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ABSTRACT Due to the material variations of lithium-ion cells and fluctuations in their manufacturing
precision, differences exist in electrochemical characteristics of cells, which inevitably lead to a reduction
in the available capacity and premature failure of a battery pack with multiple cells configured in series,
parallel, and series–parallel. Screening cells that have similar electrochemical characteristics to overcome
the inconsistency among cells in a battery pack is a challenging problem. This paper proposes an approach
for lithium -ion cell screening using convolutional neural networks (CNNs) based on two-step time-series
clustering (TTSC) and hybrid resampling for imbalanced data, which takes into account the dynamic
characteristics of lithium-ion cells, thus ensuring that the screened cells have similar electrochemical
characteristics. In this approach, we propose the TTSC to label the raw samples and propose the hybrid
resampling method to solve the sample imbalance issue, thereby obtaining labeled and balanced datasets and
establishing the CNNmodel for online cell screening. Finally, industrial applications verify the effectiveness
of the proposed approach and the inconsistency rate of the screened cells drops by 91.08%.

INDEX TERMS Lithium-ion cell screening, time-series clustering, resampling, convolutional neural
networks.

I. INTRODUCTION
In recent years, lithium-ion batteries, which feature high
energy densities, high power densities, long lives and envi-
ronmental friendliness, have increasingly found widespread
applications in the area of consumer electronics, such as
electric vehicles (EVs), hybrid electric vehicles (HEVs) and
portable power systems (PPSs) [1]–[3]. In particular, lithium-
ion battery packs for EVs consist of multiple cells in series,
parallel, and series-parallel configurations to satisfy suffi-
cient energy and voltage requirements. However, because
of manufacturing variability, the restrictions of production
technology and tolerances, cell architecture, material defects,
and degradation with use [4], [5], individual cells in a battery
pack exhibit some variation in performance, even cells from
the same batch that are manufactured under similar condi-

tions, causing inhomogeneity among cells in the pack [6], [7].
Such inhomogeneity within the battery pack is embodied by
intrinsic factors, including mismatches in capacity, internal
resistance and self-discharge, and by extrinsic factors, such
as differences in state of charge (SOC) and working volt-
age [5], [8]. These factors may give rise to some problems
during the use of lithium-ion battery packs, such as over-
charge or overdischarge of the battery pack, different atten-
uation velocities in the performance of individual cells, and
different heat generation rates among cells [9]–[13]. Then,
the problems will lead to a reduction in the available capacity
and premature failure of the battery pack, which shortens
its lifespan and may cause safety problems such as battery
explosions [14], [15]. To relieve the inconsistency among
cells in battery packs, two methods can generally be used:
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a preliminary screening of homogeneous cells for a battery
pack with cells configured in series and the cell balancing
techniques, as well as thermal management in battery man-
agement system (BMS) [16]–[19]. Lithium-ion cell screening
is a precondition for guaranteeing consistent performance
among cells in the battery pack; otherwise, other methods
cannot play a better role. Therefore, screening individual cells
with similar electrochemical characteristics for a battery pack
with cells configured in series is a crucial issue.

Lithium-ion cell screening is currently receiving consider-
able attention [20]–[22], which can be classified into three
methods: single-parameter sorting, multiparameter sorting,
and dynamic characteristics sorting. Single-parameter sorting
is only based on a characteristic parameter of the cells, such
as capacity screening, voltage screening or internal resistance
screening. Although it is applicable to large-scale lithium-
ion cell screening, the method cannot reflect the overall bat-
tery performance, and inconsistent cells may be mistakenly
screened, thus reducing the performance of the configured
battery packs. Multiparameter sorting uses multiple char-
acteristic parameters to sort cells, such as static capacity,
voltage, self-discharge rate, and battery internal resistance.
Kim et al. [5], [23], [24] and Kim and Cho [14] presented
a new approach based on two types of screening processes,
capacity screening and resistance screening, for improved
voltage/SOC balancing of a lithium-ion series battery pack.
Zhang et al. [25] used electrochemical impedance spec-
troscopy (EIS) and the equivalent circuit parameters to screen
the cells. He et al. [26] compared and analyzed the incon-
sistencies among commercial 18650 lithium-ion cells from
five manufacturers to propose a facile consistency screening
approach, which comprehensively considers the weight, size,
and electrochemical performance of the cells to provide
high performance consistency and reduce screening time.
However, multiparameter sorting only considers the
characteristic parameters of the cells under stable work-
ing conditions; without the dynamic parameters, it fails to
guarantee consistent electrochemical characteristics in the
screened cells. In addition, dynamic characteristics sorting
evaluates the similarity of battery charge and discharge curves
(voltage curves, current curves, SOC curves, internal resis-
tance curves, and so forth) in the same environment for cell
screening. Raspa et al. [4] proposed using self-organizing
map (SOM) neural networks based on the SOC variability
within each screened group of cells for the classification of
homogeneous cells. Du et al. [27] extracted the curvature
of the charge-discharge voltage curve as a feature vector to
screen cells. Kim [28], [29] presented an approach to screen
lithium-ion cells with similar electrochemical characteristics
by two-level basis pattern recognition combined with discrete
wavelet transform (DWT)-extracted features of experimental
voltage signals. In fact, the voltage curves in the charge and
discharge process of the cells not only directly indicate the
voltage variation lawwhile working but also indirectly reflect
the variation law of the battery capacity, internal resistance,
and temperature. Wu et al. [30] discussed the relationship

