 1, 2, 3, 4)
of each alternative xi.

g(2)1∗ = 1.06, g(2)2∗ = 1.28,

g(2)3∗ = 1.41, g(2)4∗ = 0.52

Step 17: Rank all the alternatives xi (i = 1, 2, 3, 4) based
on their overall preference degrees g(2)i∗ (i = 1, 2, 3, 4) and
then select the optimal one.

g(2)3∗ > g(2)2∗ > g(2)1∗ > g(2)4∗

Thus, the best one is x3 (OFO).

B. COMPARISON ANALYSIS
To the best of our knowledge, currently, only Zhang
and Wu [27] developed a group decision-making model
with HMPRs taking consistency and consensus into account.
Therefore, we will compare our proposed model with the
model which was designed by Zhang and Wu [27] to show
the advantages of our model.

We utilize the group decision-making model, which was
devised by Zhang and Wu [27] to deal with HMPRs in
Example 31. The parameters are set to: CĪ = 1.01,
δ = 0.1, η = 0.2, the weight vector of all the DMs, λ =
(0.1, 0.5, 0.3, 0.1), GCĪ = 1.05, which are derived from
Example 31 in the work of Zhang and Wu [27]. We try to
implement the group decision-making model that was pro-
posed by Zhang and Wu [27] using the Java language on the
MyEclipse development software. We first normalize all the
HMPRs in Example 31 as:

H (0)
1 =


{1, 1} {3, 5} {1/9, 1/7} {5, 5}
{1/3, 1/5} {1, 1} {1/5, 1/5} {7, 7}
{9, 7} {5, 5} {1, 1} {3, 3}
{1/5, 1/5} {1/7, 1/7} {1/3, 1/3} {1, 1}

 ,
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FIGURE 9. Areas of H(0)
1 , H(1)

1 , H̃(1)
1 .

FIGURE 10. Areas of H(0)
2 , H(1)

2 , H̃(1)
2 .

FIGURE 11. Areas of H(0)
3 , H(2)

3 , H̃(2)
3 .

H (0)
2 =


{1, 1} {1/3, 1/3} {1/9, 1/7} {3, 3}
{3, 3} {1, 1} {1/7, 1/5} {5, 5}
{9, 7} {7, 5} {1, 1} {1/7, 1/7}
{1/3, 1/3} {1/5, 1/5} {7, 7} {1, 1}

 ,

H (0)
3 =


{1, 1} {3, 5} {1/5, 1/5} {3}
{1/3, 1/5} {1, 1} {1/7, 1/7} {7, 9}
{5, 5} {7, 7} {1, 1} {1/9, 1/9}
{1/3, 1/3} {1/7, 1/9} {9, 9} {1, 1}

 ,

H (0)
4 =


{1, 1} {3, 3} {1/9, 1/9} {5, 7}
{1/3, 1/3} {1, 1} {1/7, 1/5} {7}
{9, 9} {7, 5} {1, 1} {3}
{1/5, 1/7} {1/7, 1/7} {1/3, 1/3} {1, 1}

 .
We can get acceptably consistent HMPRs and complete

consistent HMPRs of H1, H2, H4 after only one iteration
and the acceptably consistent HMPR and complete consistent
HMPR of H3 after two iterations, which are listed as H (1)

1 ,
H (1)
2 , H (2)

3 , H (1)
4 , H̃ (1)

1 , H̃ (1)
2 , H̃ (2)

3 , and H̃ (1)
4 , as shown at the

top of the next page, where the HMPRs H (1)
1 , H (1)

2 , H (1)
4 as

well as H (2)
3 are acceptably consistent, and H̃ (1)

1 , H̃ (1)
2 , H̃ (1)

4
and H̃ (2)

3 are complete consistent HMPRs.
We draw ‘‘Figure of area’’ to give a visible description

of the inconsistent HMPRs H (0)
k (k = 1, 2, 3, 4), the accept-

ably consistent HMPRs H (1)
k (k = 1, 2, 4) and H (2)

3 , and
the complete consistent HMPRs H̃ (1)

k (k = 1, 2, 4) and H̃ (2)
3 .