between a lithium-ion battery’s remaining useful life (RUL)
and battery terminal voltage curves during charge process
and presented an online method for lithium-ion battery RUL
estimation using feed forward neural network (FFNN) and
importance sampling (IS). Therefore, a screening method
combining multiparameter sorting with dynamic character-
istics sorting is the current research trend.

In this paper, a new approach for lithium-ion cell screening
using convolutional neural networks based on two-step time-
series clustering and hybrid resampling for imbalanced data
(TTSCHR-CNN) is proposed. A two-stage cell screening
method, namely, capacity screening and discharge voltage
curve screening, is implemented in an orderly manner. First,
we initially divide the cells into six classes according to their
capacity range. Then, the cells in each class are used by
TTSCHR-CNN to screen for defective cells in the discharge
voltage curves. Generally, the discharge voltage curve of a
cell can be considered as a time series. Due to the higher time
and space complexity of unsupervised time-series clustering
in a large number of samples, we first consider labeling the
discharge voltage time-series dataset of cells as the majority
class with the label ‘‘1’’ (negative samples) and the minority
class with the label ‘‘0’’ (positive samples, the discharge
voltage time series of defective cells) offline by using a two-
step time-series clustering method and then use a hybrid
resampling method to obtain a dataset with balanced positive
and negative samples to train the convolutional neural net-
work (CNN) model for online cell screening. The proposed
method has been verified to effectively screen cells with
similar electrochemical characteristics.

The remainder of this paper is organized as follows.
Section II shows the basic concept of the problems stud-
ied in this paper and presents the screening process for
screening cells with similar electrochemical characteristics.
In section III, TTSCHR-CNN for lithium-ion cell screening
is described in detail. Section IV analyzes and discusses the
experimental results and presents an application architec-
ture for lithium-ion cell screening in industrial production.
In the final section, some conclusions and future works are
presented.

II. PROBLEM DEFINITION
The manufacturing process of lithium-ion battery packs for
EVs, as shown in Figure 1, can be largely divided into the
cell manufacturing process, formation and screening process,
and configuring battery pack process. First, the cell manu-
facturing process produces and assembles individual cells,
including batching, coating, slitting, winding, assembling,
and injecting electrolyte. Second, the formation and screen-
ing process activates the individual cells and screens for cells
with consistent performance in electrochemical characteris-
tics, including activation, removal of out-of-spec cells, and
cell screening. Third, the configuring battery pack process
screens a fixed number of cells with similar electrochemical
characteristics to assemble battery packs for EVs or other
consumer electronics. In particular, for the formation and
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FIGURE 1. The manufacturing process of lithium-ion battery packs for EVs. A two-stage cell screening method, namely, capacity
screening and discharge voltage curves screening, is implemented in an orderly manner.

screening process, the individual cells are first activated
through charging, aging and discharging to form a solid
electrolyte interface (SEI) film on the anode surface and have
stable performance; then, faulty cells caused by internal short
circuits that reduce the open-circuit voltage and discharge
capacity are discarded to avoid performance or safety issues;
finally, cells are screened for similar electrochemical charac-
teristics for configuring lithium-ion battery packs.

In this paper, a two-stage cell screening method, including
capacity screening and DVC screening, is implemented in
an orderly manner. The capacity is defined as the maximum
total electrical charge, expressed in ampere-hour (Ah), that
the cells can deliver from the fully charged state to the fully
discharged state [5], as expressed in

Cn =
∫ SOC100%

SOC0%
idt. (1)

where Cn denotes the capacity, i denotes the discharge cur-
rent, and t denotes the discharge time. In the first capacity
screening process, as shown in Figure 1, 100 cells are divided
into six classes according to their capacity range, every
0.04 Ah for a class from 1.98 Ah to 2.22 Ah. In the second
DVC screening process, the cells in each class (class 3 in
Figure 1) continue to be screened by evaluating the similarity
of the discharge voltage curves, and defective cells with large
deviations in their discharge voltage curves, the 5 red dotted
lines in Figure 1 (their capacity distribution is indicated by
the red circles), are determined to be the abnormal DVCs.

This paper is focused on the second screening process: DVC
screening.

Generally, the DVC of a cell can be considered a time
series, which is a sequence of real-value data points with
timestamps. Therefore, DVC screening is a time-series classi-
fication problem. In this paper, we denote a discharge voltage
time series as V = {v1, v2, . . . , vn}, where vi is the discharge
voltage value at time stamp ti, and there are n timestamps
for each discharge voltage time series. We denote a labeled
discharge voltage time series dataset as D = {Vi, yi}Ni=1,
which contains N discharge voltage time series and their
associated labels. For each i = 1, 2, . . . ,N , Vi represents the
ith discharge voltage time series, and its label is yi. Herein,
yi is a class label in C = {1, 0}, where ‘‘1’’ represents the
normal discharge voltage time series and ‘‘0’’ represents the
abnormal discharge voltage time series. For addressing online
discharge voltage time-series classification of cells in indus-
trial processes, the following four questions are considered in
this paper.
• Howare the discharge voltage time series from indus-
trial processes aligned in time? Because the discharge
voltage time series of cells are from a considerable
amount of lithium-ion cell formation equipment, their
sampling periods are inconsistent, and the discharge
voltage time series of cells are not aligned in time. The
time series for classification are required to be syn-
chronized to the same reference time. Therefore, data
alignment is the first problem to be addressed.
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FIGURE 2. Overall architecture of TTSCR-CNN for the discharge voltage curve (DVC) screening. A new approach for DVC screening using CNN based on
two-step time-series clustering and hybrid resampling for imbalanced data (TTSCHR-CNN) is proposed, where we first label the discharge voltage
time-series dataset of cells as the majority class and the minority class offline by using a two-step time-series clustering method and then use a
hybrid resampling method to obtain a balanced dataset to train the CNN model for online cell screening.

• How are unlabeled discharge voltage time series
labeled? The raw discharge voltage time series are often
unlabeled, and clustering techniques are considered to
classify them into two classes with the label ‘‘1’’ or ‘‘0’’.
However, time-series clustering objectively organizes
a large amount of historical data into similar groups,
which has high computational complexity and is not
conducive to online screening. Thus, clustering the dis-
charge voltage time series offline to obtain the labeled
dataset to train supervised classification algorithms for
online cell screening is feasible.

• How is the imbalanced discharge voltage time-series
data for classification algorithms learned? In indus-
trial processes, the discharge voltage time series with the
label ‘‘0’’ are the minority compared with those with the
label ‘‘1’’. Training classification algorithms from such
imbalanced data is a formidable challenge and may lead
to a minority class of samples being misjudged as major-
ity classes, thereby reducing the classification accuracy.

A resampling method for imbalanced discharge voltage
time-series data is proposed.

• Which method is suitable for online discharge volt-
age time-series classification of cells in industrial
processes? The discharge voltage time series are natu-
rally high dimensional and large in data size. A highly
accurate and efficient online time-series classification is
challenging.

III. TTSCHR-CNN FOR LITHIUM-ION CELL SCREENING
A. TTSCHR-CNN FRAMEWORK
The overall architecture of TTSCHR-CNN for DVC screen-
ing is depicted in Figure 2 and consists of two stages: offline
and online. In the offline stage, we can classify the raw DVCs
into two classes by using a two-step time-series clustering
method: the normal DVCs with the label ‘‘1’’ and the abnor-
mal DVCs with the label ‘‘0’’. Due to the imbalance of DVCs
with labels ‘‘1’’ and ‘‘0’’ in industrial processes, a hybrid
resampling method is proposed to generate a balanced dataset

59004 VOLUME 6, 2018



C. Liu et al.: Lithium-Ion Cell Screening With TTSCHR-CNN

to train the CNNmodel for online cell screening. In the online
stage, a trained CNN model is used to screen for defective
cells online, where the input is a discharge voltage time series
to be predicted and the output is its label.

B. DATA ALIGNMENT
The raw discharge voltage time-series data from a large
amount of lithium-ion cell formation equipment in industrial
processes are not aligned in time. Obtaining a time series
for classification synchronized to the same reference time
T = {t1, t2, . . . , tn} is first considered. Data smoothing
and interpolation are effective methods for data alignment.
Specifically, interpolation methods include piecewise linear
interpolation, Lagrange interpolation, Newton interpolation
and Hermite interpolation, among which piecewise linear
interpolation has the advantages of being simple and having
only a small amount of calculations. Suppose that a raw
discharge voltage time series in T̂ = {t̂1, t̂2, . . . , t̂l} is rep-
resented by V̂ = {v̂1, v̂2, . . . , v̂l}. We use piecewise linear
interpolation to establish an interpolation function on each
adjacent interval (t̂i, t̂i+1). The interpolation function is given
by

V (t) =
t − t̂i+1
t̂i − t̂i+1

v̂i +
t − t̂i
t̂i+1 − t̂i

v̂i+1. (2)

where v̂i denotes the discharge voltage value at time stamp t̂i.
In this way, we can obtain consistent discharge voltage time
series V = {v1, v2, . . . , vn} in the same reference time
T = {t1, t2, . . . , tn}.