Figs. 9-12 show that the more consistent the HMPR is, the
more regular its ‘‘Figure of area’’ performs.

Through running the java code, it can be found that all
the acceptably consistent HMPRs can get the acceptable
group consensus level after one iteration and their group
HMPR is obtained as G(1), as shown at the top of the next
page.

Then, the HMG operator and the score function that were
proposed in Zhang andWu [27] are used to compute the sores
of all the alternatives xi (i = 1, 2, 3, 4) as:

s (x1) = 0.8552, s (x2) = 0.9758,

s (x3) = 1.7970, s (x4) = 0.6669.
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H (1)
1 =


{1, 1} {1.4863, 2.0829} {0.2987, 0.3847} {3.7547, 4.4571}

{0.6728, 0.4801} {1, 1} {0.2379, 0.2244} {2.9161, 2.5995}
{3.3484, 2.5995} {4.2043, 4.4571} {1, 1} {9.5897,9.0625}
{0.2663, 0.2244} {0.3430,0.3847} {0.1043,0.1103} {1, 1}


H (1)
2 =


{1, 1} {0.4604,0.4516} {0.2986, 0.3699} {0.8081, 0.8551}

{2.1721,2.2142} {1, 1} {0.5960, 0.7589} {1.6552, 1.7853}
{3.3484, 2.7035} {1.6778, 1.3177} {1, 1} {1.6020,1.4036}
{1.2374, 1.1694} {0.6042, 0.5601} {0.6242,0.7125} {1, 1}


H (2)
3 =


{1, 1} {1.5348, 1.8666} {0.8132, 0.9228} {1.4422,1.7416}

{0.6516, 0.5357} {1, 1} {0.5339,0.5007} {0.9582,0.9586}
{1.2297, 1.0836} {1.8729,1.9972} {1, 1} {1.6885, 1.7969}
{0.6934, 0.5742} {1.0437,1.0432} {0.5922, 0.5565} {1, 1}


H (1)
4 =


{1, 1} {1.6032, 1.6032} {0.2769, 0.3221} {3.7547, 4.5180}

{0.6238, 0.6238} {1, 1} {0.1977, 0.2379} {2.7035,3.1454}
{3.6117, 3.1042} {5.0590, 4.2043} {1, 1} {10.3439,10.3439}
{0.2663, 0.2213} {0.3699, 0.3179} {0.0967, 0.0967} {1, 1}


H̃ (1)
1 =


{1, 1} {1.3747, 1.8898} {0.3333, 0.4295} {3.6371, 4.4006}

{0.7274, 0.5292} {1, 1} {0.2425, 0.2272} {2.6458, 2.3286}
{3, 2.3286} {4.1241, 4.4006} {1, 1} {10.9114,10.2470}

{0.2749, 0.2272} {0.3780,0.4295} {0.0916,0.0976} {1, 1}


H̃ (1)
2 =


{1, 1} {0.4772,0.4671} {0.3333, 0.4111} {0.6985, 0.7438}

{2.0956,2.1407} {1, 1} {0.6985, 0.8801} {1.4639, 1.5923}
{3.0, 2.4323} {1.4316, 1.1362} {1, 1} {2.0956,1.8092}
{1.4316, 1.3444} {0.6831, 0.6280} {0.4772,0.5527} {1, 1}


H̃ (2)
3 =


{1, 1} {1.5244, 1.8481} {0.8248, 0.9372} {1.4316,1.7321}

{0.6560, 0.5411} {1, 1} {0.5411,0.5071} {0.9391,0.9372}
{1.2124, 1.0670} {1.8481,1.9720} {1, 1} {1.7356, 1.8481}
{0.6985, 0.5774} {1.0648,1.0670} {0.5762, 0.5411} {1, 1}