C. TWO-STEP TIME-SERIES CLUSTERING
For the discharge voltage time series V = {v1, v2, . . . , vn}
obtained through data alignment processing, we denote
an unlabeled discharge voltage time-series dataset as
D∗ = {Vi}Ni=1, which contains N discharge voltage time
series. The dataset D∗ can be divided into two classes (the
majority class and the minority class) by using time-series
clustering techniques: the majority class is labeled ‘‘1’’,
which represents the discharge voltage time series of normal
cells; the minority class is labeled ‘‘0’’, which represents the
discharge voltage time series of abnormal cells. As a chal-
lenging issue, time-series clustering has been increasingly
considered in recent years, and related works are classified
into three categories [31]: whole time-series clustering, sub-
sequence time-series clustering, and time point clustering.
One of the most used algorithms based on whole time-series
clustering is k-means [32], where the main idea is minimizing
the total distance, such as the Euclidean distance, between all
time series in a cluster and their cluster centers.

In general, the DVC of a cell reflects the operating voltage
characteristics of the cell to a certain extent. Each cell in the
formation process is discharged with the same discharge rate
C/i (i = 0.5, 1, 2, 5, . . .), where C/i represents the discharge
current calculated from the nominal capacity divided by the
discharge duration n in hours (h) [5]. As shown in Figure 3,
theDVCs can generally be divided into three stages [33], [34],

FIGURE 3. Three-stage analysis based on constant current discharge
voltage curves (DVCs) of 18650 cells at a rate of 1 C (1 C = 2.0 A).

where the discharge voltage of the cells decreases rapidly in
the first and third stages and the DVCs tend to be gentle in
the second stage. In particular, in the second stage, the gentle
duration depends on factors such as battery voltage, ambient
temperature, battery discharge rate, battery life, and battery
quality. Thus, it can be observed that a cell has better operat-
ing voltage characteristics when its DVC in the second stage
is gentler and its discharge voltage value at each sampling
time is higher than other cells. For example, cell No. 1 has
better performance than cell No. 2 in Figure 3.

Therefore, this paper presents a two-step time-series clus-
tering (TTSC) for labeling the discharge voltage time-series
dataset D∗ of cells: calculating a dividing line and redividing
the datasetD∗. In the first step, we use the k-means algorithm
to divide the raw discharge voltage time-series dataset D∗

into k classes, where C = {c(i)}(i = 1, 2, . . . , k) represents
a set of the k cluster centers, and the value of k is selected
based on experience. Based on the above three-stage DVC
analysis, the k cluster centers are then divided into two parts,
Cmaj = {cmaj(i)} and Cmin = {cmin(j)}, where cmaj(i) ∈ C ,
cmin(j) ∈ C , and |Cmaj| + |Cmin| = k . Generally, the classes
corresponding to Cmaj contain most of the samples, and the
classes corresponding to Cmin contain only a few samples.
Subsequently, we select the two most adjacent cluster centers
that are close to the boundaries of Cmaj and Cmin, which are
denoted as cmaj(border) and cmin(border), cmaj(border) ∈ Cmaj and
cmin(border) ∈ Cmin. A dividing line is defined as the center
line of cmaj(border) and cmin(border) and is given by

c(dividing−line) =
1
2
× (cmaj(border) + cmin(border)). (3)

In the second step, we use the dividing line to redivide the
raw discharge voltage time-series dataset D∗ into two parts:
Smaj and Smin. The discharge voltage time-series sample Vi
is classified into Smaj when the Euclidean distance between
Vi and c(dividing−line) is greater than zero; otherwise, Vi is
classified into Smin. For Smaj, we consider further filtering and
manually screening a few abnormal discharge voltage time-
series samples to add to the set Smin, and then the samples
in Smaj are reduced to form a new set S∗maj and the samples
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FIGURE 4. An example of the process of dividing the discharge voltage time-series dataset into the majority class with the label ‘‘1’’ and the
minority class with the label ‘‘0’’. (a) DVCs of History Samples, Sample Size: 3640. (b) Cluster Center Curves of History Samples Based on
K-means. (c) DVCs of the Majority Class, Sample Size: 3542. (d) DVCs of the Minority Class, Sample Size: 98.

in Smin are increased to form a new set S∗min. Consequently,
we classified the dataset D∗ into the majority class S∗maj and
the minority class S∗min, where the discharge voltage time-
series samples in S∗maj are labeled ‘‘1’’ and those in S∗min
are labeled ‘‘0’’.

An example of the process of dividing the discharge
voltage time-series dataset into the majority class with the
label ‘‘1’’ and the minority class with the label ‘‘0’’ is shown
in Figure 4. Specifically, the DVCs of cells for 3640 history
samples are shown in Figure 4(a). The k-means algorithm
is used to cluster the dataset into 8 classes, and the curves
of their cluster centers are shown in Figure 4(b), where the
classes corresponding to four solid lines (the number of clus-
ter centers is 3, 4, 6, and 7) contain the most samples, and
the classes corresponding to the other four dotted lines (the
number of cluster centers is 1, 2, 5, and 8) only contain a
few samples. We select cluster centers No. 2 and No. 7 in
Figure 4(b) as the two most adjacent cluster centers to define
the dividing line by formula (3), which is shown in Figure 4(b)
with a black dotted line. The dividing line is used to redivide
the dataset, where the samples above the dividing line are
classified as the majority class and the samples below the
dividing line are classified as the minority class. In addition,

a few abnormal DVCs of cells in the majority class are man-
ually screened to add to the minority class. A new majority
class (its sample size is 3542) and a new minority class (its
sample size is 98) are shown in Figure 4(c) and (d), respec-
tively. In Figure 4(d), the abnormal discharge voltage curves
above the dividing line are screened by manual selection and
circled with a red circle.

D. HYBRID RESAMPLING FOR IMBALANCED DATA
Typically, the discharge voltage time series with the label
‘‘0’’ represent defective cells and are always a minority class.
Training classification algorithms from such an imbalanced
dataset may lead to a small number of samples in minor-
ity classes being misclassified as majority classes, thereby
reducing the classification accuracy. Consequently, resam-
pling techniques [35], which are used to rebalance the sample
space for an imbalanced dataset to alleviate the effect of the
skewed class distribution in the learning process, are often
performed to address imbalanced learning to obtain a bal-
anced training set. Resampling techniques can be divided into
three groups [35], [36]: oversampling methods [37], under-
sampling methods, and hybrid methods. First, oversampling
methods are used to eliminate the risk of an imbalanced
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distribution by creating synthetic minority samples. The syn-
thetic minority oversampling technique (SMOTE) [38], [39],
which creates artificial data based on the feature space sim-
ilarities between existing minority samples, is a powerful
method that has shown great success in various fields [35].
Second, undersampling methods [40] are used to eliminate
the risk of an imbalanced distribution by discarding similar
samples in the majority class. Third, hybrid methods are a
combination of oversampling and undersampling methods.
In this paper, a hybrid resampling method, which creates
some synthetic discharge voltage time-series samples with
the label ‘‘0’’ by using SMOTE and discards a number of the
similar samples with the label ‘‘1’’ by using undersampling
based on clustering, is proposed to obtain a balanced training
set for the CNN model.

Given the discharge voltage time-series samples with the
label ‘‘0’’ as the positive learning dataset (the minority class)
and those with the label ‘‘1’’ as the negative learning dataset
(the majority class), P = {V11,V12, . . . ,V1|P|} and N =
{V01,V02, . . . ,V0|N |}, where |N | � |P|, Vij ∈ Rn×1 and n
denotes the time-series length or dimension.

For the minority class dataset P, we use an oversampling
algorithm based on SMOTE [38] to create new synthetic
discharge voltage time-series samples. Specifically, for each
minority class sampleV0j ∈ P, we use the k-nearest neighbors
algorithm to calculate the Euclidean distance between sam-
pleV0j to all samples inP to obtain kP nearest samples forV0j;
then, we randomly select nP samples from the kP nearest
samples, and for each sample V̂0j in nP samples, we create
a new synthetic sample according to the following formula:

V0new = V0j +1× (V̂0j − V0j). (4)

where 1 = [δ1, δ2, . . . , δn] and δi ∈ [0, 1] is a random
number. Thus, the number of samples in the positive learning
dataset is increased from |P| to nP×|P|, and the new positive
learning dataset is denoted by P̄. The pseudocode of the
oversampling algorithm based on SMOTE is described in
algorithm 1.

For the majority class dataset N , we propose a new under-
sampling algorithm based on clustering to discard a portion of
the similar samples to obtain a new majority class dataset N̄ .
The pseudocode of the undersampling algorithm based on
clustering is described in algorithm 2. Finally, there is a
similar proportion in the number of P̄ and N̄ , and a balanced
training set {P̄, N̄ } combining P̄ and N̄ together is used to
train the CNN model.

E. CONVOLUTIONAL NEURAL NETWORKS FOR ONLINE
DISCHARGE VOLTAGE TIME-SERIES CLASSIFICATION
OF CELLS
The discharge voltage time series are naturally high dimen-
sional and large in data size. A highly accurate and
efficient online time-series classification is challenging.
Recently, there have been active studies on deep neural
networks for time-series classification tasks. Fully convo-
lutional network (FCN) [41], LSTM fully convolutional

Algorithm 1 Oversampling algorithm based on SMOTE
1: Input: A monitory class dataset P and its number |P|,
P = {V01,V02, . . . ,V0|P|}, the number of nearest neigh-
bors kP, the random sampling number from the kP nearest
samples nP;

2: Initialize an extended minority class dataset P̄, P̄ = P;
3: i← 0;
4: repeat
5: i← i+ 1;
6: Calculate kP nearest neighbors of V0i and randomly

select nP samples from the kP nearest samples to
form a temporary set Snearest , where Snearest =
{V̂01, V̂02, . . . , V̂0|Snearest |};

7: j← 0;
8: repeat
9: j← j+ 1;

10: Generate a random vector 1 between [0,1];
11: Synthesize a new sample according to the formula

V0new = V0i +1× (V̂0j − V0i);
12: Add V0new to P̄;
13: until j > |Snearest |
14: until i > |P|
15: Output: The extended minority class dataset P̄.