H̃ (1)
4 =


{1, 1} {1.4953, 1.4953} {0.3064, 0.3626} {3.6371, 4.3035}

{0.6687, 0.6687} {1, 1} {0.2049, 0.2425} {2.4323,2.8779}
{3.2633, 2.7580} {4.8797, 4.1241} {1, 1} {11.8690,11.8690}
{0.2749, 0.2324} {0.4111, 0.3475} {0.0842, 0.0842} {1, 1}


G(1) =


{1, 1} {0.8416, 0.9142} {0.4003, 0.4818} {1.3072, 1.4747}

{1.1883, 1.0938} {1, 1} {0.4711, 0.5281} {1.5615, 1.6278}
{2.4981, 2.0754} {2.1228, 1.8937} {1, 1} {2.3455, 2.2242}
{0.7649, 0.6781} {0.6405, 0.6143} {0.4264, 0.4496} {1, 1}



Finally, we rank all of the alternatives xi (i = 1, 2, 3, 4)
according to their scores as:

s (x3) > s (x2) > s (x1) > s (x4)

Thus, the optimal one is x3 (OFO), which shows that our
proposed group decision-making model can obtain the same
result as the group decision-making model that was devised
by Zhang andWu [27]. It can validate the effectiveness of our
proposed group decision-making model.

In the following part, we will compare the proposed group
decision-making model with that is presented in Zhang and
Wu [27] and describe the differences between them:

(1) The group decision-making model proposed by
Zhang et al. normalizes all the HMPRs so that all of the

HMEs have the same number of elements, while our proposed
decision-making model introduces the regression method
based on the complete consistency to reduce each HMPR into
the MPR, which can decrease the computation complexity
efficiently.

(2) The threshold of the consistency index in Zhang and
Wu [27] is determined by the experiences of the decision
makers, which is lack of the theoretical basis to support it.
While we develop a new threshold estimation method to cal-
culate the consistency threshold under different confidence
levels using the probability theory.

(3) From the above comparison analysis, we can find that
our proposed group decision-making model can reduce the
number of iterations compared with that of Zhang et al.
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FIGURE 12. Areas of H(0)
4 , H(1)

4 , H̃(1)
4 .

(4) The group decision-making model proposed by
Zhang et al. modifies the consistency and the consensus of
HMPRs without the involvements of the DMs, while our pro-
posed decision-making model exploits the feedback mecha-
nism to modify the consistency and the consensus, which can
avoid the loss of information and then prevent from resulting
in the incorrect decision-making results.

VIII. CONCLUSIONS
In this paper, we have developed an efficient group decision-
making model to solve HMPRs considering the consistency
and consensus. To reduce the computations in the decision
making process, we have introduced the concept of complete
consistency and error analysis method to design a regression
method to reduce HMPRs into MPRs. Then, based on the
logarithmic distance, we have defined the consistency index
to measure the consistency level of an inconsistent reduced
MPR, developed a threshold estimation method to estimate
the consistency threshold for the reduced MPRs using the
probability theory, and proposed a feedback mechanism to
put forward a consistency checking and revising algorithm to
modify the reduced MPRs until they satisfy the acceptable
consistency.

At the same time, we have defined the group consensus
index of HMPRs and then exploited a feedbackmechanism to
design a consensus reaching algorithm to check whether the
group consensus index of each reduced MPR is enough and
revise the reduced MPRs with the involvement of the DMs.

Finally, we combined the regression method, consistency
checking and revising method, and the consensus reaching
process to develop a complete group decision-making model
with HMPRs and provided a practical example concern-
ing the investment of shared bikes to demonstrate our pro-
posed group decision-making model. At the same time, we
have used the group decision-making model developed by
Zhang and Wu [27] to solve HMPRs in Example 31 and
performed a detailed comparison analysis between our model
and the one of Zhang and Wu [27], which validates the
effectiveness of our model and its advantages over the
Zhang et al.’s model.

In the future, we will intend to use the local outlier factor
algorithm and kernel density estimation function to develop
a novel method, which can accurately estimate the thresholds

of consistency index and group consensus index instead of
being determined by experiences of the DMs.
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