Algorithm 2 Undersampling algorithm based on clustering
1: Input:Amajority class datasetN , kN , the cluster number

to be divided from N , and NN = {n1, n2, . . . , nkN }, a set
of sample numbers to be discarded from each cluster;

2: Cluster all samples in the dataset N into kN clusters,
and the ith cluster center is denoted by ciN , where i =
1, 2, . . . , kN ;

3: i← 0;
4: repeat
5: i← i+ 1;
6: Calculate the Euclidean distance between all samples

in the ith cluster with its cluster center ciN separately
and sort them in ascending order to obtain a set S i;

7: Discard the first ni even samples in S i, and the remain-
ing samples in S i form a new set S̄ i;

8: until i > kN
9: Output: A new majority class dataset N̄ through under-

sampling, where N̄ = {S̄1, S̄2, . . . , S̄kN }.

network (LSTM-FCN) [42], and multi-scale convolutional
neural network (MCNN) [43] take advantage of CNN to
address univariate time series, and a multichannel CNN [44]
has been proposed to solve multivariate time series. In par-
ticular, LSTM-FCN improved the performance of FCN by
augmenting the FCN module and has high performance for
time-series classification. In this paper, we establish a CNN
model to predict the discharge voltage time series of cells
online, as shown in Figure 2. The CNN model consists of
an input layer, convolutional layer, pooling layer, fully con-
nected layer and output layer. Specifically, the convolutional
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layer and pooling layer constitute a feature map, in which
the convolutional layer extracts different features of the input
(the discharge voltage time series) by using a convolution,
and the pooling layer can reduce the size of the convolutional
layer by using max pooling to avoid overfitting and improve
computational efficiency [43]. Furthermore, the output of all
pooling layers in k feature maps as an input continues execut-
ing the same operation to extractmore advanced features [45].
Finally, all these features are integrated together through
one or more fully connected layers, which is followed by a
softmax classifier to predict the label distribution. In addition,
the convolutional activation function in the CNN model is
the rectified linear unit (ReLU) function [45], which is an
unsaturated nonlinear function defined as

fcov(x) = max(0, x). (5)

To evaluate the effectiveness of classifiers, researchers
have proposed many performance metrics [36], [46], such as
precision or recall. However, for imbalanced learning prob-
lems, precision or recall cannot effectively assess classifi-
cation performance, and F-value and G-mean, well-reported
performance metrics, are frequently adopted to provide com-
prehensive assessments for imbalanced learning [46]. These
metrics can be formulated by a confusion matrix, as shown
in Table 1, and are defined as (6) below.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F − value =
2× Recall × Precision
Recall + Precision

G− mean =

√
TP× TN

(TP+ FN )× (TN + FP)
. (6)

TABLE 1. Confusion Matrix for Performance Evaluation.

IV. EXPERIMENTS AND APPLICATION
A. EXPERIMENTS
To test the effectiveness of the proposed TTSCHR-CNN
method, we collect one month of discharge voltage time-
series data of cells (the nominal capacity is 2.0 Ah) from a
lithium battery production company in China, where the cells
aremanufactured under a similar environment and discharged
in the same type of lithium-ion cell formation equipment
to generate discharge voltage time-series data. In addition,
we select 131096 cells with capacities between 1.98 Ah and
2.22 Ah as experimental samples. First, the cells are prelim-
inarily screened to divide them into six classes according to

the capacity range, every 0.04 Ah for a class from 1.98 Ah
to 2.22 Ah. Specifically, there are only a few cells with
capacities between 2.18 Ah and 2.22 Ah in a batch produc-
tion, and the cells are manually screened by their discharge
voltage curves in industrial production. Thus, this experiment
is focused on five classes of cells with capacities between
1.98 Ah and 2.18 Ah, and five CNN models for online cell
screening are respectively established.

Since the discharge voltage time-series data of cells
directly collected from industrial processes are generally not
aligned in time, they are considered to synchronize to the
same reference time t = {0, 0.5, 1, 1.5, . . . , 80} by data
alignment techniques in section III(B), where the sampling
period is set to 30 seconds and the dimension of the discharge
voltage time series is 161.

After data alignment, five classes of discharge voltage
time series of the cells with capacities between 1.98 Ah
and 2.18 Ah are labeled as the majority class samples with
the label ‘‘1’’ or the minority class samples with the label
‘‘0’’ by the two-step time-series clustering (TTSC) method
in section III(C), where k in the k-means algorithm is set
to 10. Specifically, each class of discharge voltage time series
in the five classes is classified into 10 clusters by using the
k-means algorithm, and five dividing lines are defined by
the two most adjacent cluster centers of each class, as shown
in Figure 5(a.x). Ten clusters in each class are divided into two
parts: minority clusters containing few samples and major-
ity clusters containing most of the samples. For example,
in Figure 5(a1), seven dotted lines (the number of cluster
centers is 1, 4, 5, 6, 8, 9, and 10) are defined as the minority
clusters, three solid lines (the number of cluster centers is 2,
3, and 7) are defined as the majority clusters, and No. 3 and
No. 9 as the two most adjacent cluster centers are selected
to define the dividing line. The samples below the dividing
lines and the abnormal samples manually screened above the
dividing lines are defined as the minority class samples, and
the DVCs of the minority class are shown in Figure 5(b.x).

In addition, due to the imbalance of the majority class and
the minority class samples, the hybrid resampling method
in section III(D) is used to obtain balanced training sets to
train the CNN models. Specifically, for the minority class
samples, the abnormal samples screened by manual selection
above the dividing line and a certain proportion of randomly
selected minority class samples are considered to synthesize
new samples for extending the minority class by using the
oversampling method in algorithm 1. The majority class sam-
ples are used by the undersampling method in algorithm 2
to discard a portion of the similar samples to obtain a new
majority class dataset.

Hence, the new datasets with balanced positive and neg-
ative samples are used to train the CNN models for online
lithium cell screening, where the datasets are divided into
training sets for learning the CNN models and test sets for
evaluating the CNN models. The numbers of samples in
different data preprocessing steps are shown in Table 2. The
negative and positive samples of training sets for the five
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FIGURE 5. Five classes of cluster center curves and discharge voltage curves (DVCs) of the minority class divided by a two-step
time-series clustering. (a1) Cluster Center Curves of cells with capacities between 1.98 and 2.02 Ah. (a2) Cluster Center Curves of
cells with capacities between 2.02 and 2.06 Ah. (a3) Cluster Center Curves of cells with capacities between 2.06 and 2.10 Ah.
(a4) Cluster Center Curves of cells with capacities between 2.10 and 2.14 Ah. (a5) Cluster Center Curves of cells with capacities
between 2.14 and 2.18 Ah. (b1) DVCs of the Minority Class, Sample Size: 193. (b2) DVCs of the Minority Class, Sample Size: 722.
(b3) DVCs of the Minority Class, Sample Size: 1063. (b4) DVCs of the Minority Class, Sample Size: 634. (b5) DVCs of the Minority
Class, Sample Size: 91.
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TABLE 2. The Number of Samples in Different Data Preprocessing Steps.

TABLE 3. The Performance Metrics of Five CNN Models on the Test Sets.

CNN models in Table 2 are basically balanced. The five test
sets contain 1000 negative samples and 100 positive samples.
We train the CNN models using TensorFlow [47], [48], and
the performance metrics of five CNN models on the test
sets are summarized in Table 3. As shown, the F-value and
G-mean for the first four discharge voltage time-series
datasets exceed 90%. However, due to insufficient samples
for the discharge voltage time-series dataset of cells with
capacities between 2.14 Ah and 2.18 Ah, the F-value and
G-mean are relatively low. In general, the results show that
the CNN models for lithium-ion cell screening can obtain
better performance for imbalanced discharge voltage time-
series datasets of cells.

To further test the online prediction performance of the
CNN models, we collect another month of discharge voltage
time-series samples of cells (the nominal capacity is 2.0 Ah)
from the same company under similar production conditions.
The samples are first divided into five classes according to
the capacity range, every 0.04 Ah for a class from 1.98 Ah to
2.18 Ah. We randomly select 1000 samples from five classes
of samples as unlabeled test sets. The DVCs of abnormal
cells predicted by the trained CNN models on the unlabeled
test sets are shown in Figure 6. The results show that the
CNN models can effectively predict the discharge voltage
time series of abnormal cells on the unlabeled test sets.

However, a few discharge voltage time series of abnormal
cells manually screened above the dividing lines (e.g., the red
dotted line in Figure 6(a1) and four red dotted lines in Fig-
ure 6(a2)) are not accurately predicted due to insufficient
training samples. Therefore, a high-efficiency oversampling
method for abnormal samples manually screened above the

dividing lines to synthesize more minority class samples can
be studied further in future work.

In addition, we compare the TTSCHR-CNN method with
the traditional method that currently uses capacity screening
in industrial processes. An inconsistent rate of the screened
cells is defined as follows:

Inconsistent rate =
Number of inconsistent cells

Total number of cells
× 100%.

(7)

Where inconsistent cells are abnormal cells that have not been
screened by two screening methods. To show the advantages
of our TTSCHR-CNN screening method, the dropped rate of
inconsistent cells is given as follows:

Dropped rate =
|IRtradition − IRTTSCHR−CNN |

IRtradition
× 100%.

(8)

Where IRtradition denotes the inconsistent rate of screened
cells by using the traditional method, and IRTTSCHR−CNN
denotes the inconsistent rate of screened cells by using
the TTSCHR-CNN screening method. The results presented
in Table 4 show that our method greatly improves the incon-
sistent rate and that the average dropped rate for five datasets
drops by 91.08%, indicating that the TTSCHR-CNN method
is significantly better than the traditional screening method.

B. APPLICATION
An online lithium-ion cell screening system is implemented
on a big data analysis platform based on Cloudera’s Distribu-
tion Including Apache Hadoop (CDH) [49], [50], which is an
open-source big data analysis tool that provides the Hadoop
Distributed File System (HDFS) for storing data, Hadoop
MapReduce for writing parallel-processing jobs, HBase for
providing real-time read/write access to huge data sets with
billions of rows and millions of columns, and so on. The
application architecture of online lithium-ion cell screening
in industrial production is shown in Figure 7. The archi-
tecture consists of three layers: data layer, computing layer
and visualization layer. First, abundant data (including the
discharge voltage time series of cells) generated by lithium-
ion cell formation equipment in the data layer are transmitted
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FIGURE 6. The discharge voltage curves (DVCs) of abnormal cells predicted by the trained CNN models on the unlabeled test sets.
(a1) DVCs of unlabelled test set with capacities between 1.98 and 2.02 Ah. (a2) DVCs of unlabelled test set with capacities
between 2.02 and 2.06 Ah. (a3) DVCs of unlabelled test set with capacities between 2.06 and 2.10 Ah. (a4) DVCs of unlabelled test
set with capacities between 2.10 and 2.14 Ah. (a5) DVCs of unlabelled test set with capacities between 2.14 and 2.18 Ah.
(b1) DVCs of predicted abnormal cells, Abnormal Rate: 191/1000. (b2) DVCs of predicted abnormal cells, Abnormal Rate: 84/1000.
(b3) DVCs of predicted abnormal cells, Abnormal Rate: 42/1000. (b4) DVCs of predicted abnormal cells, Abnormal Rate: 47/1000.
(b5) DVCs of predicted abnormal cells, Abnormal Rate: 53/1000.
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TABLE 4. Performance Comparison for Two Screening Methods.

to HBase for sorting in the computing layer. Second, the dis-
charge voltage time series of cells in HBase are preprocessed
by the methods proposed in this paper, including data align-
ment, two-step time-series clustering and hybrid resampling
methods, to obtain training sets for the CNNmodels of online
cell screening. The promising results predicted by the CNN
models are used to update the training database when each
result has to be tested by an evaluation system, which is used
by some algorithms to verify or experts to distinguish that the
predicted results are reliable. Finally, the predicted defective
cells are displayed on theWeb, where the cells are represented

FIGURE 7. The application architecture of online lithium-ion cell
screening in industrial production.

by the red rectangles in the visualization layer in Figure 7.

V. CONCLUSION
Screening lithium-ion cells that have similar electrochemical
characteristics to configure battery packs can effectively alle-
viate the performance, lifespan and safety problems caused
by the inconsistency among cells in a battery pack. The paper
proposed the TTSCHR-CNN approach for lithium-ion cell
screening.

The paper makes the following contributions:

• It screened cells with the static and dynamic charac-
teristics of lithium-ion cells taken into consideration,
thus ensuring that the screened cells have consistent
electrochemical characteristics.

• It proposed the TTSCHR-CNN approach, which is an
end-to-end ‘‘offline training and online screening’’ data-
driven method for screening cells that have abnormal
discharge voltage curves, providing a reference frame-
work for time-series classification problems in similar
industrial processes.

• It proposed a two-step time-series clustering method
to label the raw no-label samples, providing labeled
training samples for a supervised screening algorithm.

• It proposed a hybrid resampling method to solve the
training sample imbalance, ensuring that the lithium-
ion cell screening models based on CNN are effectively
trained so as to enhance its screening precision.

We collected the data of 131096 cells manufactured by a
certain lithium-ion cell manufacturer as experimental sam-
ples to verify the effectiveness of the approach proposed in
the paper. The results show that the inconsistency rate of the
screened cells by using the TTSCHR-CNN approach drops
by 91.08%.

In the future, we attempt to use the more data generated in
lithium-ion cell manufacturing processes to screen cells and
ensure that the screened cells have consistent manufacturing
processes and performance parameters. For the sample imbal-
ance caused by theminority class sample scarcity in industrial
processes, we will study the oversampling method that can
effectively predict the minority class sample probability den-
sity space, thereby generating the more diverse and accurate
minority class samples.
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